Electronic Supporting Information for:

High pressure synthesis of quasi-one-dimensional GdFeO₃-type perovskite PrCuO₃ with nearly divalent Cu ions

Masaharu Ito,^a Hidefumi Takahashi,^{a,b} Hideaki Sakai,^{a,c,d} Hajime Sagayama,^e Yuichi Yamasaki,^{d,f,g} Yuichi Yokoyama,^{f,h} Hiroyuki Setoyamaⁱ, Hiroki Wadati,^h Kanako Takahashi,^a Yoshihiro Kusano,^j Shintaro Ishiwata^{*a,b,d}

^aDepartment of Applied Physics and Quantum Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656, Japan.

^bDivision of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.

^cDepartment of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan.

^dPRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.

^eInstitute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan.

^fResearch and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Ibaraki, Tsukuba 305-0047, Japan.

gRIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan.

^hInstitute for Solid State Physics, University of Tokyo, Chiba 277-8581, Japan.

ⁱKyushu Synchrotron Light Research Center, 8-7 Yayoigaoka, Tosu, Saga 841-0005, Japan.

^jDepartment of Applied Chemistry and Biotechnology, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan

* E-mail: ishiwata@mp.es.osaka-u.ac.jp

1. High pressure synthesis

We have performed high pressure oxygen annealing for the oxygen deficient perovskite $PrCuO_{2.5}$ at several temperatures 420-500 °C under a high pressure of 7.5 GPa. Since NaClO₃ does not release oxygen below 420 °C and the impurity phase of PrO_2 appears above 450 °C, we concluded that the optimum annealing temperature is about 440 °C at a high pressure of 7.5 GPa. Furthermore, we have confirmed that the oxidizer NaClO₃ should be mixed with the oxygen deficient perovskite $PrCuO_{2.5}$ to obtain the fully oxidized $PrCuO_3$.

The XRD patterns of PrCuO_{2.5} and PrCuO₃, which was obtained by the high-pressure oxygen annealing for PrCuO_{2.5} at 450 °C and 7.5 GPa, are shown in Fig. S1. All the peaks for PrCuO_{2.5} can be indexed with an orthorhombic unit cell (*Pbam*) with a = 5.584 Å, b = 10.353 Å, c = 3.828 Å. The main peaks for PrCuO₃ can be indexed with an orthorhombic unit cell (*Pbnm*) with a = 5.301 Å, b = 6.245 Å, c = 7.278 Å. The 020 reflection with asterisk is superimposed by the main reflection from the impurity phase of PrO₂, which is absent in the sample obtained at 440 °C and 7.5 GPa.

Fig. S1: XRD patterns for $PrCuO_{2.5}$ and $PrCuO_3$ measured by a Cu K α radiation.

2. Linear interpolation analyses for XANES spectra

As shown in Fig. 4, the pre-edge structure below 8995 eV, which corresponds to the quadruple transition, is prominent especially for CuO. In order to minimize the effect of the pre-edge structure on the estimation of the absorption edge energy, we chose the intersection of the horizontal line for the linear interpolation analyses as shown in the inset of Fig. 4 (the horizontal line is located at 70% of the maximum value). On the basis of the energies of intersections for CuO and LaCuO₃, we define that the absorption edge energies for Cu²⁺ and Cu³⁺ states are 8996.5 eV and 8997.6 eV, respectively. Provided that the oxidation state of Cu is linearly proportional to the absorption edge energy (the linear interpolation analysis),²⁵ the oxidation state of Cu in PrCuO₃ is calculated to be +2.2.