Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Contents

S1. Experimental	3
S2. UV-vis data for free axle 8	10
S3. Spectral data for novel compounds	11
S4. References	21

S1. Experimental

S1.1 General Information

All commercially available chemicals and solvents were used as received without further purification. All dry solvents were thoroughly degassed with N₂, dried through a Mbraun MPSP-800 column and used immediately. Water used was deionized and passed through a Milli-Q[®] Millipore machine for microfiltration. Chromatography was performed using silica gel (particle size: 40-63 μ m) or preparative TLC plates (20 x 20 cm, 1 cm silica thickness).

NMR spectra were recorded on Bruker AVIII HD Nanobay 400 MHz, Bruker AVIII 500 MHz and Bruker AVIII 500 MHz (with ¹³C cryoprobe) spectrometers. Low resolution electrospray ionisation mass spectrometry (ESI-MS) was performed using the Waters Micromass LCT for characterisation of compounds previously reported in the literature, and high resolution ESI-MS was recorded using Bruker microTOF spectrometer for novel compounds.

S1.2 Synthesis and Characterisation

TBTA (tris(benzyltriazolemethyl)amine), stopper azide (Fig. S1-1),¹ 2-(4-amino-3-nitrophenyl)-4bromo-1,8-naphthalimide,² isophthalamide macrocycle 5^3 and stopper alkyne 6^1 were prepared according to literature procedures.

Figure S1 – 1 Structure of stopper azide¹

Stopper iodotriazole alcohol

Stopper azide¹ (0.200 g, 0.340 mmol), NaI (0.188 g, 1.34 mmol) and Cu(ClO₄)₂.6H₂O (0.240 g, 0.642 mmol) were dissolved in dry THF (5 mL) and stirred for 5 minutes in the dark. TBTA (cat.), DBU (47.8 μ L, 0.335 mmol) in dry CH₃CN (5 mL) and finally propargyl alcohol (18.2 mL, 0.324 mmol) were added and the reaction was stirred for 16 hours in the dark. The solvent was removed *in vacuo* and the residue was taken up in CH₂Cl₂ (30 mL). The organics were washed with EDTA/NH₄OH solution (3x15 mL), H₂O (15 mL) and brine (15 mL), dried over MgSO₄ and the solvent removed *in vacuo*. Purification was achieved via column chromatography (silica, 95:5 CH₂Cl₂/CH₃OH) to afford the product as a white solid (0.146 g, 56%).

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 7.20 – 7.26 (m, 6H, Ar*H*), 7.05 – 7.12 (m, 8H, Ar*H*), 6.71 – 6.78 (m, 2H, Ar*H*), 4.72 (d, *J* = 6.2 Hz, 2H, OH-C*H*₂-C), 4.59 (t, *J* = 7.0 Hz, 2H, O-C*H*₂-CH₂), 3.99 (t, *J* = 5.8 Hz, 2H, N-C*H*₂-CH₂), 2.40 (tt, *J* = 7.0 Hz, *J* = 5.8 Hz, 2H, CH₂-C*H*₂-CH₂), 2.03 (t, *J* = 6.3 Hz, 1H, -O*H*), 1.30 (s, 27H, ^tBu); ¹³**C NMR** (126 MHz, CDCl₃) δ (ppm) 156.29, 148.49, 144.21, 132.45, 130.84, 124.21, 113.20, 63.98, 63.20, 56.88, 47.91, 34.45, 31.53, 29.81; **HRMS (ESI)**: *m/z* 770.31766 [M+H]⁺ ([C₄₃H₅₂IN₃O₂·H] calc. 770.31770).

Stopper iodotriazole aldehyde (1)

Oxalyl chloride (0.137 mL, 1.6 mmol) and dry DMSO (0.23 mL, 3.25 mmol) were dissolved in CH_2CI_2 (20 mL) at -78°C and the mixture stirred for 15 minutes. Stopper iodotriazole alcohol (250 mg, 0.325 mmol) in CH_2CI_2 (20 mL) was added, and after 15 minutes this was followed by NEt₃ (0.680 mL, 4.85 mmol). After stirring for 1 hour the solution was quenched with 1M $HCI_{(aq.)}$ (20 mL) and extracted with CH_2CI_2 (3x20 mL). The organics were dried over MgSO₄ and the solvent removed *in vacuo*. Purification was achieved via column chromatography (silica, 98:2 CH_2CI_2/CH_3OH) to afford **1** as an off-white solid (138 mg, 55%).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 10.13 (s, 1H, CHO), 7.29 – 7.19 – 7.25 (m, 6H, Ar*H*), 7.04 – 7.13 (m, 8H, Ar*H*), 6.71 – 6.78 (m, 2H, Ar*H*), 4.68 (t, *J* = 7.0 Hz, 2H, N-C*H*₂), 4.01 (t, *J* = 5.6 Hz, 2H, O-C*H*₂), 2.40 – 2.48 (m, 2H, C*H*₂), 1.30 (s, 27H, -C*H*₃); ¹³**C NMR** (101 MHz, CDCl₃) δ (ppm) 184.34, 156.15, 148.51, 147.45, 144.18, 140.39, 132.48, 130.83, 124.21, 113.16, 82.18, 63.82, 63.21, 47.71, 34.45, 31.53, 29.61; **HRMS (ESI)**: *m/z* 790.28418 [M+Na]⁺ ([C₄₃H₅₀IN₃O₂·Na]⁺ calc. 790.28399).

Amino-nitrophenyl-naphthalimide alcohol

 K_2CO_3 (1.70 g, 12.2 mmol) and 2-(4-amino-3-nitrophenyl)-4-bromo-1,8-naphthalimide² (500 mg, 1.22) were mixed in ethylene glycol (20 mL) and stirred at 150°C for 6 hours. The reaction was cooled to RT, added to ice-cold H₂O (100 mL) and the precipitate collected by filtration whereupon it was washed with H₂O (3x50 mL) and Et₂O (5x50 mL) to afford the product as a yellow solid (289.1 mg, 61%).

¹**H NMR** (500 MHz, DMSO-*d*₆) δ (ppm) 8.72 (dd, *J* = 8.4, 1.2 Hz, 1H, Ar*H*), 8.51 (dd, *J* = 7.2, 1.2 Hz, 1H, Ar*H*), 8.45 (d, *J* = 8.3 Hz, 1H, Ar*H*), 8.02 (d, *J* = 2.4 Hz, 1H, Ar*H*), 7.86 (dd, *J* = 8.4, 7.3 Hz, 1H, Ar*H*), 7.62 (s, 2H, -N*H*₂), 7.33 – 7.43 (m, 2H, Ar*H*), 7.12 (d, *J* = 8.9 Hz, 1H, Ar*H*), 5.13 (t, *J* = 5.8 Hz, 1H, -O*H*), 4.37 (t, *J* = 4.7 Hz, 2H, O-C*H*₂), 3.96 – 3.89 (m, 2H, OH-C*H*₂); ¹³**C NMR** (126 MHz, DMSO-*d*₆) δ (ppm) 164.07, 163.40, 159.98, 145.92, 136.88, 133.36, 131.16, 129.72, 129.13, 128.87, 126.24, 125.86, 123.50, 123.08, 122.47, 119.27, 114.62, 106.87, 71.07, 59.40; **HRMS (ESI)**: *m/z* 394.10333 [M+H]⁺ ([C₂₀H₁₅N₃O₆·H]⁺ calc. 394.10336).

o-Phenylenediamine naphthalimide alcohol (2)

Amino-nitrophenyl-naphthalimide alcohol (630 mg, 1.60 mmol), Zn powder (2.09 g, 32.0 mmol), 1M $NH_4Cl_{(aq.)}$ solution (15 mL) and $CuSO_4.5H_2O$ (10 crystals) were heated in ethanol (15 mL) at reflux for 5 hours. The mixture was filtered through Celite[®] whilst hot and the filtrate concentrated *in vacuo*. The resulting solid was washed with H_2O (5x30 mL) to afford **2** as a yellow powder (524 mg, 90%).

¹**H NMR** (400 MHz, DMSO-*d*₆) δ (ppm) 8.66 (dd, *J* = 8.4, 1.2 Hz, 1H, Ar*H*), 8.36 – 8.49 (m, 2H, Ar*H*), 7.81 (dd, *J* = 8.4, 7.3 Hz, 1H, Ar*H*), 7.30 (d, *J* = 8.4 Hz, 1H, Ar*H*), 6.54 (d, *J* = 8.1 Hz, 1H, Ar*H*), 6.36 (d, *J* = 2.3 Hz, 1H, Ar*H*), 6.26 (dd, *J* = 8.1, 2.3 Hz, 1H, Ar*H*), 5.09 (t, *J* = 5.8 Hz, 1H, -O*H*), 4.46 – 4.64 (s, 4H, -N*H*₂), 4.32 (t, *J* = 4.7 Hz, 2H, OH-C*H*₂), 3.89 (t, *J* = 5.0 Hz, 2H, O-C*H*₂); ¹³**C NMR** (126 MHz, DMSO) δ (ppm) 164.07, 163.44, 159.79, 135.13, 134.82, 133.23, 131.08, 128.99, 128.64, 126.24, 125.31, 123.06, 122.55, 117.26, 114.75, 114.68, 113.93, 106.88, 71.02, 59.41, 54.92; **HRMS (ESI)**: *m*/*z* 364.12910 [M+H]⁺ ([C₂₀H₁₇N₃O₄·H]⁺ calc. 364.12918).

Benzimidazole-iodotriazole naphthalimide alcohol (3)

Stopper iodotriazole aldehyde **1** (130 mg, 0.17 mmol), *o*-phenylenediamine **2** (68 mg, 0.19 mmol), and NH₄OAc (13 mg, 0.17 mmol) were dissolved in 1:1 CHCl₃/EtOH (10 mL) and stirred at 65°C for 4 hours. After cooling to RT and removing the solvent *in vacuo* the product was purified by preparative TLC (silica, 95:5 CH₂Cl₂/CH₃OH) to afford **3** as a yellow solid (92.2 mg, 49%).

¹**H NMR** (400 MHz, 1:1 CDCl₃/CH₃OD) δ (ppm) 8.74 (d, *J* = 8.4 Hz, 1H, Ar*H*), 8.49 – 8.59 (m, 2H, Ar*H*), 7.67 – 7.77 (m, 2H, Ar*H*), 7.58 (s, 1H, Ar*H*), 7.09 – 7.19 (m, 8H, Ar*H* & stopper-Ar*H*), 6.96 – 7.05 (m, 8H, stopper-Ar*H*), 6.68 – 6.75 (m, 2H, stopper-Ar*H*), 4.68 (t, *J* = 7.0 Hz, 2H, N-C*H*₂), 4.35 (t, *J* = 4.6 Hz, 2H, OH-C*H*₂), 4.05 (t, *J* = 4.4 Hz, O-C*H*₂), 4.00 (t, *J* = 5.6 Hz, O-C*H*₂), 2.41 (t, *J* = 6.3 Hz, 2H, C*H*₂), 1.22 (s, 27H, -C*H*₃); ¹³C NMR (126 MHz, 1:1 CDCl₃/CH₃OD) δ (ppm) 165.46, 164.88, 160.95, 156.25, 148.25, 144.14, 140.01, 134.17, 132.16, 132.03, 130.61, 129.86, 129.72, 126.00, 123.95, 123.82, 122.23, 114.77, 113.03, 106.27, 70.55, 63.96, 63.00, 60.14, 34.07, 31.00, 29.49; HRMS (ESI): *m*/*z* 1111.39605 [M+H]⁺ ([C₆₃H₆₃IN₆O₅·H]⁺ calc. 1111.39774).

Benzimidazole-iodotriazole naphthalimide azide (4)

Naphthalimide alcohol **3** (50 mg, 0.089 mmol) and NEt₃ (40 μ L, 0.19 mmol) were dissolved in dry CH₂Cl₂ (5 mL) and stirred for 5 minutes at 0 °C. MsCl (20 mL, 0.18 mmol) in dry CH₂Cl₂ (5 mL) was added dropwise and the reaction stirred for 3 hours at RT. The reaction mixture was washed with water (2x10 mL), 1M HCl_(aq.) (3x10 mL) and brine (3x10 mL) and dried over MgSO₄. The solvent was removed *in vacuo* to afford a yellow oil. This was dissolved in dry, degassed DMSO (10 mL) containing NaN₃ (19.9 mg, 0.356 mmol) and the mixture was heated at 85 °C for 16 hours under N₂. The solution was cooled to RT and partitioned between water (50 mL) and EtOAc (50 mL). The aqueous layer was washed with EtOAc (2x15 mL). The combined organics were washed with brine (3x15 mL), dried over MgSO₄ and concentrated *in vacuo*. Purification was achieved via preparative TLC (silica, 98:2 CH₂Cl₂/CH₃OH) to afford **4.18** as a yellow solid (28.1 mg, 55%).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 8.55 – 8.74 (m, 3H, Ar*H*), 7.79 (t, *J* = 7.8 Hz, 1H, Ar*H*), 7.18 – 7.25 (m, 8H, Ar*H* & stopper-Ar*H*), 7.02 – 7.13 (m, 10H, Ar*H* & stopper-Ar*H*), 6.73 – 6.81 (m, 2H, stopper-Ar*H*), 4.73 (t, *J* = 7.0 Hz, 2H, N-C*H*₂), 4.49 (t, *J* = 4.8 Hz, 2H, O-C*H*₂), 4.00 – 4.08 (m, 2H, O-C*H*₂), 3.83 (t, *J* = 4.8 Hz, 2H, N₃-C*H*₂), 2.43 – 2.42 (m, 2H, C*H*₂), 1.30 (s, 27H, -C*H*₃); ¹³**C NMR** (101 MHz, CDCl₃) δ (ppm) 171.24, 148.39, 144.14, 132.38, 130.75, 124.15, 123.58, 63.12, 62.66, 60.48, 50.28, 41.00, 34.96, 34.37, 32.00, 31.46, 29.77, 29.43, 22.76, 21.13, 18.99; **HRMS (ESI)**: *m*/*z* 1136.40198 [M+H]⁺ ([C₆₃H₆₂IN₉O₄·H]⁺ calc. 1136.40422).

Benzimidazole-iodotriazole neutral [2]rotaxane (7)

Naphthalimide azide **4** (50 mg, 0.044 mmol) was dissolved in dry, degassed CH_2Cl_2 (2 mL) and 2M HCl in Et₂O (2 drops) was added and the mixture stirred for 5 minutes. The solvent was removed *in vacuo* and the resulting solid dissolved in dry CH_2Cl_2 (2 mL). Isophthalamide macrocycle **5** (39.3 mg, 0.067 mmol) was added and the solution stirred for 5 minutes. $[Cu(CH_3CN)_4][PF_6]$ (16.4 mg, 0.044 mmol), and stopper alkyne **6** (36.0 mg, 0.067 mmol) were added and the reaction stirred for 2 days. The solution was diluted with CH_2Cl_2 (20 mL), washed with EDTA/NH₄OH solution (2x20 mL), brine (2x20 mL) and H₂O (20 mL), the combined organics dried over MgSO₄ and the solvent removed *in vacuo*. Purification was achieved via preparative TLC (silica, 95:5 CH_2Cl_2/CH_3OH , 92.5:7.5 CH_2Cl_2/CH_3OH) and the resulting solid washed with H₂O (5x10 mL) to afford yellow powder **7** (21.6 mg, 22%).

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 10.58 (s, 1H, axle NH8.46 (d, J = 8.1 Hz, 2H, ext. mac. ArH), 8.10 (s, 1H, int. mac. ArH), 7.94 – 8.06 (m, 2H, ArH), 7.89 (s, 1H, ArH), 7.81 (s, 1H, ArH), 7.68 – 7.75 (m, 2H, ArH), 7.66 (s, 1H, ArH), 7.50 – 7.60 (m, 3H, trzH & ArH), 7.18 – 7.25 (m, 15H, ArH & stopper-ArH), 7.02 – 7.14 (m, 19H, ArH & stopper-ArH), 6.80 – 6.86 (m, 4H, stopper-ArH & mac. NH), 6.75 (s, 1H, ArH), 5.95 – 6.08 (m, 4H, hydroquinone CH₂), 5.76 – 5.85 (m, 4H, hydroquinone CH₂), 5.23 (s, 2H, O-CH₂-C), 5.02 – 5.11 (m, 4H, N-CH₂ & O-CH₂), 4.73 – 4.80 (m, 2H, N-CH₂), 4.07 – 4.12 (m, 2H, O-CH₂), 3.43 – 3.94 (m, 2OH, crown ether CH₂ & mac. CH₂), 3.28 – 3.38 (m, 2H, mac. CH₂), 2.47 – 2.55 (m, 2H, CH₂), 1.27 – 1.32 (m, 27H, -CH₃); ¹³C NMR (126 MHz, CDCl₃) δ (ppm) 156.38, 156.28, 151.92, 148.58, 148.46, 144.24, 144.11, 132.51, 130.87, 130.81, 124.21, 113.96, 113.25, 71.30, 71.00, 70.18, 63.19, 34.45, 31.54, 31.52, 29.85; HRMS (ESI): *m/z* 2274.01859 [M+H]⁺ ([C₁₃₈H₁₅₅IN₁₁O₁₄]⁺ calc. 2274.02017).

Benzimidazolium-iodotriazole chloride [2]rotaxane (7·HCl)

Rotaxane **7** (22 mg, 0.0097 mmol) was taken up in CH_2Cl_2 (20 mL) and washed with 3M $HCl_{(aq.)}$ (5x15 mL). The organics were dried and the solvent removed *in vacuo* to afford **7·HCl** as a yellow powder (22 mg, quant.).

¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 9.28 (s, 1H, int. mac. Ar*H*), 8.85 – 8.96 (m, 2H, ext. mac. Ar*H*), 8.63 (d, *J* = 7.1 Hz, 1H, Ar*H*), 8.59 (d, *J* = 7.8 Hz, 1H, Ar*H*), 8.51 (d, *J* = 8.4 Hz, 1H, Ar*H*), 8.10 – 8.19 (m, 2H, axle Ar*H* & ext. mac. Ar*H*), 7.96 - 8.07 (m, 2H, mac. N*H*), 7.92 (s, 1H, trz*H*), 7.74 (t, *J* = 7.8 Hz, 1H, Ar*H*), 7.40 (d, 1H, *J* = 8.7 Hz, Ar*H*), 7.16 – 7.26 (m, 12H, stopper-Ar*H*), 7.02 – 7.14 (m, 17H, Ar*H* & stopper-Ar*H*), 6.85 – 6.91 (m, 2H, stopper-Ar*H*), 6.78 – 6.82 (m, 2H, stopper-Ar*H*), 6.76 (s, 1H, Ar*H*), 6.20 (d, *J* = 8.5 Hz, 4H, hydroquinone C*H*₂), 5.87 (d, *J* = 8.6 Hz, 4H, hydroquinone C*H*₂), 5.23 (s, 2H, O-C*H*₂-C), 5.01 – 5.06 (m, 2H, N-C*H*₂), 4.76 – 4.81 (m, 2H, O-C*H*₂), 4.60 (t, *J* = 7.0 Hz, 2H, N-C*H*₂), 4.32 – 4.39 (m, 2H, mac. C*H*₂), 2.44 (t, *J* = 6.4 Hz, 2H, axle C*H*₂), 1.29 (d, *J* = 5.3 Hz, 54H); ¹³C NMR (126 MHz, CDCl₃) δ (ppm) 166.41, 156.33, 156.24, 152.96, 151.61, 148.56, 148.52, 144.16, 144.14, 140.55, 133.93, 132.56, 130.86, 124.23, 124.20, 114.62, 113.76, 113.34, 113.19, 70.76, 70.51, 66.96, 66.27, 63.23, 63.21, 40.37, 34.46, 34.44, 31.53.

Benzimidazolium-iodotriazole tetrafluoroborate [2]rotaxane (7·HBF₄)

Rotaxane **7** (5 mg, 0.0022 mmol) was taken up in CH_2Cl_2 (20 mL) and HBF₄ acid diethyl ether complex was added. The solvent was removed *in vacuo* to afford **7·HBF₄** as a yellow powder (5.19 mg, quant.).

Due to the low solubility of $7 \cdot HBF_4$ in CDCl₃ the obtained NMR spectra were too broad to accurately interpret.

Free benzimidazole-iodotriazole axle (8)

Naphthalimide azide **4** (39 mg, 0.034 mmol), TBTA (1.81 mg, 0.0034 mmol), $[Cu(CH_3CN]_4PF_6]$ (1.27 mg, 0.0034 mmol) were dissolved in dry, degassed CH_2Cl_2 (10 mL). Stopper alkyne **6** (18 mg, 0.034 mmol) was added and the reaction stirred for 2 days. The solution was diluted with CH_2Cl_2 (20 mL), washed with EDTA/NH₄OH solution (2x20 mL), brine (2x20 mL) and H₂O (20 mL), the combined organics dried over MgSO₄ and the solvent removed *in vacuo*. Purification was achieved via preparative TLC (silica, 96:4 CH₂Cl₂/CH₃OH) to afford **8** as a yellow solid (3 mg, 5%).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 10.25 – 10.32 (m, 1H, NH), 8.65 (d, *J* = 7.3 Hz, 1H, ArH), 8.59 (d, *J* = 8.2 Hz, 1H, ArH), 8.49 (d, *J* = 8.4 Hz, 1H, ArH), 7.99 (d, *J* = 8.7 Hz, 1H, ArH), 7.88 (s, 1H, trzH), 7.82 (s, 1H, ArH), 7.72 (t, *J* = 7.8 Hz, 1H, ArH), 7.63 (d, *J* = 8.6 Hz, 1H, ArH), 7.48 (s, 1H, ArH), 7.18 – 7.25 (m, 12H, stopper-ArH), 7.03 – 7.14 (m, 17H, ArH & stopper-ArH), 6.86 (d, *J* = 8.3 Hz, 2H, stopper-ArH), 6.75 – 6.81 (m, 2H, stopper-ArH), 5.21 (s, 2H, O-CH₂-C), 4.97 – 5.03 (m, 2H, CH₂), 4.69 – 4.77 (m, 4H. CH₂), 4.02 – 4.08 (m, 2H, CH₂), 2.44 – 2.51 (m, 2H, CH₂), 1.23 – 1.32 (m, 54H, stopper-CH₂); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 156.20, 148.55, 148.47, 144.22, 144.15, 140.52, 132.54, 132.47, 130.85, 124.22, 123.60, 113.31, 113.21, 77.48, 77.36, 77.16, 76.84, 63.21, 62.14, 34.45, 31.53, 29.86, 22.85; HRMS (ESI): m/z 1679.76447 [M+H]⁺ ([C₁₀₃H₁₀₈IN₉O₅·H]⁺ calc. 1679.76244).

Free benzimidazolium-iodotriazole chloride axle (8·HCl)

Benzimidazole-iodotriazole axle **8** (3 mg, 0.0018 mmol) was taken up in $CHCl_3$ (20 mL) and washed with 3M $HCl_{(aq.)}$ solution (3x20 mL). The organic layer was dried over $MgSO_4$ and concentrated *in vacuo* to afford **8·HCl** (3 mg, quant.).

¹**H NMR** (400 MHz, CDCl₃) δ 8.62 – 8.68 (m, 1H, Ar*H*), 8.56 – 8.62 (m, 1H, Ar*H*), 8.46 – 8.53 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.88 (s, 1H, trz*H*), 7.78 – 7.84 (m, 1H, Ar*H*), 7.68 – 7.77 (s, 1H, Ar*H*), 7.60 – 7.67 (m, 1H, Ar*H*), 7.19 – 7.25 (m, 12H, stopper-Ar*H*), 7.03 – 7.14 (m, 17H, Ar*H* & stopper-Ar*H*), 6.86 (d, *J* = 8.5 Hz, 2H, stopper-Ar*H*), 6.74 – 6.80 (m, 2H, Ar*H*), 5.21 (s, 2H, O-CH₂-C), 5.01 (s, 2H, CH₂), 4.70 – 4.79 (m, 4H, CH₂), 4.03 – 4.09 (m, 2H, CH₂), 2.44 – 2.52 (m, 2H, CH₂), 1.23 – 1.33 (m, 54H, stopper-CH₂).

S2. UV-vis data for free axle 8

Figure S2 – 1 UV-vis spectra of free axle **8** (yellow) and **8·HCI** (black) in CHCl₃. Identical shape suggests no co-conformational change between neutral axle and after protonation with coordinating chloride anion (2.5×10^{-5} M, 298 K)

Figure S2 – 2 UV-vis spectra of protonated axle $8 \cdot HBF_4$ (red) and $8 \cdot HBF_4$ upon addition of TBACI (blue) in CHCl₃. Identical shape suggests no co-conformational change upon addition of coordinating anion (2.5x10⁻⁵ M, 298 K)

Figure S3 – 1 ¹H NMR spectrum of stopper iodotriazole alcohol (CDCl₃, 298 K, 500 MHz)

Figure S3 – 2¹³C NMR spectrum of stopper iodotriazole alcohol (CDCl₃, 298 K, 126 MHz)

Figure S3 – 3 High-resolution ESI mass spectrum of stopper iodotriazole alcohol (left) with theoretical isotope model (right)

Figure S3 – 4 ¹H NMR spectrum of stopper iodotriazole aldehyde 1 (CDCl₃, 298 K, 400 MHz)

Figure S3 – 5 ¹³C NMR spectrum of stopper iodotriazole aldehyde 1 (CDCl₃, 298 K, 101 MHz)

Figure S3 – **6** High-resolution ESI mass spectrum of stopper iodotriazole aldehyde **1** (left) with theoretical isotope model (right)

Figure S3 – 7 ¹H NMR spectrum of amino-nitrophenyl-naphthalimide alcohol (DMSO- d_6 , 298 K, 500 MHz)

Figure S3 – 8 ¹³C NMR spectrum of amino-nitrophenyl-naphthalimide alcohol (DMSO- d_6 , 298 K, 126 MHz)

Figure S3 – 9 High-resolution ESI mass spectrum of amino-nitrophenyl-naphthalimide alcohol (left) with theoretical isotope model (right)

Figure S3 – 10 ¹H NMR spectrum of *o*-phenylenediamine naphthalimide alcohol **2** (DMSO- d_6 , 298 K, 400 MHz)

Figure S3 – 11 ¹³C NMR spectrum of *o*-*p*henylenediamine naphthalimide alcohol **2** (DMSO- d_6 , 298 K, 126 MHz)

Figure S3 – 12 High-resolution ESI mass spectrum of amino-nitrophenyl-naphthalimide alcohol **2** (left) with theoretical isotope model (right)

Figure S3 – 13 ¹H NMR spectrum of benzimidazole-iodotriazole naphthalimide alcohol **3** (1:1 CDCl₃/CD₃OD, 298 K, 400 MHz)

Figure S3 – 14 ¹³C NMR spectrum of benzimidazole-iodotriazole naphthalimide alcohol **3** (1:1 CDCl₃/CD₃OD, 298 K, 126 MHz)

Figure S3 – 15 High-resolution ESI mass spectrum of benzimidazole-iodotriazole naphthalimide alcohol **3** (left) with theoretical isotope model (right)

Figure S3 – 16 ¹H NMR spectrum of benzimidazole-iodotriazole naphthalimide azide **4** (CDCl₃, 298 K, 400 MHz)

Figure S3 – 17 ¹H NMR spectrum of benzimidazole-iodotriazole naphthalimide azide **4** (CDCl₃, 298 K, 101 MHz)

Figure S3 – 18 High-resolution ESI mass spectrum of benzimidazole-iodotriazole naphthalimide azide **4** (left) with theoretical isotope model (right)

Figure S3 – 19 ¹H NMR spectrum of benzimidazole-iodotriazole naphthalimide neutral [2]rotaxane **7** (CDCl₃, 298 K, 500 MHz)

Figure S3 – 20 Truncated ¹H-¹H ROESY spectrum of neutral [2]rotaxane **7** (CDCl₃, 298 K, 500 MHz). Axle-based naphthalimide and benzyl protons shown as squares, key cross-peak interactions highlighted.

Figure S3 – 21 ¹³C NMR spectrum of benzimidazole-iodotriazole naphthalimide neutral [2]rotaxane **7** (CDCl₃, 298 K, 126 MHz)

Figure S3 – 22 High-resolution ESI mass spectrum of benzimidazole-iodotriazole naphthalimide neutral [2]rotaxane **7** (left) with theoretical isotope model (right)

Figure S3 – 23 ¹H NMR spectrum of benzimidazole-iodotriazole naphthalimide chloride [2]rotaxane **7·HCl** (CDCl₃, 298 K, 500 MHz)

Figure S3 – 24 Truncated ¹H-¹H ROESY spectrum of chloride [2]rotaxane **7·HCl** (CDCl₃, 298 K, 500 MHz). Macrocycle alkyl peaks shown as circles, key cross-peak interactions highlighted.

Figure S3 – 25 ¹³C NMR spectrum of benzimidazole-iodotriazole naphthalimide chloride [2]rotaxane **7·HCl** (CDCl₃, 298 K, 126 MHz)

Figure S3 – 26 ¹H NMR spectrum of benzimidazole-iodotriazole naphthalimide axle **8** (CDCl₃, 298 K, 400 MHz)

Figure S3 – 27 ¹³C NMR spectrum of benzimidazole-iodotriazole naphthalimide axle **8** (CDCl₃, 298 K, 101 MHz)

Figure S3 – 28 High-resolution ESI mass spectrum of benzimidazole-iodotriazole naphthalimide neutral [2]rotaxane **8** (left) with theoretical isotope model (right)

Figure S3 – 29 ¹H NMR spectrum of benzimidazolium-iodotriazole naphthalimide chloride axle **8·HCl** (CDCl₃, 298 K, 400 MHz)

S4. References

- 1 V. Aucagne, K. D. Hänni, D. A. Leigh, P. J. Lusby and D. B. Walker, *J. Am. Chem. Soc.*, 2006, **128**, 2186-2187.
- 2 T. Tang, Y. Zhou, Y. Chen, M. Li, Y. Feng, C. Wang, S. Wang and X. Zhou, *Anal. Methods*, 2015, **7**, 2386-2390.
- 3 J. A. Wisner, P. D. Beer and M. G. B. Drew, Angew. Chem. Int. Ed., 2001, 40, 3606-3609.