Supplementary Information

Mechanosynthesis of Sydnone-containing Coordination Complexes

Nicolas Pétry,^a Thibaut Vanderbeeken,^a Astrid Malher,^a Yoan Bringer,^a Pascal Retailleau,^b Xavier Bantreil^a and Frédéric Lamaty^a,*

a. Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France. E-Mail: frederic.lamaty@umontpellier.fr

b. Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France

Table of Content

I. General Information	2
II. Preparation of <i>N</i> -aryl glycines in ball-mill	3
A. General procedure for alkylation-saponification (Method A)	3
III. Preparation of N-aryl-sydnones in ball-mill	9
A. General procedure for nitrosation-cyclization (GP1)	9
IV. Comparison of <i>N</i> -aryl glycines synthesis with literature procedures	16
V. Comparison of sydnones synthesis with literature procedures	18
VI. Preparation of coordination complexes with sydnone 3a as ligand in ball-mill	20
A. General procedure for preparation of complexes (GP2)	20
VII. References	27
VIII. ¹ H and ¹³ C NMR spectra	28
IX. FT-IR spectra	50

I. General Information

All reagents were purchased from Sigma Aldrich, Fluka, Acros or Alfa Aesar and used without further purification. The milling treatments were carried out either in a vibrating Retsch Mixer Mill 400 (vbm) or in a Fritsch Pulverisette 7 Planetary Mill (pbm).

NMR spectra were recorded on a Bruker AVANCE 400 MHz or a Bruker AVANCE III 500 MHz spectrometer, operating at 400.17 MHz (¹H), at 376.5 MHz (¹⁹F) and 100.62 MHz (¹³C) or at 500.17 MHz (¹H) and 125.77 MHz (¹³C). ¹H NMR spectra are reported in ppm using solvents as internal standards (CDCl₃ at 7.26 ppm, CD₃CN at 1.94 ppm, DMSO-*d*6 at 2.50 ppm). Data are reported as s = singlet, d = doublet, t = triplet, m = multiplet or overlap of non-equivalent resonances; coupling constant in Hz; integration. ¹³C NMR spectra are reported in ppm using solvents as internal standards (CDCl₃ at 77.16 ppm, CD₃CN at 1.32 and 118.26 ppm, DMSO-*d*6 at 39.52 ppm).

Infrared spectra were recorded on a Perkin-Elmer Spectrum 100 FT-IR spectrometer and wavelength numbers of the most relevant bands are reported in cm⁻¹.

Mass spectra were obtained by LC-MS with ESI using a Water Alliance 2695 as LC, coupled to a Waters ZQ spectrometer with electrospray source, a simple quadrupole analyzer and a UV Waters 2489 detector. HRMS analyses were performed on UPLC Acquity H-Class from Waters hyphenated to a Synapt G2-S mass spectrometer with a dual ESI source from Waters. High resolution MS analyses were performed on UPLC Acquity H-Class from Waters hyphenated to a Synapt G2-S mass spectrometer with a dual ESI source from Waters.

HPLC conversion was measured on an Agilent technologies 1220 Infinity LC using a Chromolith[®] high resolution RP-18e 50-4.6 mm column and a linear gradient of 0 to 100% CH3CN/0.1% TFA in H2O/0.1% TFA over 10 min, detection at 214 nm. Flow rate: 3 mL/min.

Flash chromatography was performed by using prepacked silica columns on a Biotage[®] IsoleraTM Four system.

II. Preparation of N-aryl glycines in ball-mill

A. General procedure for alkylation-saponification (Method A)

Ethyl bromoacetate (1 eq), the corresponding aniline (2.0 eq) and potassium carbonate (1.5 eq) were introduced in a grinding jar (10 mL stainless steel or 15 mL PTFE) with one stainless steel ball (10 mm diameter). The jar was closed and subjected to grinding in a vibratory ball-mill at 30 Hz for 90 min. Potassium hydroxide 90% KOH (3 eq) was then added to the reaction mixture which was again subjected to vibratory milling at 30 Hz for 90 min. Reaction mixture was taken up with water. The aqueous solution was washed with EtOAc to remove residual aniline in excess and then acidified to pH 1 with aqueous hydrochloric acid. The acidic phase was extracted with EtOAc, the combined organic layers were washed with brine, dried over MgSO₄, filtered and evaporated under vacuum to furnish the expected *N*-aryl-glycine.

N-Phenyl-glycine 1a

CAS: 103-01-5

Chemical Formula: C₈H₉NO₂ Molecular Weight: 151.17

Procedure: according to the general procedure GP1 starting from aniline, 2 step-one pot alkylation-saponification allowed to obtain *N*-pheny-glycine **1a** as a beige solid (110 mg, 0.73 mmol, 91%).

¹H NMR (400 MHz, DMSO-*d₆*) δ (ppm): 3.78 (s, 2H), 6.55 (m, 3H), 7.07 (m, 2H).
 ¹³C NMR (100 MHz, DMSO-*d₆*) δ (ppm): 44.6, 112.1 (2C), 116.1, 128.8 (2C), 148.2, 172.7.
 LCMS (ESI) *m/z*: 152 [M+H]⁺, 150 [M-H]⁻.

The analytical data obtained is in agreement with those reported in the literature.¹

N-(4-Methylphenyl)-glycine 1b

CAS: 21911-69-3

Chemical Formula: C₉H₁₁NO₂ Molecular Weight: 165.19

Procedure: according to the general procedure GP1 starting from p-toluidine, 2 step-one pot alkylation-saponification allowed to obtain glycine **1b** as a cream solid (220 mg, 1.33 mmol, 95%).

¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 2.14 (s, 3H), 3.74 (s, 2H), 6.46 (d, *J* = 8.4 Hz, 2H), 6.89 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm): 20.1, 45.0, 112.2 (2C), 124.6, 129.3 (2C), 145.9,

C NINK (100 MHz, DMSO-a_6) o (ppm): 20.1, 45.0, 112.2 (2C), 124.6, 129.3 (2C), 12 172.8.

LCMS (ESI) *m/z*: 166 [M+H]⁺.

The analytical data obtained is in agreement with those reported in the literature.²

N-(4-Methoxyphenyl)-glycine 1c

CAS: 22094-69-5

Chemical Formula: C₉H₁₁NO₃ Molecular Weight: 181.19

Procedure: according to the general procedure (GP1), the alkylation-saponification sequence performed in a stainless steel jar starting from p-anisidine yielded the N-arylglycine **1c** as a brown powder (175 mg, 0.96 mmol, 80%).

Appearance: beige solid ¹**H NMR (400 MHz, DMSO-***d*₆**)** δ (ppm): 3.63 (s, 3H), 3.72 (s, 2H), 6.51 (m, 2H), 6.71 (m, 2H), 8,90 (br. s, 1H).

```
<sup>13</sup>C NMR (100 MHz, DMSO-d_6) \delta (ppm): 45.6, 55.4, 113.3 (2C), 114.7 (2C), 142.5, 151.1, 173.0.
```

LCMS (ESI) *m/z*: 182 [M+H]⁺, 180 [M-H]⁻.

The analytical data obtained is in agreement with those reported in the literature.²

N-(4-Bromophenyl)-glycine 1d

CAS: 13370-62-2

Chemical Formula: C₈H₈BrNO₂ Molecular Weight: 230.06

Procedure: according to the general procedure (GP1), the alkylation-saponification sequence performed in a PTFE jar starting from 4-bromoaniline yielded the *N*-arylglycine **1d** as a brown solid (164 mg, 0.71 mmol, 76%).

¹**H NMR (300 MHz, DMSO-** d_6) **\delta (ppm):** 3.77 (s, 2H), 6.51 (d, *J* = 8.9 Hz, 2H), 7.20 (d, *J* = 8.9 Hz, 2H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm): 44.6, 106.8, 114.2 (2C), 131.4 (2C), 147.6, 172.4. HRMS ESI-(+) calcd. for C₈H₉NO₂Br [M+H]⁺ 229.9817, found 229.9818.

N-(4-Nitrophenyl)-glycine 1e

CAS: 619-91-0

Chemical Formula: C₈H₈N₂O₄ Molecular Weight: 196.16

Procedure (Method B): 4-Nitroaniline (98 mg, 0.70 mmol, 1 eq), glyoxylic acid monohydrate (160 mg, 1.68 mmol, 2.4 eq) and sodium cyanoborohydride (47 mg, 0.70 mmol, 1 eq) were introduced in a 10 mL stainless steel milling jar with one stainless steel ball (10 mm diameter). The jar was closed and submitted to grinding for 2 h in a vibratory ball-mill operated at 30 Hz. The reaction mixture was taken up with EtOAc and water. The aqueous phase was acidified with 1N HCl and extracted with EtOAc. The combined organic extracts were washed with 1N HCl and brine, dried over MgSO₄ and evaporated under vacuum. The crude product was taken up with 1N NaOH; the basic aqueous solution was washed with EtOAc (3x) and then acidified to pH 1-2 with a HCl solution. The resulting precipitate was filtered, rinsed with cold water and dried over P_2O_5 under vacuum to yield the expected *N*-aryl-glycine **1e** as a yellow powder (73 mg, 0.37 mmol, 53%).

¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 3.98 (d, J = 6.2 Hz, 2H), 6.66 (d, J = 9.2 Hz, 2H), 7.45 (t, J = 6.2 Hz, 1H), 8.00 (d, J = 9.2 Hz, 2H), 12.80 (br. s, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 44.0, 111.2 (2C), 126.0 (2C), 136.3, 154.3, 171.4. LCMS (ESI) m/z: 197 [M+H]⁺, 195 [M-H]⁻. The analytical data obtained is in agreement with those reported in the literature.²

N-(4-Cyanophenyl)-glycine 1f

CAS: 42288-26-6

Chemical Formula: C₉H₈N₂O₂ Molecular Weight: 176.18

Procedure (Method B): 4-Aminobenzonitrile (181 mg, 1.50 mmol, 1 eq), glyoxylic acid monohydrate (342 mg, 3.60 mmol, 2.4 eq) and sodium cyanoborohydride (100 mg, 1.50 mmol, 1 eq) were introduced in a 15 mL stainless steel milling jar with one stainless steel ball (10 mm diameter). The jar was closed and submitted to grinding for 2 h in a vibratory ball-mill operated at 30 Hz. The reaction mixture was taken up with EtOAc and water. The aqueous phase was acidified with 1N HCl and extracted with EtOAc. The combined organic extracts were washed with 1N HCl and brine, dried over MgSO₄ and evaporated under vacuum. The crude product was taken up with 1N NaOH; the basic aqueous solution was washed with EtOAc (3x) and then acidified to pH 1-2 with a HCl solution. The resulting precipitate was filtered, rinsed with cold water and dried over P_2O_5 under vacuum to yield the expected *N*-aryl-glycine **1f** as a beige powder (148 mg, 0.84 mmol, 56%).

Appearance: beige solid ¹**H NMR (400 MHz, DMSO-***d*₆**)** δ (ppm): 3.90 (d, *J* = 5.9 Hz, 2H), 6.64 (d, *J* = 8.8 Hz, 2H), 6.90 (t, *J* = 5.9 Hz, 1H), 7.46 (d, *J* = 8.8 Hz, 2H), 12.72 (br. s, 1H). ¹³**C NMR (100 MHz, DMSO-***d*₆**)** δ (ppm): 43.9, 96.4, 112.1 (2C), 120.5, 133.3 (2C), 151.9, 171.8. **LCMS (ESI)** *m/z*: 177 [M+H]⁺.

The analytical data obtained is in agreement with those reported in the literature.²

N-(4-Trifluoromethylphenyl)-glycine 1g

CAS: 77311-21-8

Chemical Formula: C₉H₈F₃NO₂ Molecular Weight: 219.16

Procedure (Method B): 4-Trifluoromethylaniline (255 μ L, 2.0 mmol, 1 eq), glyoxylic acid monohydrate (475 mg, 5.0 mmol, 2.5 eq) and sodium cyanoborohydride (140 mg, 2.1 mmol, 1.05 eq) were introduced in a 20 mL stainless steel milling jar with 80 stainless steel balls (5

mm diameter). The jar was closed and submitted to grinding for 2 h in a planetary ball-mill operated at 400 rpm. The reaction mixture was taken up with EtOAc and water. The organic layer was washed with 1N HCl and brine, dried over MgSO₄ and evaporated under vacuum. The crude product was taken up with 1N NaOH; the basic aqueous solution was washed with EtOAc (3x) and then acidified to pH 1-2 with a HCl solution. The resulting precipitate was filtered, rinsed with cold water and dried over P₂O₅ under vacuum to yield the expected *N*-aryl-glycine **1g** as an offwhite powder (325 mg, 1.48 mmol, 74%).

¹H NMR (400 MHz, DMSO-d₆) δ (ppm): 3.87 (s, 2H), 6.66 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H).
¹³C NMR (100 MHz, DMSO-d₆) δ (ppm): 44.1, 111.6 (2C), 115.8 (q, J = 32 Hz), 125.3 (q, J = 270 Hz), 126.1 (q, J = 3.7 Hz, 2C), 151.3, 172.1.
¹⁹F NMR (376 MHz, DMSO-d₆) δ (ppm): -59.9.
LCMS (ESI) *m/z*: 220 [M+H]⁺.

The analytical data obtained is in agreement with those reported in the literature.²

N-(3-Bromophenyl)-glycine 1h

CAS: 42288-20-0

Chemical Formula: C₈H₈BrNO₂ Molecular Weight: 230.06

Procedure: according to the general procedure (GP1), the alkylation-saponification sequence performed in a PTFE jar starting from 3-bromoaniline yielded the *N*-arylglycine **1c** as a brown solid (166 mg, 0.72 mmol, 85%).

¹H NMR (400 MHz, CDCl₃) δ (ppm): 3.97 (s, 2H), 6.54 (d, J = 8.2 Hz, 1H), 6.76 (t, J = 2.0 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 7.05 (t, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 45.4, 111.9, 115.9, 121.6, 123.5, 130.8, 148.0, 175.8. HRMS ESI-(+) calcd. for C₈H₉NO₂Br [M+H]⁺ 229.9817, found 229.9818.

N-(2,4,6-Trimethylphenyl)-glycine 1i

CAS: 104412-17-1

Chemical Formula: C₁₁H₁₅NO₂ Molecular Weight: 193.25

Procedure: Ethyl bromoacetate (340 μ L, 3.0 mmol), 2,4,6-trimethylaniline (1.07 mL, 7.5 mmol, 2.5 eq) and potassium carbonate (1.24 g, 9 mmol, 3 eq) were introduced in a 20 mL stainless steel jar with 80 stainless steel balls (5 mm diameter). The jar was closed and subjected to grinding in a planetary ball-mill operated at 500 rpm for 160 min. Potassium hydroxide 90% KOH (560 mg, 9.0 mmol, 3 eq) was then added to the reaction mixture then subjected to planetary milling at 500 Hz for 60 min. Reaction mixture was taken up with water. The aqueous solution was washed with EtOAc (3 times) and then acidified to pH 1 with aqueous hydrochloric acid. The acidic phase was extracted with EtOAc, the combined organic extracts were washed with brine, dried over MgSO₄, filtered and evaporated under vacuum. The crude product was triturated with Et₂O to yield the expected *N*-aryl-glycine **1i** as a clear yellow solid (214 mg, 1.11 mmol, 37%).

Appearance: clear yellow solid ¹H NMR (400 MHz, DMSO-*d₆*) δ (ppm): 2.13 (s, 3H), 2.18 (s, 6H), 3.65 (s, 2H), 6.72 (s, 2H), 8.34 (br. s, 1H). ¹³C NMR (100 MHz, DMSO-*d₆*) δ (ppm): 18.3 (2C), 20.1, 49.3, 127.9 (2C), 129.1 (2C), 129.3, 143.3, 173.4. LCMS (ESI) *m/z*: 194 [M+H]⁺.

The analytical data obtained is in agreement with those reported in the literature.³

III. Preparation of N-aryl-sydnones in ballmill

```
A. General procedure for nitrosation-cyclization (GP1)
```

N-aryl-glycine and sodium nitrite (1 eq) were introduced in a 10 mL ZrO₂ jar with one ZrO₂ ball (10 mm diameter). The jar was closed and subjected to grinding in a vibratory ball-mill at 30 Hz for 30 to 90 min. Trifluoroacetic anhydride was then added to the reaction mixture then subjected to vibratory milling at 25 Hz for 30 to 90 min. Reaction mixture was taken up with EtOAc. The organic solution was washed with with water, a saturated aqueous NaCHO₃ solution, water and brine. After drying over MgSO₄, filtration and evaporation of the solvent under vacuum the crude sydnone was obtained and if necessary purified by recrystallization or flash chromatography on silica.

Warning: intermediate nitroso-amines generated after the first milling step are highly toxic. Hence, caution should be taken when opening the milling jar.

N-Phenylsydnone 2a

CAS: 120-06-9

Chemical Formula: C₈H₆N₂O₂ Molecular Weight: 162.15

Procedure: according to the general procedure GP1 starting from *N*-phenyl-glycine **1a** and with milling times of 30 and 60 min, the expected sydnone **2a** was obtained as a brown solid (186 mg, 1.15 mmol, 95%) without needing further purification.

¹H NMR (400 MHz, CDCl₃) δ (ppm): 6.73 (s, 1H), 7.60-7.74 (m, 5H). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 93.7, 121.4, 130.3, 132.5, 134.9, 169.0. LCMS (ESI) *m/z*: 163 [M+H]⁺.

The analytical data obtained is in agreement with those reported in the literature.⁴

3-(4-Methylphenyl)-sydnone 2b

CAS: 3483-19-0

Chemical Formula: C₉H₈N₂O₂ Molecular Weight: 176.18 **Procedure:** according to the general procedure GP1, starting from *N*-(4-methylphenyl-glycine **1b** with milling times of 45 and 45 min, the expected *N*-aryl-sydnone **2b** was obtained as a beige solid (53 mg, 0.30 mmol, 91%).

¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.47 (s, 3H), 6.68 (s, 1H), 7.40 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 21.5, 93.6, 121.2, 130.9, 132.6, 143.4, 169.2. LCMS (ESI) m/z: 177 [M+H]⁺.

The analytical data obtained is in agreement with those reported in the literature.⁴

3-(4-Methoxyphenyl)-sydnone 2c

CAS: 3815-80-3

Chemical Formula: C₉H₈N₂O₃ Molecular Weight: 192.17

Procedure: according to the general procedure GP1, starting from *N*-(4-methoxyphenylglycine **1c** with milling times of 30 and 45 min, the expected *N*-aryl-sydnone **2c** was obtained after trituration of the crude with Et_2O and recrystallization from EtOAc/heptane as brown solid (55 mg, 0.28 mmol, 54%).

¹H NMR (400 MHz, CDCl₃) δ (ppm): 3.90 (s, 3H), 6.65 (s, 1H), 7.07 (d, J = 9.1 Hz, 2H), 7.64 (d, J = 9.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 56.0, 93.5, 115.4, 122.8, 127.9, 162.6, 169.2. LCMS (ESI) m/z: 193 [M+H]⁺.

The analytical data obtained is in agreement with those reported in the literature.⁵

3-(4-Bromophenyl)-sydnone 2d

CAS: 26537-61-1

Chemical Formula: C₈H₅BrN₂O₂ Molecular Weight: 241.04

Procedure: according to the general procedure GP1 starting from *N*-4-bromophenyl-glycine **1d** and with milling times of 30 and 90 min, the expected sydnone **2d** was obtained as a brown powder (152 mg, 0.63 mmol, 91%) without needing further purification.

¹H NMR (400 MHz, CDCl₃) δ (ppm): 6.73 (s, 1H), 7.62 (d, J = 8.5 Hz, 2H), 7.77 (d, J = 8.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 93.7, 122.8, 127.0, 133.7, 168.9. LCMS (ESI) *m/z*: 241, 243 [M+H]⁺. HRMS ESI-(+) calcd. for C₈H₆N₂O₂Br [M+H]⁺ 240.9613, found 240.9613.

The analytical data obtained is in agreement with those reported in the literature.⁶

3-(4-Nitrophenyl)-sydnone 2e

CAS: 6299-51-0

2e O₂I

Chemical Formula: C₈H₅N₃O₄ Molecular Weight: 207.15

Procedure: according to the general procedure GP1 starting from *N*-4-nitrophenyl-glycine **1e**, complete conversion was obtained with milling times of 30 and 45 min. The crude product was purified by recrystallization from EtOAc/heptane to afford the expected sydnone **2e** as a orange powder (52 mg, 0.25 mmol, 42%).

¹H NMR (400 MHz, CD₃CN) δ (ppm): 7.14 (s, 1H), 8.03 (d, *J* = 8.7 Hz, 2H), 8.46 (d, *J* = 8.7 Hz, 2H).

¹³C NMR (100 MHz, CD₃CN) δ (ppm): 96.2, 124.2, 126.5, 139.9, 150.9, 169.6. LCMS (ESI) *m/z*: 208 [M+H]⁺.

The analytical data obtained is in agreement with those reported in the literature.⁷

3-(4-Cyanophenyl)-sydnone 2f

CAS: 68657-48-7

Chemical Formula: C₉H₅N₃O₂ Molecular Weight: 187.16

Procedure: according to the general procedure GP1, starting from *N*-4-cyanophenyl-glycine **1f**, with addition of 1 eq of KHSO₄ (to obtain full conversion of the nitrosation step) and with a milling time of 90 min for the cyclization step, the expected *N*-aryl-sydnone **2f** was

obtained after purification of the crude by recrystallization from ethanol/heptane 8/2 as a beige powder (62 mg, 0.33 mmol, 34%).

¹**H NMR (400 MHz, CD₃CN) δ (ppm):** 7.09 (s, 1H), 7.96 (d, *J* = 8.8 Hz, 2H), 8.02 (d, *J* = 8.8 Hz, 2H).

¹³C NMR (100 MHz, CD₃CN) δ (ppm): 95.9, 116.8, 118.2, 123.6, 135.4, 138.8, 169.6. LCMS (ESI) *m*/*z*: 188 [M+H]⁺.

HRMS ESI-(+) calcd. for $C_9H_6N_3O_2[M+H]^+$ 188.0460, found 188.0461.

3-[4-(Trifluoromethyl)phenyl]-sydnone 2g

CAS: 1620220-61-2

Chemical Formula: C₉H₅F₃N₂O₂ Molecular Weight: 230.15

Procedure: according to the general procedure GP1, starting from *N*-(4-trifluoromethylphenyl)-glycine **1g**, the nitrosation step was achieved after 30 min of milling. Then MgSO₄ (4.4 eq) was added as a grinding auxiliary and the mixture milled for 5 min at 30 Hz. The cyclization step was then performed at 30 Hz for 30 min. The crude product was purified by flash chromatography on silica (cyclohexane/EtOAc 100/0 to 50/50) to furnish the expected *N*-aryl-sydnone **2g** as an offwhite powder (41 mg, 0.18 mmol, 46%).

¹H NMR (400 MHz, CDCl₃) δ (ppm): 6.82 (s, 1H), 7.89-7,.94 (m, 4H).
¹³C NMR (100 MHz, CDCl₃) δ (ppm): 94.0, 122.1 (2C), 123.0 (q, J = 273 Hz), 127.8 (2C), 134.7 (q, J = 33.5 Hz), 137.3, 168.8.
¹⁹F NMR (376 MHz, DMSO-*d₆*) δ (ppm): -64.1.
LCMS (ESI) *m/z*: 231 [M+H]⁺.

The analytical data obtained is in agreement with those reported in the literature.^{5, 8}

3-(3-Bromophenyl)-sydnone 2h

CAS: 60816-43-5

Chemical Formula: C₈H₅BrN₂O₂ Molecular Weight: 241.04

Procedure: according to the general procedure GP1 starting from *N*-3-bromophenyl-glycine **1h** and with milling times of 30 and 90 min, the expected sydnone **2h** was obtained as a brown powder (136 mg, 0.56 mmol, 81%) without needing further purification.

¹H NMR (400 MHz, CDCl₃) δ (ppm): 6.75 (s, 1H), 7.51 (t, J = 8.0 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.91 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 94.0, 120.1, 124.0, 124.7, 131.7, 135.8, 168.9. LCMS (ESI) *m/z*: 241, 243 [M+H]⁺. HRMS ESI-(+) calcd. for C₈H₆N₂O₂Br [M+H]⁺ 240.9613, found 240.9615.

3-(2,4,6-Trimethylphenyl)-sydnone 2i

CAS: 104411-99-6

Chemical Formula: C₁₁H₁₂N₂O₂ Molecular Weight: 204.23

Procedure: according to the general procedure GP1, starting from *N*-(2,4,6-trimethylphenylglycine **1i** with addition of 2 eq of KHSO₄ and milling times of 90 and 45 min, the expected *N*aryl-sydnone **2i** was obtained after trituration of the crude with Et₂O and recrystallization from EtOAc/heptane as an offwhite powder (56 mg, 0.27 mmol, 53%).

¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.16 (s, 6H), 2.37 (s, 3H), 6.34 (s, 1H), 7.04 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 16.8, 21.3, 97.3, 129.7, 131.4, 133.8, 142.3, 169.4. LCMS (ESI) *m/z*: 205 [M+H]⁺. HRMS ESI-(+) calcd. for C₁₁H₁₃N₂O₂ [M+H]⁺ 205.0977, found 205.0979.

The analytical data obtained is in agreement with those reported in the literature.³

3-Phenyl-4-(2-pyridinyl)-sydnone 3a

CAS: 142335-48-6

Chemical Formula: C₁₃H₉N₃O₂ Molecular Weight: 239.23

Procedure: *N*-phenylsydnone (179 mg, 1.10 mmol), palladium acetate (15 mg, 0.066 mmol, 0.06 eq), triphenylphosphine (35 mg, 0.13 mmol, 0.12 eq) and potassium carbonate (304 mg, 2.20 mmol, 2 eq) were suspended in dimethylcarbonate (4.20 mL) in a vial. 2-bromopyridine was added (155 μ L, 1.65 mmol, 1.5 eq), the vial sealed and heated to 150-160 °C in a silicon

oil bath for 20 h. The reaction mixture was diluted with EtOAc, filtered on a pad of Celite and evaporated under vacuum. The crude product was purified by flash chromatography on silica (cyclohexane/EtOAc 100/0 to 70/30) to afford the C4-arylated sydnone **3a** as a beige solid (145 mg, 0.60 mmol, 55%).

IR (neat, cm⁻¹): 3050, 1757, 1739, 1582, 1566, 1510, 1277, 1240, 1017, 789, 764, 748, 730. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.11 (ddd, J = 7.8, 4.8, 1.1 Hz, 1H), 7.47-7.56 (m, 4H), 7.62 (m, 1H), 7.73 (td, J = 7.8, 1.8 Hz, 1H), 8.07 (d, J = 8.0 Hz, 1H), 8.23 (m, 1H). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 107.0, 121.9, 122.7, 125.2 (2C), 129.4 (2C), 131.6, 136.1, 136.9, 144.9, 149.1, 167.1. LCMS (ESI) *m/z*: 240 [M+H]⁺.

The analytical data obtained is in agreement with those reported in the literature.⁹

ORTEPs (probability at 50% level) of compound **3a**. H atoms are omitted for clarity.

CCDC 1913664	3a
Formula	$C_{13}H_9N_3O_2$
M / g.mol ⁻¹	239.23
Crystal system	Monoclinic
Space group	P2 1/n
a / Å	8.7441 (8)
b / Å	13.0971 (15)
<i>c</i> / Å	10.0411 (10)
α/Å	90
6/Å	100.651 (10)
γ/Å	90
<i>V</i> (Å ³)	1130.1 (2)
Ζ	4
$ ho_{ m calcd}$ / g.cm ⁻³	1.406
μ (Mo Kα) / mm⁻¹	0.71073
<i>Т </i> К	293 (2)
Number of reflections	12373
Number of unique	2212
reflections	
R1, wR2 ($I > 2\sigma(I)$)	0.0513, 0.1181
<i>R</i> 1, w <i>R</i> 2 (all data)	0.0960, 0.1412
GOF	1.018

IV. Comparison of *N*-aryl glycines synthesis with literature procedures

Compound	CAS	Yield	Yield in lit.	Conditions from literature
H O N OH 1a	103-01-5	91%	93% ¹⁰	1) Aniline, ethyl bromoacetate (1.0 eq.), SiO₂, MW (300 W), 7 min. 2) NaOH (excess) in EtOH, reflux, 10 min.
О			90% ¹⁰	1) <i>p</i> -Toluidine, ethyl bromoacetate (1.0 eq.), SiO₂, MW (300 W), 5 min. 2) NaOH (excess) in EtOH, reflux, 10 min.
П ОН	21911-69-3	95%	42% ¹¹	1) <i>p</i> -Toluidine, NaOAc (1.2 eq.), ethyl chloroacetate (1.2 eq.), EtOH, reflux, 7h, overnight at rt, 2) NaOH (1.1 eq.), H₂O, reflux, 30 min.
1b			53% ⁶	1) <i>p</i> -Toluidine, NaOAc (1.2 eq.), ethyl chloroacetate (1.2 eq.), EtOH, reflux, overnight, 2) LiOH (3 eq.), THF/water, 2 h at 0°C then rt.
			89% ¹⁰	1) 4-Methoxyaniline, ethyl bromoacetate (1.0 eq.), SiO ₂ , MW (300 W), 4 min. 2) NaOH (excess) in EtOH, reflux, 10 min.
H O H	22004 60 5	80%	57% ¹¹	1) 4-Methoxyaniline, NaOAc (1.2 eq.), ethyl chloroacetate (1.2 eq.), EtOH, reflux, 7h, overnight at rt, 2) NaOH (1.1 eq.), reflux, 30 min.
MeO 1c 0H 22094-69-5	80%	50% ⁶	1) 4-Methoxyaniline, NaOAc (1.2 eq.), ethyl chloroacetate (1.2 eq.), EtOH, reflux, overnight, 2) LiOH (3 eq.), THF/water, 2 h at 0°C then rt.	
			48% ⁷	1) 4-Methoxyaniline, NEt₃ (large excess), ethyl bromoacetate (1.0 eq.), 0°C to rt. 2) LiOH (5.8 eq.), THF/H₂O/EtOH 1:1:1, rt.
H O	12270 (2.2.2	700/	88% ¹⁰	1) 4-Bromoaniline, ethyl bromoacetate (1.0 eq.), SiO ₂ , MW (300 W), 6.3 min. 2) NaOH (excess) in EtOH, reflux, 10 min.
Br 1d	13370-02-2	70%	65% ⁶	1) 4-Bromoaniline, NaOAc (1.2 eq.), ethyl chloroacetate (1.2 eq.), EtOH, reflux, overnight, 2) LiOH (3 eq.), THF/water, 2 h at 0°C then rt.
			90% ¹⁰	1) 4-Nitroaniline, ethyl bromoacetate (1.0 eq.), SiO ₂ , MW (300 W), 5 min. 2) NaOH (excess) in EtOH, reflux, 10 min.
ыÖ			61% ¹¹	4-Nitroaniline, chloroacetic acid (2 eq.), H_2O , reflux, overnight

Compound	CAS	Yield	Yield in lit.	Conditions from literature
H O OH	42288-26-6	56%	47% ¹¹	4-aminobenzonitrile, chloroacetic acid (2 eq.), H_2O , reflux, 10h
NC 1f	42288-20-0	3070	80-87% ¹²	4-aminobenzonitrile, chloroacetic acid (1.5 eq.), H_2O , reflux, 5h
H N OH	77214 24 0	740/	30% ¹¹	4-Trifluoromethylaniline, NaOAc (2.0 eq.), AcOH (4.0 eq.), glyoxylic acid (1.5 eq.), NaBH₃CN (1.0 eq.), 0°C to rt in 2 h.
F ₃ C 1g	//311-21-8	74%	88% ¹³	4-Trifluoromethylaniline, NaOAc (2.0 eq.), AcOH (4.0 eq.), glyoxylic acid (1.5 eq.), NaBH₃CN (1.0 eq.), MeOH, 0°C to rt, 2 h, N₂.
Br, H, O H, O H OH 1h	42288-20-0	85%	n.a.	
	104412 17 1	270/	n.a. ³	1) 2,4,6-Trimethylaniline, NaOAc.3H ₂ O (1.5 eq.), ethyl bromoacetate (1.0 eq.), EtOH, reflux, overnight, 2) 10% NaOH _{aq.} (1.0 eq.), 40 min.
1i	104412-17-1	5770	10% ¹⁴	1) 2,4,6-Trimethylaniline, NaOAc.3H₂O (1.5 eq.), ethyl bromoacetate (1.0 eq.), EtOH, reflux, overnight, 2) 20% HCl (excess), 100°C, 4h.

V. Comparison of sydnones synthesis with literature procedures

Formule	CAS	Yield	Yield in lit.	Conditions from literature
			78% ¹⁰	1) Glycine 1a , silica chloride, wet SiO ₂ , NaNO ₂ (1.5 eq.), CH ₂ Cl ₂ , 0°C, 2.5 h.
				2) 1,3-dibromo-5,5-dimethylhydantoin (DBH, 1.0 eq.), CH ₂ Cl ₂ , 0°C, 4 h.
⊖ _N ∽O			63% ⁶	1) Glycine 1a , NaNO ₂ (1.5 eq., dropwise addition), H ₂ O at 0°C, HCl cc. Drying overnight.
$\wedge N \approx 0$	120.06.0	05%		2) Ac₂O (large excess), 100°C, 1.5 h.
	120-00-9	95%	49% ⁸	1) Glycine 1a in HCl cc., NaNO ₂ (1.0 eq., dropwise addition), 14h under Ar.
2 a				2) Ac₂O (large excess), 100°C, 3 h.
			89% ⁵	1) Glycine 1a , <i>t</i> -BuONO (1.1 eq.), anh. THF, Ar, 30 min.
				2) TFAA (1.1 eq.), 1h.
			73% ¹⁰	1) Glycine 1b , silica chloride, wet SiO ₂ , NaNO ₂ (1.5 eq.), CH ₂ Cl ₂ , 0°C, 2.2 h.
				2) 1,3-dibromo-5,5-dimethylhydantoin (DBH, 1.0 eq.), CH ₂ Cl ₂ , 0°C, 4 h.
⊖ _N -0			60% ⁶	1) Glycine 1b , NaNO ₂ (1.5 eq., dropwise addition), H ₂ O at 0°C, HCl cc., Drying overnight.
⇒ N≥⊂O	2492 10 0	01%		2) Ac₂O (large excess), 100°C, 1.5 h.
	5465-15-0	91%	82% ¹⁵	1) Glycine 1b , <i>t</i> -BuONO, anh. THF, Ar, 30 min.
2b				2) TFAA, 1h.
			69% ⁸	1) Glycine 1b , <i>t</i> -BuONO (1.5 eq.), anh. THF, Ar, 30 min.
				2) CDI (1.1 eq.), 1h.
		54%	$81\%^{10}$	1) Glycine 1c , silica chloride, wet SiO ₂ , NaNO ₂ (1.5 eq.), CH ₂ Cl ₂ , 0°C, 1.7 h.
				2) 1,3-dibromo-5,5-dimethylhydantoin (DBH, 1.0 eq.), CH ₂ Cl ₂ , 0°C, 4 h.
			59% ⁵	1) Glycine 1c , <i>t</i> -BuONO (1.1 eq.), anh. THF, Ar, 30 min.
				2) TFAA (1.1 eq.), 1h.
			50% ⁸	1) Glycine 1c , <i>t</i> -BuONO (1.5 eq.), anh. THF, Ar, 30 min.
	3815-80-3			2) CDI (1.1 eq.), 1h.
			78% ⁶	1) Glycine 1c , NaNO ₂ (1.5 eq., dropwise addition), H ₂ O at 0°C, HCl cc., Drying overnight.
MeO 2c				2) Ac ₂ O (large excess), 100°C, 1.5 h.
⊖ _N -0			73% ⁷	1) Glycine 1c , <i>t</i> -BuONO (1.5 eq.), anh. THF, Ar, 0°C to rt.
				2) TFAA (1.1 eq.), 1h.
			78% ¹⁵	1) Glycine 1c , <i>t</i> -BuONO, anh. THF, Ar, 30 min.
			10	2) TFAA, 1h.
			79% ¹⁰	1) Glycine 1d , silica chloride, wet SiO ₂ , NaNO ₂ (1.5 eq.), CH ₂ Cl ₂ , 0°C, 2.4 h.
		010/	6	2) 1,3-dibromo-5,5-dimethylhydantoin (DBH, 1.0 eq.), CH ₂ Cl ₂ , 0°C, 4 h.
	26537-61-1	91%	50%°	1) Glycine 1d , NaNO ₂ (1.5 eq., dropwise addition), H ₂ O at 0°C, HCl cc., Drying overnight.
Br Zd				2) Ac ₂ O (large excess), 100°C, 1.5 h.

Formule	CAS	Yield	Yield in lit.	Conditions from literature
			80% ¹⁰	1) Glycine 1e , silica chloride, wet SiO ₂ , NaNO ₂ (1.5 eq.), CH ₂ Cl ₂ , 0°C, 2.0 h.
\sim \sim				2) 1,3-dibromo-5,5-dimethylhydantoin (DBH, 1.0 eq.), CH ₂ Cl ₂ , 0°C, 4 h.
			36% ⁶	1) Glycine 1e , NaNO ₂ (1.5 eq., dropwise addition), H ₂ O at 0°C, HCl cc., Drying overnight.
	6200-51-0	12%		2) Ac ₂ O (large excess), 100°C, 1.5 h.
	0299-51-0	4270	77% ⁷	1) Glycine 1e , <i>t</i> -BuONO (1.5 eq.), anh. THF, Ar, 0°C to rt.
0 ₂ N 2e				2) TFAA (2.5 eq.), 1h.
-			57% ⁸	1) Glycine 1e , <i>t</i> -BuONO (1.5 eq.), anh. THF, Ar, 30 min.
				2) TFAA (1.1 eq.), 1h.
⊖ _N -O			n.a. ¹⁶	1) Glycine 1f , <i>t</i> -BuONO (1.1 eq.), anh. THF, Ar, 30 min.
		0.40/		2) TFAA (1.15 eq.), 0°C to rt, 1h.
ſ → ÷	68657-48-7	34%		
NC 2f				
			70% ⁸	1) Glycine 1g , <i>t</i> -BuONO (1.5 eq.), anh. THF, Ar, 30 min.
Θ _N -O				2) TFAA (1.1 eq.), 1h.
	1620220 61 2	160/	35% ¹³	1) Glycine 1g , isoamyl nitrite (1.1 eq.), dimethoxyethane, 5 h.
	1020220-01-2	4070		2) TFAA (1.5 eq., dropwise addition), CH ₂ Cl ₂ , 0°C, 1.5 h.
F ₃ C 2g			65% ⁵	1) Glycine 1g , <i>t</i> -BuONO (1.1 eq.), anh. THF, Ar, 30 min.
~ 				2) TFAA (1.1 eq.), 1h.
⊖ _N -0			n.a. ¹⁷	no detailed experimental procedure given
$Br_{h} \land N > 0$		010/		
	00810-45-5	0170		
2h				
Θ _N ~0			n.a. ³	1) Glycine 1i in 12% HCl, NaNO ₂ in H ₂ O (1.2 eq., dropwise addition at 0°C), 4 h.
				2) TFAA, CH ₂ Cl ₂ , 0°C, 1 h.
	104411-99-6	53%	n.a. ¹⁸	Procedure according to ref ^{3, 19} (no characterization given).
2i				

VI. Preparation of coordination complexes with sydnone 3a as ligand in ball-mill

A. General procedure for preparation of complexes (GP2)

4-(2-Pyridyl)-*N*-phenylsydnone **3a** and the corresponding metallic salt were introduced in a grinding jar (10 mL zirconium oxide ZrO_2 or 15 mL PTFE) with one ball (ZrO_2 or stainless steel, 10 mm diameter). The jar was closed and subjected to grinding in a vibratory ball-mill at 30 Hz for 1h. The obtained powder was taken up with MeCN and evaporated under vacuum. The resulting solid was suspended in DCM, filtered on sintered glass and dried under vacuum to furnish the expected sydnone-metal complex. In all cases, X-ray quality crystals were grown by slow evaporation of an acetonitrile solution of the complex isolated after milling. Of note, cobalt and copper complexes were found to be paramagnetic. Hence, no NMR data could be acquired.

$$\label{eq:comparameters} \begin{split} & [Co(\mu\text{-}Cl)(\textbf{3a})_2]_2\text{.}CoCl_4\\ & \text{Chemical Formula: }C_{52}H_{36}Cl_6Co_3N_{12}O_8\\ & \text{Molecular Weight: }1346.44 \end{split}$$

Procedure: according to the general procedure GP2, using 3.0 eq of cobalt chloride CoCl₂ and 4.0 eq of sydnone **3a** in a 10 mL ZrO₂ jar with one ZrO₂ ball (10 mm diameter), the dimeric complex was obtained as a blue-green powder (64 mg, 0.047 mmol, 68%). **IR (neat, cm⁻¹):** 3345, 1675, 1600, 1507, 1276, 1022, 918, 765. **HRMS** ESI-(+) calcd. for C₅₂H₃₆N₁₂O₈Cl₂Co₂ [M-CoCl₄]²⁺/2 572.0405, found 572.0421.

ORTEPs (probability at 50% level) of complex $[Co(\mu-Cl)(3a)_2]_2$.CoCl₄. H atoms and CoCl₄ are omitted for clarity.

CCDC 1913663	[Co(µ-Cl)(3a) ₂] ₂ .CoCl ₄
Formula	$C_{52}H_{36}Cl_6Co_3N_{12}O_8$
M / g.mol ⁻¹	1346.42
Crystal system	Orthorhombic
Space group	P 2 ₁ 2 ₁ 2
a / Å	17.0950 (4)
b / Å	16.1670 (3)
<i>c</i> / Å	10.0791 (2)
α/Å	90
6/Å	90
γ/Å	90
<i>V</i> (Å ³)	2785.61 (10)
Ζ	2
$ ho_{ m calcd}$ / g.cm ⁻³	1.605
μ (Mo Kα) / mm⁻¹	0.71073
Т/К	293 (2)
Number of reflections	60346
Number of unique	6983
reflections	
<i>R</i> 1, w <i>R</i> 2 (<u>I > 2σ(I)</u>)	0.0332, 0.0630
<i>R</i> 1, w <i>R</i> 2 (all data)	0.0563, 0.0689
GOF	1.033

Of note, the $[Co(\mu-Cl)(3a)_2]_2$.CoCl₄ components of this structure both have crystallographically-imposed two-fold symmetry with the $[Co(\mu-Cl)(3a)_2]_2$ dimer lying about a twofold axis and with the Co2 cobalt atom of the CoCl₄ component on a twofold axis.

[CuCl₂(3a)₂]

[CuCl₂(**3a**)₂] Chemical Formula: C₂₆H₁₈Cl₂CuN₆O₄ Molecular Weight: 612.91

Procedure: according to the general procedure GP2, using 1.0 eq of copper chloride dihydrate $CuCl_2.2H_2O$ and 2.0 eq of sydnone **3a** in a 10 mL ZrO_2 jar with one ZrO_2 ball (10 mm diameter), the bidentate complex was obtained as a green powder (42 mg, 0.068 mmol, 68%).

IR (neat, cm⁻¹): 3057, 1726, 1717, 1601, 1509, 1288, 1008, 783, 769, 752, 730. HRMS ESI-(+) calcd. for $C_{26}H_{18}N_6O_4ClCu [M-Cl]^+$ 576.0376, found 576.0374.

ORTEPs (probability at 50% level) of complex [CuCl₂(**3a**)₂]. H atoms are omitted for clarity.

CCDC 1913667	[CuCl ₂ (3a) ₂]
Formula	$C_{26}H_{18}Cl_2CuN_6O_4$
M / g.mol ⁻¹	612.90
Crystal system	Triclinic
Space group	P -1
a / Å	8.0661 (3)
<i>b /</i> Å	8.8517 (4)
c / Å	10.0437 (4)
α/Å	108.745 (4)
6 / Å	104.613 (3)
γ/Å	96.672 (4)
V (Å ³)	641.70 (5)
Ζ	1
$ ho_{calcd}$ / g.cm $^{ extsf{-3}}$	1.586
μ (Mo Kα) / mm ⁻¹	0.71073
Т/К	293 (2)
Number of reflections	17478
Number of unique	3711
reflections	
R1, wR2 (<u>I > 2σ(I)</u>)	0.0301, 0.0789
R1, wR2 (all data)	0.0371, 0.0822
GOF	1.050

Of note, the complex lies about an inversion centre with the Cu atom on the inversion centre.

[Cu(OTf)₂(3a)₂]

$$\label{eq:cu} \begin{split} & [Cu(OTf)_2(\textbf{3a})_2] \\ & Chemical \ Formula: \ C_{28}H_{18}CuF_6N_6O_{10}S_2 \\ & Molecular \ Weight: \ 840.14 \end{split}$$

Procedure: according to the general procedure GP2, using 1.0 eq of copper triflate $Cu(OTf)_2$ and 2.0 eq of sydnone **3a** in a 15 mL PTFE jar with one stainless steel ball (10 mm diameter), the bidentate complex was obtained as a yellow powder (27 mg, 0.032 mmol, 69%).

IR (neat, cm⁻¹): 3070, 1663, 1606, 1529, 1283, 1254, 1225, 1152, 1036, 775, 765. HRMS ESI-(+) calcd. for $C_{27}H_{18}CuF_{3}N_{6}O_{7}S$ [M-TfO⁻]⁺ 690.0206, found 690.0209.

ORTEPs (probability at 50% level) of complex $[Cu(OTf)_2(3a)_2]$. H atoms are omitted for clarity.

CCDC 1913662	[Cu(OTf) ₂ (3a) ₂]
Formula	$C_{28}H_{18}CuF_6N_6O_{10}S_2$
M / g.mol ⁻¹	840.14
Crystal system	Triclinic
Space group	P -1
a / Å	7.9107 (4)
b/Å	7.9633 (4)
c / Å	13.4394 (8)
α/Å	81.297 (4)
6/Å	82.418 (5)
γ/Å	84.920 (4)
<i>V</i> (Å ³)	827.53 (8)
Ζ	1
$ ho_{ m calcd}$ / g.cm $^{ extsf{-3}}$	1.686
μ (Mo Kα) / mm⁻¹	0.71073
Т/К	293 (2)
Number of reflections	11808
Number of unique	4461
reflections	
<i>R</i> 1, w <i>R</i> 2 (<u>I > 2σ(I)</u>)	0.0542, 0.1401
R1, wR2 (all data)	0.0671, 0.1480
GOF	1.037

Of note, the complex lies about an inversion centre with the Cu atom on the inversion centre.

[ZnCl₂(3a)]

[ZnCl₂(**3a**)] Chemical Formula: C₁₃H₉Cl₂N₃O₂Zn Molecular Weight: 375.51

Procedure: according to the general procedure GP2, using 1.0 eq of zinc chloride $ZnCl_2$ and 2.0 eq of sydnone **3a** in a 10 mL ZrO_2 jar with one ZrO_2 ball (10 mm diameter), the monodentate complex was obtained as a beige solid (58 mg, 0.155 mmol, 74%).

¹H NMR (500 MHz, CD₃CN) δ (ppm): 7.37 (m, 1H), 7.52 (d, *J* = 8.2 Hz, 1H), 7.61-7.68 (m, 4H), 7.76 (m, 1H), 7.85 (td, *J* = 7.9, 1.7 Hz, 1H), 8.43 (d, *J* = 4.7 Hz, 1H).

¹³C NMR (125 MHz, CD₃CN) δ (ppm): 108.7, 123.0, 125.0, 126.0, 131.0, 133.4, 136.0, 139.7, 145.0, 150.4, 169.4.

IR (neat, cm⁻¹): 3080, 1660, 1604, 1509, 1288, 1038, 1017, 925, 920, 795, 781,762, 735. **HRMS** ESI-(+) calcd. for $C_{13}H_9N_3O_2CIZn [M-CI⁻]^+$ 337.9676, found 337.9669.

ORTEPs (probability at 50% level) of complex [ZnCl₂(**3a**)]. H atoms are omitted for clarity.

CCDC 1913665	[ZnCl ₂ (3a)]
Formula	$C_{13}H_9Cl_2N_3O_2Zn$
M / g.mol ⁻¹	375.50
Crystal system	Triclinic
Space group	P -1
a / Å	8.5206 (4)
b / Å	8.9361 (3)
c / Å	9.9810 (3)
α / Å	94.269 (3)
β/Å	99.231 (3)
γ/Å	94.285 (3)
<i>V</i> (Å ³)	745.15 (5)
Ζ	2
$ ho_{ m calcd}$ / g.cm ⁻³	1.674
μ (Mo Kα) / mm⁻¹	0.71073
Т/К	293 (2)
Number of reflections	19751
Number of unique	4322
reflections	
R _{int}	0.024 (3)
R1, wR2 (<u>I > 2σ(I)</u>)	0.0305, 0.0742
R1, wR2 (all data)	0.0431, 0.0773
GOF	1.065

VII. References

1. Z. Lu and R. J. Twieg, *Tetrahedron Lett.*, **2005**, *46*, 2997.

2. S. Specklin, E. Decuypere, L. Plougastel, S. Aliani and F. Taran, *J. Org. Chem.*, **2014**, *79*, 7772.

3. K. Turnbull, J. Heterocycl. Chem., **1985**, 22, 965.

4. C. Wu, Y. Fang, R. C. Larock and F. Shi, Organic Letters, **2010**, *12*, 2234.

5. C. Favre, L. de Cremoux, J. Badaut and F. Friscourt, J. Org. Chem., **2018**, *83*, 2058.

6. Y. Fang, C. Wu, R. C. Larock and F. Shi, J. Org. Chem., 2011, 76, 8840.

7. L. Zhang, X. Zhang, Z. Yao, S. Jiang, J. Deng, B. Li and Z. Yu, *J. Am. Chem. Soc.*, **2018**, *140*, 7390.

8. L. Plougastel, O. Koniev, S. Specklin, E. Decuypere, C. Créminon, D.-A. Buisson, A. Wagner, S. Kolodych and F. Taran, *Chem. Commun.*, **2014**, *50*, 9376.

9. A. Rodriguez and W. J. Moran, *Synthesis*, **2009**, 650.

10. D. Azarifar, H. G. Bosra, M.-A. Zolfigol and M. Tajbaksh, *Heterocycles*, **2006**, *68*, 175.

11. S. Specklin, E. Decuypere, L. Plougastel, S. Aliani and F. Taran, *J. Org. Chem.*, **2014**, *79*, 7772.

12. W. Ren, Y. Ren and S. Wang, *Eur. J. Med. Chem.*, **2016**, *120*, 148.

13. T. Wezeman, J. Comas-Barceló, M. Nieger, J. P. A. Harrity and S. Bräse, *Org. Biomol. Chem.*, **2017**, *15*, 1575.

14. S. Ikeda and S. Murata, J. Photochem. Photobiol., A, **2002**, 149, 121.

15. H. Liu, D. Audisio, L. Plougastel, E. Decuypere, D.-A. Buisson, O. Koniev, S. Kolodych, A. Wagner, M. Elhabiri, A. Krzyczmonik, S. Forsback, O. Solin, V. Gouverneur and F. Taran, *Angew. Chem., Int. Ed.*, **2016**, *55*, 12073.

16. M. K. Narayanam, G. Ma, P. A. Champagne, K. N. Houk and J. M. Murphy, *Angew. Chem. Int. Ed.*, **2017**, *56*, 13006.

17. J. Jaźwiński and O. Staszewska-Krajewska, J. Mol. Struct., 2002, 602-603, 269.

18. S. Wiechmann, T. Freese, M. H. H. Drafz, E. G. Hübner, J. C. Namyslo, M. Nieger and A. Schmidt, *Chem. Commun.*, **2014**, *50*, 11822.

19. (a) K. L. McChord, S. A. Tullis and K. Turnbull, *Synth. Commun.*, **1989**, *19*, 2249; (b) K. Turnbull, T. L. Blackburn and J. J. Miller, *J. Heterocycl. Chem.*, **1996**, *33*, 485.

VIII. ¹H and ¹³C NMR spectra

¹H NMR spectrum of *N*-phenyl-glycine **1a** (400 MHz, DMSO- d_6):

¹³C NMR spectrum of *N*-(4-methoxyphenyl)-glycine **1c** (100 MHz, DMSO- d_6):

¹H NMR spectrum of *N*-(4-methoxyphenyl)-glycine **1c** (400 MHz, DMSO- d_6):

¹³C NMR spectrum of *N*-(4-cyanophenyl)-glycine **1f** (100 MHz, DMSO- d_6):

33

¹H NMR spectrum of *N*-phenylsydnone **2a** (400 MHz, CDCl₃):

¹³C NMR spectrum of *N*-phenylsydnone **2a** (100 MHz, CDCl₃):

¹H NMR spectrum of 3-(4-methylphenylsydnone) **2b** (400 MHz, CDCl₃):

¹H NMR spectrum of 3-(4-bromophenylsydnone) **2d** (400 MHz, CDCl₃):

¹³C NMR spectrum of 3-[4-(Trifluoromethyl)phenyl]-sydnone **2g** (100 MHz, CDCl₃):

¹H NMR spectrum of 3-(3-bromophenyl)-sydnone **2h** (400 MHz, CDCl₃):

[ppm]

¹H NMR spectrum of complex [**ZnCl₂(3a)**] (500 MHz, CD₃CN):

IX. FT-IR spectra

FT-IR spectrum of complex 3-phenyl-4-(2-pyridinyl)-sydnone **3a** :

FT-IR spectrum of complex $[Cu(OTf)_2(3a)_2]$: