Electronic Supplementary Information

Molecular Recognition of Organophosphorus Compounds in Water and Inhibition of Their Toxicity to Acetylcholinesterase

Wei-Er Liu,^{ab} Zhao Chen,^b Liu-Pan Yang,^b Ho Yu Au-Yeung,^{*a} and Wei Jiang ^{*b}

^a Department of Chemistry, The University of Hong Kong, Hong Kong, China. E-mail: <u>hoyuay@hku.hk</u>

^b Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China. E-mail: <u>jiangw@sustech.edu.cn</u>

Table of Contents

1. Experimental Section	S2
2. ¹ H, ³¹ P NMR Spectra of the Complexes	S3
3. Binding Constants Determined by NMR Titrations	S10
4. 9:1 H ₂ O/D ₂ O Titration Experiments	S24
5. Fluorescence Titration Experiments	S25
6. In vitro Enzymatic Experiments	S26
7. Binding between AICI and 1a	S32

1. Experimental Section

1.1 General. All the reagents involved in this research were commercially available and used without further purification unless otherwise noted. Solvents were either employed as purchased or dried prior to use by standard laboratory procedures. ¹H NMR and ³¹P NMR spectra were recorded on Bruker Avance-400M or 500M NMR spectrometers. All chemical shifts are reported in *ppm* with methylsulfonic acid as the internal standard. Fluorescence spectra (FL) were obtained on a Shimadzu RF-5301pc spectrometer. UV-vis absorption spectra were obtained on a Hitachi U-2600 UV-vis spectrophotometer. Molecular simulations were performed at the Semi-Empirical PM6 level of theory by using Spartan'14 (Wavefunction, Inc.). The synthesis of **1a** and **1b** has been reported.¹

1.2 Isothermal titration calorimetry, ITC. Titration experiments were carried out in deionized water at 25 °C on a VP-ITC instrument. In a typical experiment, a 1.4338 mL solution of **1a** was placed in the sample cell at a concentration of 1.0×10^{-4} M, and 292 µL of a solution of **7** (3.0×10^{-3} M) was in the injection syringe. The titrations were consisted of a 2 µL injection and followed 28 consecutive injections of 10 µL each with a 210 s interval between injections. Heats of dilution, measured by titration of **7** into the sample cell with blank solvent, were subtracted from each data set. All solutions were degassed prior to titration. The data were analysed using the instrumental internal software package and fitted by "one binding site" model. Errors are smaller than $\pm 10\%$.

¹ G. B. Huang, S. H. Wang, H. Ke, L. P. Yang and W. Jiang, J. Am. Chem. Soc., 2016, 138, 14550.

2. ¹H, ³¹P NMR Spectra of the Complexes

Fig. S1 ¹H NMR spectra (400 MHz, D_2O , 2.0×10⁻⁴ M, 298 K) of (a) Guest 2, (c) 1a and (b) their equimolar mixture. The protons of the guest slightly shifted upfield, suggesting the complexation between 2 and 1a.

Fig. S2 ¹H NMR spectra (400 MHz, D_2O , 2.0×10⁻⁴ M, 298 K) of (a) Guest 2, (c) 1b and (b) their equimolar mixture. The protons of guest shifted upfield and became broadened, suggesting the complexation between 2 and 1b.

Fig. S3 ¹H NMR spectra (400 MHz, D₂O, 2.0×10^{-4} M, 298 K) of (a) Guest **3**, (c) **1a** and (b) their equimolar mixture. In the host-guest mixture, the protons of the guest shifted upfield and became broadened, suggesting the complexation between **3** and **1a**.

Fig. S4 ¹H NMR spectra (400 MHz, D_2O , 2.0×10⁻⁴ M, 298 K) of (a) Guest **3**, (c) **1b** and (b) their equimolar mixture. In the host-guest mixture, the protons of the guest shifted upfield and became broadened, suggesting the complexation between **3** and **1b**.

Fig. S5 ¹H NMR spectra (400 MHz, D₂O, 2.0×10^{-4} M, 298 K) of (a) Guest **4** (c) **1b** and (b) their equimolar mixture. In the host-guest mixture, the protons of the guest shifted upfield, suggesting the complexation between **4** and **1b**.

Fig. S6 ¹H NMR spectra (400 MHz, D_2O , 2.0×10⁻⁴ M, 298 K) of (a) Guest 5, (c) 1a and (b) their equimolar mixture. In the host-guest mixture, the protons of the guest slightly shifted upfield, suggesting the complexation between 5 and 1a.

Fig. S7 ¹H NMR spectra (400 MHz, D_2O , 2.0×10⁻⁴ M, 298 K) of (a) Guest 5, (c) 1b and (b) their equimolar mixture. In the host-guest mixture, the protons of the guest shifted upfield, suggesting the complexation between 5 and 1b.

Fig. S8 ¹H NMR spectra (400 MHz, D_2O , 2.0×10⁻⁴ M, 298 K) of (a) Guest 6, (c) 1a and (b) their equimolar mixture. In the host-guest mixture, the protons of the guest shifted upfield and become broaden, suggesting the formation of the complex between 6 and 1a.

Fig. S9 ¹H NMR spectra (400 MHz, D₂O, 2.0×10^{-4} M, 298 K) of (a) Guest 6, (c)1b, and (b) their equimolar mixture. In the host-guest mixture, the protons of the guest shifted upfield and become broaden, suggesting the formation of the complex between 6 and 1b.

Fig. S10 ¹H NMR spectra (400 MHz, D₂O, 2.0×10^{-4} M, 298 K) of (a) Guest 7, (c) 1a and (b) their equimolar mixture. In the host-guest mixture, the protons of the guest shifted upfield and become broaden, suggesting the complexation between 7 and 1a.

Fig. S11 ¹H NMR spectra (400 MHz, D₂O, 2.0×10^{-4} M, 298 K) of (a) Guest 7, (c) 1b and (b) their equimolar mixture. In the host-guest mixture, the protons of the guest shifted upfield and become broaden, suggesting the complexation between 7 and 1b.

Fig. S12 ¹H NMR spectra (400 MHz, D_2O , 2.0×10⁻⁴ M, 298 K) of (a) Guest **8**, (c) **1a** and (b) their equimolar mixture. In the host-guest mixture, the protons of the guest shifted upfield, and the protons of **1a** largely shifted downfield, suggesting the complexation between **8** and **1a**.

Fig. S13 ¹H NMR spectra (400 MHz, D_2O , 2.0×10⁻⁴ M, 298 K) of (a) Guest 8, (c) 1b and (b) their equimolar mixture. The protons of the guest became significantly broadened and rolled into the baseline, while the protons of 1b shifted downfield, suggesting the complexation between 8 and 1b.

Fig. S14 ³¹P NMR spectra (162 MHz, D₂O, 5.0×10^{-4} M, 298 K) of Guests **2-8** and their equimolar mixture with **1a** and **1b** (with 1.0×10^{-3} M Na₂HPO₄ as the internal standard). When compared to free guests, the shifts of the phosphorus in the complexes were observed, supporting the complex formation.

4. Binding Constants Determined by NMR Titrations

Fig. S15 a) Job's plot obtained by plotting the chemical shift change (*ppm*) of the Host's proton (7+7') in ¹H NMR spectra by varying the ratio of the host and the guest against the mole fraction of **1a**. The total concentration of the host and the guest is fixed: $[7] + [1a] = 1.0 \times 10^{-3}$ M. b) Molar ratio titration plot of **7** and **1a**. These experiments support the 1:1 binding stoichiometry between **7** and **1a** in the 1:1 mixture of D₂O.

Fig. S16 Partial ¹H NMR spectra (400 MHz, D₂O, 298 K) of **1a** (2.0×10^{-4} M) titrated by **2**. From bottom to top, the concentrations of **2** are in the range of $0 \sim 7.5 \times 10^{-2}$ M. Protons (1) of **1a** were monitored for the calculation of binding constants. Nonlinear curve-fitting method was then used to obtain the association constant through the following equation by Origin 2018:

 $\delta = \delta_0 + \Delta \delta (0.5/[H]_0) ([G] + [H]_0 + 1/K - (([G] + [H]_0 + 1/K)^2 - 4[H]_0[G])^0 0.5)$

	<i>K</i> _a (M ⁻¹)	R ²
1 st	38	0.996
2 nd	32	0.999
3 rd	23	0.998
average	31±7	

Fig. S17 Non-linear curve-fitting and association constant for the complexation between 1a and 2 in D_2O at 298 K.

Fig. S18 Partial ¹H NMR spectra (400 MHz, D₂O, 298 K) of **1b** (2.0×10^{-4} M) titrated by **2**. From bottom to top, the concentrations of **2** are in the range of $0 \sim 7.5 \times 10^{-2}$ M. Protons (7+7') of **1b** were monitored for the calculation of binding constants.

Fig. S19 Non-linear curve-fitting and association constant for the complexation between **1b** and **2** in D_2O at 298 K.

Fig. S20 Partial ¹H NMR spectra (400 MHz, D₂O, 298 K) of **1a** (2.0×10^{-4} M) titrated by **3**. From bottom to top, the concentrations of **3** are in the range of $0 \sim 3.5 \times 10^{-2}$ M. Protons (4+4') of **1a** were monitored for the calculation of binding constants.

Fig. S21 Non-linear curve-fitting and association constant for the complexation between 1a and 3 in D_2O at 298 K.

Fig. S22 Partial ¹H NMR spectra (400 MHz, D₂O, 298 K) of **1b** (2.0×10^{-4} M) titrated by **3**. From bottom to top, the concentrations of **3** are in the range of $0 \sim 1.5 \times 10^{-2}$ M. Protons (4+4') of **1b** were monitored for the calculation of binding constants.

Fig. S23 Non-linear curve-fitting and association constant for the complexation between **1b** and **3** in D_2O at 298 K.

Fig. S24 Partial ¹H NMR spectra (400 MHz, D₂O, 298 K) of **1b** (2.0×10^{-4} M) titrated by **4**. From bottom to top, the concentrations of **4** are in the range of $0 \sim 2.5 \times 10^{-2}$ M. Protons (5+5') of **1b** were monitored for the calculation of binding constants.

Fig. S25 Non-linear curve-fitting and association constant for the complexation between **1b** and **4** in D_2O at 298 K.

Fig. S26 Partial ¹H NMR spectra (400 MHz, D₂O, 298 K) of **1a** (2.0×10^{-4} M) titrated by **5**. From bottom to top, the concentrations of **5** are in the range of $0 \sim 2.5 \times 10^{-2}$ M. Protons (4+4') of **1a** were monitored for the calculation of binding constants.

Fig. S27 Non-linear curve-fitting and association constant for the complexation between 1a and 5 in D_2O at 298 K.

Fig. S28 Partial ¹H NMR spectra (400 MHz, D₂O, 298 K) of **1b** (2.0×10^{-4} M) titrated by **5**. From bottom to top, the concentrations of **5** are in the range of $0 \sim 2.5 \times 10^{-2}$ M mM. Protons (1+2') of **1b** were monitored for the calculation of binding constants.

Fig. S29 Non-linear curve-fitting and association constant for the complexation between 1b and 5 in D_2O at 298 K.

Fig. S30 Partial ¹H NMR spectra (400 MHz, D₂O, 298 K) of **1a** (2.0×10^{-4} M) titrated by **6**. From bottom to top, the concentrations of **6** are in the range of $0 \sim 2.0 \times 10^{-2}$ M. Protons (4+4') of **1a** were monitored for the calculation of binding constants. Nonlinear curve-fitting methodⁱ used here has been reported.

Fig. S31 Non-linear curve-fitting and association constant for the complexation between 1a and 6 in D_2O at 298 K.

Fig. S32 Partial ¹H NMR spectra (400 MHz, D₂O, 298 K) of **1b** (2.0×10^{-4} M) titrated by **6**. From bottom to top, the concentrations of **6** are in the range of $0 \sim 1.25 \times 10^{-2}$ M. Protons (4+4') of **1b** were monitored for the calculation of binding constants.

Fig. S33 Non-linear curve-fitting and association constant for the complexation between **1b** and **6** in D_2O at 298 K.

Fig. S34 Partial ¹H NMR spectra (400 MHz, D₂O, 298 K) of **1a** (2.0×10^{-4} M) titrated by **7**. From bottom to top, the concentrations of **7** are in the range of $0 \sim 3.0 \times 10^{-3}$ M. Protons (7+7') of **1a** were monitored for the calculation of binding constants.

Fig. S35 Non-linear curve-fitting and association constant for the complexation between 1a and 7 in D_2O at 298 K.

Fig. S36 Partial ¹H NMR spectra (400 MHz, D₂O, 298 K) of **1b** (2.0×10^{-4} M) titrated by **7**. From bottom to top, the concentrations of **7** are in the range of $0 \sim 5.0 \times 10^{-3}$ M. Protons (4+4') of **1b** were monitored for the calculation of binding constants.

	<i>K</i> _a (M ⁻¹)	R ²
1 st	3500	0.997
2 nd	3700	0.997
3 rd	4100	0.999
average	3800 ± 300	

Fig. S37 Non-linear curve-fitting and association constant for the complexation between 1b and 7 in D_2O at 298 K.

Fig. S38 Partial ¹H NMR spectra (400 MHz, D₂O, 298 K) of **1a** (2.0×10^{-4} M) titrated by **8**. From bottom to top, the concentrations of **8** are in the range of $0 \sim 1.31 \times 10^{-3}$ M. Protons (7+7') of **1a** were monitored for the calculation of binding constants.

Fig. S39 Non-linear curve-fitting and association constant for the complexation between 1a and 8 in D₂O at 298 K.

Fig. S40 Partial ¹H NMR spectra (400 MHz, D₂O, 298 K) of **1b** (2.0×10^{-4} M) titrated by **8**. From bottom to top, the concentrations of **8** are in the range of $0 \sim 1.2 \times 10^{-2}$ M. Protons (4+4') of **1b** were monitored for the calculation of binding constants.

Fig. S41 Non-linear curve-fitting and association constant for the complexation between **1b** and **8** in D_2O at 298 K.

4. 9:1 H₂O/D₂O Titration Experiments

Fig. S42 ¹H NMR spectra of **1b** titrated by **3** in H_2O/D_2O (9:1). The water peak was suppressed. The amide protons shift upfield, indicating the hydrogen bonds are weaker between the oxygen atoms of **3** and the amide protons of **1b** than those between 1b and the encapsulated water in its free state.²

² H. Yao, H. Ke, X. Zhang, S. J. Pan, M. S. Li, L. P. Yang, G. Schreckenbach and W. Jiang, *J. Am. Chem. Soc.*, 2018, **140**, 13466.

5. Fluorescence Titration Experiments

Fig. S43 Fluorescence spectra of 1a (1.0×10^{-5} M) when titrated with 8 ($0 \sim 2.1 \times 10^{-5}$ M) in deionized H₂O at 25 °C

Fig. S44 Fluorescence spectra of **1a** (1.0×10^{-5} M) when titrated with **6** ($0 \sim 4.1 \times 10^{-4}$ M) in deionized H₂O at 25 °C

6. In vitro Enzymatic Experiments

The general method was reported by Ellman and co-workers.³ The principle of this experiment is shown in Fig. S45. Acetylcholinesterase (AChE) can largely increase the hydrolysis speed of Acetylthiocholine-iodide (AICI). The hydrolysed product of AICI can generate a yellow product that have an absorption at 412 nm by reacting with 5,5'-Dithiobis(2-nitrobenzoic acid) (DTNB). Thus, we can monitor the activity of AChE by using UV-vis spectrometer.

Fig. S45 Mechanism of the Enzyme-based biomimetic experiments by substrate AICI and indicator DTNB.

AChE (200 u/g), substrate AICI, and indicator DTNB are all commercially available. 15 mM DTNB solution, 15 mM AICI solution and 0.85 u/mL AChE solution was prepared in PBS buffer (10 mM, pH = 7.2). Before the experiment, 2.65 mL PBS buffer, 50 μ L AChE (4.25×10⁻² u) and 100 μ L DTNB (1.5×10⁻³ mmol) mixture was preheated under 37 °C for 10 mins. After that, 50 μ L AICI (7.5×10⁻⁴ mmol) was injected to the mixture. The resulting solution was monitored by using UV-vis spectrometer. Molecular tube **1a** and paraoxon were added after preheated and before the injection of AICI.

³ G. L. Ellman, K. D. Courtney, V. Andres Jr. and R. M. Featherstone. *Biochem. Parmacol.*, 1961, 7, 88.

Fig. S46 UV-vis monitoring of enzyme-based experiment at 37 °C with: 4.25×10^{-2} u AChE, 1.5×10^{-3} mmol DTNB and 7.5×10^{-4} mmol AICI.

Fig. S47 UV-vis monitoring of enzyme-based experiment at 37 °C with: 7.5×10^{-4} mmol 1a, 4.25×10^{-2} u AChE, 1.5×10^{-3} mmol DTNB and 7.5×10^{-4} mmol AICI.

Fig. S48 UV-vis monitoring of enzyme-based experiment at 37 °C with: 3.75×10^{-3} mmol 1a, 4.25×10^{-2} u AChE, 1.5×10^{-3} mmol DTNB, 7.5×10^{-4} mmol AICI and 7.5×10^{-4} mmol paraoxon.

Fig. S49 UV-vis monitoring of enzyme-based experiment at 37 °C with: 7.5×10^{-4} mmol 1a, 4.25×10^{-2} u AChE, 1.5×10^{-3} mmol DTNB, 7.5×10^{-4} mmol AICI and 7.5×10^{-4} mmol paraoxon.

Fig. S50 UV-vis monitoring of enzyme-based experiment at 37° C with: 4.25×10^{-2} u AChE, 1.5×10^{-3} mmol DTNB, 7.5×10^{-4} mmol AICI and 7.5×10^{-4} mmol paraoxon.

Fig. S51 UV-vis monitoring of enzyme-based experiment at 37 °C with: 7.5×10^{-4} mmol 1a, 1.5×10^{-3} mmol DTNB and 7.5×10^{-4} mmol AICI.

Fig. S52 Biomimetic enzyme-based experiments (37 °C, UV-vis absorption at 412nm) for the prevention of paraoxon's toxicity to acetylcholinesterase (AChE) using molecular tube **1a**. a) AChE + substrate + indicator; b) AChE + substrate + indicator + 1 eq. paraoxon + 5 eq. **1a** (after 30 s); c) AChE + substrate + indicator + 1 eq. paraoxon + 5 eq. **1a** (after 60 s); d) AChE + substrate + indicator + 1 eq. paraoxon;

Fig. S53 UV-vis monitoring of enzyme-based experiment at 37 °C with: 4.25×10^{-2} u AChE, 1.5×10^{-3} mmol DTNB, 7.5×10^{-4} mmol AICI and 7.5×10^{-4} mmol paraoxon. 3.75×10^{-3} mmol **1a** was added 30 s after the injected of paraoxon.

Fig. S54 UV-vis monitoring of enzyme-based experiment at 37 °C with: 4.25×10^{-2} u AChE, 1.5×10^{-3} mmol DTNB, 7.5×10^{-4} mmol AICI and 7.5×10^{-4} mmol paraoxon. 3.75×10^{-3} mmol **1a** was added 60 s after the injected of paraoxon.

7. Binding between AICI and 1a

Fig. S55 ¹H NMR spectra (400 MHz, D_2O , 4.0×10⁻⁴ M, 298 K) of (a) Guest AICI, (c) **1a** and (b) their equimolar mixture. In the host-guest mixture, the protons of the guest shifted upfield, suggesting the complexation between AICI and **1a**.

Fig. S56 Partial ¹H NMR spectra (400 MHz, D₂O, 298 K) of **1a** (5.0×10^{-4} M) titrated by **AICI**. From bottom to top, the concentrations of **AICI** are in the range of $0 \sim 5.0 \times 10^{-3}$ M. Protons (2') of **1a** were monitored for the calculation of binding constants.

Fig. S57 Non-linear curve-fitting and association constant for the complexation between 1a and AICI in D_2O at 298 K.