Supporting Information

Reversible interaction of 1-butyl-1-methylpyrrolidinium cations with

5, 7, 12, 14-pentacenetetrone from pure ionic liquid electrolyte for

dual-ion batteries

Yaobing Fang, ${ }^{\text {a Caiying Chen, }}{ }^{\text {a Jiaxin Fan }}{ }^{\text {a }}$, Mengdie Zhang, ${ }^{\text {a Wenhui Yuan, }}$ *ac and Li Li ${ }^{\text {b }}$

Section SI. Experimental Section

Electrodes preparation:

The cathode was prepared by blending $90 \mathrm{wt} \%$ of natural graphite flake (Aladdin, 1200 mesh, purity >99.9\%), 2 wt\% acetylene black (Cell Grade, Zhengzhou Jinghong NewEnergy Technology Co. Ltd.), and 8 wt\% PVDF (Arkema) in NMP, which was then coated on aluminum foil (thickness: $30 \mu \mathrm{~m}$, purity $>99.9 \%$), dried at $100^{\circ} \mathrm{C}$ for 12 h under vacuum. The anode was prepared by blending 70 wt\% 5, 7, 12, 14-pentacenetetrone (Aladdin, >95.0\% (HPLC)), 20 wt\% acetylene black (Cell Grade, Zhengzhou Jinghong New-Energy Technology Co. Ltd.), and 10 wt\% PVDF (Arkema) in NMP, which was coated on aluminum foil (thickness: $30 \mu \mathrm{~m}$, purity $>99.9 \%$), dried at $100^{\circ} \mathrm{C}$ for 12 h under vacuum. The average mass loading of the graphite cathodes and $5,7,12,14$-pentacenetetrone anodes were 4.8 and $0.97 \mathrm{mg} \mathrm{cm}^{-1}$, respectively. According to the work of Schmuelling ${ }^{7}$, the maximum capacity of the insertion of TFSI^{-}into graphite is $115 \mathrm{~mA} \mathrm{~h} \mathrm{~g}{ }^{-1}$. In this work, to better understand the behavior of PCT, the graphite cathodes are excess. The ionic liquid 1-butyl-1-methylpyrrolidiniumbis (trifluoromethylsulfonyl)imide ($\mathrm{Pyr}_{14} \mathrm{TFSI}$, purity 99\%), PP_{14} TFSI and EmimTFSI were purchased from Lanzhou Institute of Chemical Physics (China).

Electrochemical measurement:

Electrochemical tests were measured using CR2025 coin-type cells with $\sim 100 \mu \mathrm{~L}$ electrolyte. Coin cells were assembled in glove box ($\left[\mathrm{O}_{2}\right]<0.01 \mathrm{ppm},\left[\mathrm{H}_{2} \mathrm{O}\right]<0.01 \mathrm{ppm}$) with argon. Galvanostatic charge-discharge tests were carried out on a Neware CT-4008 battery test system (China) at room temperature. Cyclic voltammetry (CV) tests were characterized on a Gamry electrochemical workstation (US) at a scan rate of $0.5 \mathrm{mV} \mathrm{s}^{-1}$, and the electrochemical impedance spectroscopy (EIS) tests were characterized on a Gamry electrochemical workstation (US).

Characterization:

The Ex-situ XRD measurements were performed on a Bruker D8 ADVANCE diffractometer (Germany). The morphologies and structure of the graphite cathode and 5, 7, 12, 14-pentacenetetrone anode were characterized by Hitachi SU8220 field emission electron microscope.

Section SII. Supporting Figure and Table

Fig. S1 Full four electron redox reactions of 5, 7, 12, 14-pentacenetetrone

Fig. S2 a) Cycling performance of the graphite//PCT DIBs with of different pure ionic liquid electrolyte $\left(\mathrm{PP}_{14} \mathrm{TFSI}, \mathrm{Pyr}_{14} \mathrm{TFSI}, ~ E m i m T F S I\right)$. b) Charge-discharge curves of the graphite//PCT DIBs at 0.1, 0.5, 1.0, 1.5, 5 C.

Fig.S3 Electrochemical impedance curves of graphite//PCT DIBs for different cycles.

Fig. S4 Open circuit voltage-time curve of the PCT//graphite cell (charged to 3.5 V)

Fig. S5 Ex-situ X-ray diffraction (XRD) spectra of graphite cathode when discharged from 2.5 V to 2.3 V .

Fig. S6 Ex-situ X-ray diffraction (XRD) spectra of PCT powder and initial PCT anode

Fig. S7 XPS spectra of electrodes at different states

TFSI ${ }^{-}$

Fig. S8 The structure diagram of Pyr_{14} TFSI

Fig. S9 Elemental mapping of C, S, F, and N in the fully charged and discharged: $a, b)$ cathode and c, d) anode.

Table S1: The XPS results of graphite electrodes at different states

	Full charged graphite cathode		Full discharged graphite cathode			
element	Position BE (ev)	Atomic Conc\%	Mass Conc $\%$	Position BE (ev)	Atomic Conc\%	Mass Conc $\%$
F	688.100	14.56	20.15	685.300	15.79	22.34
O	532.100	16.08	18.75	529.900	6.66	7.94
N	399.300	2.92	2.98	397.500	2.43	2.53
C	284.500	66.43	58.12	282.400	75.12	67.19

Table S2: The XPS result PCT electrodes at different states

element	Full charged PCT anode		Full discharged PCT anode			
	Position BE (ev)	Atomic Conc\%	Mass Conc $\%$	Position BE (ev)	Atomic Conc\%	Mass Conc $\%$
F	686.200	9.57	13.73	684.900	6.54	9.66
\mathbf{O}	529.300	12.04	14.55	528.900	9.62	11.97
N	399.500	4.13	4.37	396.500	0.46	0.51
C	282.200	74.26	67.35	282.200	83.38	77.87

