Supporting Information

High Performance Benzoimidazolyl-Based Aminophenolate Zinc Complexes for Isoselective Polymerization of rac-Lactide

Yanmei Gong and Haiyan Ma*

Shanghai Key Laboratory of Functional Materials Chemistry and Laboratory of Organometallic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

Contents:

1. Experimental

1.1 General considerations
1.2 Synthesis of proligands $\mathbf{L}^{\mathbf{1}} \mathbf{H}-\mathbf{L}^{\mathbf{8}} \mathbf{H}$
1.3 Synthesis of zinc complexes $\mathbf{1 - 8}$
1.4 X-Ray crystallography
1.5 General polymerization procedure

2. NMR spectra of zinc complexes 1-8

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of zinc complex 1
Figure $\mathbf{S 2}$. ${ }^{13} \mathrm{C}$ NMR spectrum of zinc complex $\mathbf{1}$
Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of zinc complex 2
Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum of zinc complex 2
Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of zinc complex 3
Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum of zinc complex $\mathbf{3}$
Figure $\mathbf{S 7}$. ${ }^{1} \mathrm{H}$ NMR spectrum of zinc complex 4
Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of zinc complex 4
Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of zinc complex 5
Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum of zinc complex 5
Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of zinc complex 6
Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum of zinc complex 6
Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of zinc complex 7
Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum of zinc complex 7
Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of zinc complex 8
Figure S16. ${ }^{13} \mathrm{C}$ NMR spectrum of zinc complex 8

3. Crystallographic data

Table S1. Crystallographic data for complexes 2 and 6
Figure S17. The molecular structure of complex 2
Figure S18. The molecular structure of complex 6

4. Ring-opening polymerization of rac-LA

Table S2. ROPs of rac-LA initiated by zinc complexes $\mathbf{1 - 8}$ in THF

Figure S19. Methine region of the homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectrum of PLA produced by complex $\mathbf{3}$ in toluene at $25^{\circ} \mathrm{C}$

Figure S20. The carbonyl and methine regions of ${ }^{13} \mathrm{C}$ NMR spectrum of PLA produced by complex $\mathbf{3}$ in toluene at $25^{\circ} \mathrm{C}$

Figure S21. Methine region of the homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectrum of PLA produced by complex 4 in toluene at $25^{\circ} \mathrm{C}$

Figure S22. Methine region of the homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectrum of PLA produced by complex 6 in toluene at $25^{\circ} \mathrm{C}$

Figure S23. Methine region of the homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectrum of PLA produced by complex 7 in toluene at $25^{\circ} \mathrm{C}$

Figure S24. Methine region of the homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectrum of PLA produced by complex 7 in toluene at $-20^{\circ} \mathrm{C}$

Figure S25. Methine region of the homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectrum of PLA produced by complex 7 in toluene at $-40^{\circ} \mathrm{C}$

Figure S26. Methine region of homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectrum of PLA produced by complex $\mathbf{8} / \mathrm{PrOH}$ in toluene at $25^{\circ} \mathrm{C}$

Figure S27. Heat flow vs. temperature curve of PLA produced by complex 7 at -20 ${ }^{\circ} \mathrm{C}$.

Figure S28. Heat flow $v s$. temperature curve of PLA produced by complex 7 at -40 ${ }^{\circ} \mathrm{C}$.

Figure S29. ${ }^{1} \mathrm{H}$ NMR spectra of A) complex 3, B) the reaction mixture of complex $\mathbf{3}$ and ${ }^{i} \mathrm{PrOH}(1: 1)$ and C) the active rac-lactide oligomer obtained by complex $3 / \mathrm{PrOH}$ with 20 equiv. of rac -LA.

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum of PLA oligomer obtained by complex $\mathbf{3} / \mathrm{PrOH}$ with 20 equiv. of rac-LA

Figure S31. MALDI-TOF mass spectrum of PLA oligomer obtained by complex 3/iPrOH with 20 equiv. of rac -LA

Figure S32. Semilogrithmic plots of lactide conversion versus time of D-LA, L-LA and rac-LA polymerization mediated by complex $\mathbf{8}$

1. Experimental

1.1 General considerations

All manipulations involving air-sensitive substances were carried out under a dry argon atmosphere using standard Schlenk techniques or an argon-filled glovebox. Toluene, tetrahydrofuran, n-hexane and benzene- d_{6} were refluxed over sodium/benzophenone prior to use. 2-Propanol was distilled over calcium hydride under argon prior to use. Chloroform- d and other reagents were carefully dried and stored in the glovebox. D-Lactide, L-lactide and rac-lactide from Jinan Daigang Biomaterial Co., Ltd. were recrystallized three times with dry toluene and then sublimated three times under vacuum at $100{ }^{\circ} \mathrm{C} . \mathrm{Zn}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}$ was synthesized according to the literature method. ${ }^{\mathrm{S} 1}$ 2-Bromomethyl-4,6-di-tert-butylphenol, ${ }^{\mathrm{S2}}$ 2-bromomethyl-4-methyl-6-(triphenylmethyl)phenol, ${ }^{\mathrm{S3}} \quad$ 1-alkyl-2-chloromethyl benzimidazoles ${ }^{54}$ were synthesized according to the reported literature procedures. All other chemicals were commercially available and used after appropriate purification. Glassware and vials used in the polymerization were dried in an oven at $120^{\circ} \mathrm{C}$ overnight and exposed to a vacuum-argon cycle three times.

NMR spectra were recorded on a Bruker AVANCE-400 spectrometer at $25^{\circ} \mathrm{C}\left({ }^{1} \mathrm{H}\right.$, $400 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 100 \mathrm{MHz}$) unless otherwise stated. Chemical shifts for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were referenced internally using the residual solvent resonances and reported relative to TMS. Elemental analyses were performed on an EA-1106 instrument. The molecular weights and corresponding polydispersities of the PLAs were measured by gel permeation chromatography (GPC) analyses, using a Waters instrument (M1515 pump, Optilab Rex injector) in THF at $35^{\circ} \mathrm{C}$, at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$. Calibration standards were commercially available narrowly distributed linear polystyrene samples that cover a broad range of molar masses $\left(4 \times 10^{3} \mathrm{~g} / \mathrm{mol}<M_{\mathrm{n}}<4.4 \times 10^{5} \mathrm{~g} / \mathrm{mol}\right)$.

1.2 Synthesis of proligands $L^{1} H-L^{8} H$

1.2.1 Synthesis of 2-\{[N-cyclohexyl-N-(1-benzyl-1H-benzo[d]imidazol-2-yl)methyl] aminomethyl $\}$-4,6-di-tert-butylphenol ($L^{1} \boldsymbol{H}$)

1-Benzyl-2-chloromethylbenzoimidazolyl ($2.59 \mathrm{~g}, 10.0 \mathrm{mmol}$) was dissolved in 25 mL of DMF, and then the solution was slowly added to a mixture of cyclohexylamine $(9.92 \mathrm{~g}, 100 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.66 \mathrm{~g}, 12.0 \mathrm{mmol})$ within about 2 h . The mixture was poured into water and extracted with ethyl acetate three times, and the
organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave the target secondary amine, N-((1-benzyl-1 H-benzo[d]imidazol-2yl)methyl)cyclohexanamine, as a yellow solid with a purity of about 80%, which was used directly for the next step. Crude $N-((1-b e n z y l-1 H$-benzo $[d]$ imidazol-2yl)methyl)cyclohexanamine (1.79 g , about 5.60 mmol) was dissolved in 30 mL of DMF, and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.93 \mathrm{~g}, 6.72 \mathrm{mmol})$ was added. Then, 2-bromomethyl-4,6-di-tertbutylphenol ($1.68 \mathrm{~g}, 5.60 \mathrm{mmol}$) was added slowly in 10 min to the above mixture. The mixture was stirred for 5 h and then poured into water and extracted with ethyl acetate three times. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and white solids were obtained via recrystallization from dichloromethane and petroleum ether (1.55 g , $51.5 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.80-7.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, 7.26 - 7.20 (m, 4H, ArH), 7.20 - 7.13 (m, 3H, ArH), 6.85 (d, ${ }^{4} J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H$), 6.73 - 6.68 (m, 2H, ArH), 5.24 (s, 2H, ArCH_{2}), 3.90 (s, 2H, PhCH_{2}), 3.87 (s, 2H, $\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}$), $2.98-2.87$ (tt, ${ }^{3} J=11.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.1 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{NCH}$ of cyclohexyl), 1.95 (br d, ${ }^{3} J=11.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$ of cyclohexyl), $1.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), 1.63 (m, $1 \mathrm{H}, \mathrm{CH}_{2}$ of cyclohexyl), $1.41\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right), 1.39-1.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), $1.27\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right), 1.23-1.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), $1.15-1.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 154.0, $150.8(\mathrm{NC}=\mathrm{N}), 142.5$, $141.2,136.3,135.8,135.7,128.9,127.8,126.5,124.3,123.3,123.1,122.2,121.6$, 120.0, 110.2 (all ArC$)$, $58.8\left(\mathrm{ArCH}_{2}\right), 54.2\left(\mathrm{PhCH}_{2}\right), 47.0\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 46.8(\mathrm{NCH})$, $35.0\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $\left.34.3\left(\mathrm{C}_{3} \mathrm{CH}_{3}\right)_{3}\right)$, $31.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $29.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $27.6\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $26.2\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $25.9\left(\mathrm{CH}_{2}\right.$ of cyclohexyl). Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 80.40$; H, 8.81; N, 7.81. Found: C, 80.08; H, 8.59; N, 7.69\%.

1.2.2 Synthesis of 2-\{[N-cyclohexyl-N-(1-benzyl-1H-benzo[d]imidazol-2-yl)methyl] aminomethyl $\}$-4,6-di-cumylphenol ($L^{2} H$)

The procedure was the same as that of $\mathbf{L}^{\mathbf{1}} \mathbf{H}$, except that 2-bromomethyl-4,6dicumylphenol ($2.10 \mathrm{~g}, 5.00 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.83 \mathrm{~g}, 6.00 \mathrm{mmol})$ and crude $\mathrm{N}-((1-$ benzyl-1 H -benzo[$d]$ imidazol-2-yl)methyl)cyclohexylamine (1.60 g , about 5.00 mmol) were used in the second step. White solids were obtained via column chromatography (silica gel 200-300 Merck, petroleum ether/ethyl acetate $=10: 1$) after removal of all the volatiles ($2.16 \mathrm{~g}, 65.3 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.86$ (s, 1H, OH), 7.74 (m, 1H, ArH), 7.26-7.10 (m, 17H, ArH), 6.73 (d, $\left.{ }^{4} J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 6.66$ (m, 2H, ArH),
4.79 (s, 2H, ArCH_{2}), 3.79 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}$), 3.73 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}$), $2.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}$ of cyclohexyl), $1.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), $1.66\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.66\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.54\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), 1.15 (m, 2H, CH2 of cyclohexyl), 1.08-0.94 (m, 3H, CH_{2} of cyclohexyl), $0.94-0.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 153.5,151.6,151.4,150.9(\mathrm{~N} C=\mathrm{N}), 142.4,140.4,136.2,136.1,135.0,128.8$, $127.9,127.6,126.9,126.3,126.3,126.1,125.6,125.2,124.9,123.0,122.2,121.6$, 119.9, 110.2 (all ArC), $59.0\left(\mathrm{ArCH}_{2}\right), 54.1\left(\mathrm{PhCH}_{2}\right), 47.4\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 46.6(\mathrm{NCH})$, $42.6\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CPh}\right), 42.1\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CPh}\right), 31.2\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CPh}\right), 29.6\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CPh}\right), 27.4\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $26.1\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $26.0\left(\mathrm{CH}_{2}\right.$ of cyclohexyl). Anal. Calcd. for $\mathrm{C}_{46} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 83.47$; H, 7.77; N, 6.35. Found: C, 83.45; H, 7.97; N, 6.01\%.

1.2.3 Synthesis of 2-\{[N-cyclohexyl-N-(1-benzyl-1H-benzo[d]imidazol-2-yl)methyl] aminomethylf-4-methyl-6-tritylphenol ($L^{3} \mathrm{H}$)

The procedure was the same as that of $\mathbf{L}^{\mathbf{1}} \mathbf{H}$, except that 2-bromomethyl-4-methyl-6-(triphenylmethyl)phenol $\quad(3.72 \mathrm{~g}, \quad 8.40 \mathrm{mmol})$, crude $\quad \mathrm{N}$-((1-benzyl-1 $\mathrm{H}-$ benzo[d]imidazol-2-yl)methyl)cyclohexylamine (2.69 g , about 8.40 mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.39 \mathrm{~g}, 10.1 \mathrm{mmol})$ were used in the second step. White solids were obtained via recrystallization from dichloromethane and petroleum ether ($4.42 \mathrm{~g}, 77.2 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.74-7.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.27-7.11(\mathrm{~m}, 21 \mathrm{H}$, $\mathrm{Ar} H), 6.89\left(\mathrm{~d},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 6.74-6.67(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 4.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right)$, 3.81 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}$), $3.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 2.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}$ of cyclohexyl), 2.12 (s, $3 \mathrm{H}, \mathrm{ArCH}_{3}$), $1.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}=11.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), $1.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), 1.20-1.04 (m, 4H, CH_{2} of cyclohexyl), 1.04-0.92 (m, $1 \mathrm{H}, \mathrm{CH}_{2}$ of cyclohexyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.0,150.9(\mathrm{NC}=\mathrm{N}), 146.2,142.3$, $136.0,133.4,131.3,130.6,128.9,127.7,127.0,126.8,126.3,125.3,123.0,122.2$, 122.1, 119.8, 110.3 (all ArC$), 63.3\left(\mathrm{Ph}_{3} \mathrm{C}\right), 58.6\left(\mathrm{ArCH}_{2}\right), 53.9\left(\mathrm{PhCH}_{2}\right), 46.8$ $\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 46.6(\mathrm{NCH}), 27.4\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $26.1\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), 26.0 $\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $21.0\left(\mathrm{ArCH}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{48} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 84.54 ; \mathrm{H}, 6.95 ; \mathrm{N}$, 6.16. Found: C, 84.41 ; H, 7.09; N, 6.05\%.

1.2.4 Synthesis of 2-\{[N-nbutyl-N-(1-benzyl-1H-benzo[d]imidazol-2-yl)methyl] aminomethylf-4-methyl-6-(triphenylmethyl)phenol ($L^{4} \mathrm{H}$)

The procedure was the same as that of $\mathbf{L}^{\mathbf{1}} \mathbf{H}$, except that n-butylamine $(7.31 \mathrm{~g}, 100$ mmol) was used in the first step, and 2-bromomethyl-4-methyl-6-
(triphenylmethyl)phenol $\quad(2.84 \mathrm{~g}, \quad 6.40 \mathrm{mmol}), \quad$ crude $\quad \mathrm{N}$-((1-benzyl-1 H -benzo[d]imidazol-2-yl)methyl)butylamine (1.88 g , about 6.40 mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.06$ $\mathrm{g}, 7.68 \mathrm{mmol}$) were used in the second step. White solids were obtained via column chromatography (silica gel 200-300 Merck, petroleum ether/ethyl acetate $=10: 1$) after removal of all the volatiles $(2.86 \mathrm{~g}, 68.1 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.86(\mathrm{~s}, 1 \mathrm{H}$, OH), 7.77 - $7.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.30-7.11(\mathrm{~m}, 21 \mathrm{H}, \mathrm{Ar} H), 6.95\left(\mathrm{~d},{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{ArH}), 6.71$ (m, 3H, ArH), 4.87 (s, 2H, ArCH_{2}), 3.76 (s, 2H, NCH $\mathrm{N}_{2} \mathrm{Ph}$), 3.69 (s, 2H, $\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}$), $2.51-2.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of n-butyl), $2.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.24-1.14(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}$ of n-butyl), $1.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of n-butyl), $0.78\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of n butyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.9,150.4(\mathrm{NC}=\mathrm{N}), 146.1,142.4,136.0$, $135.8,133.7,131.3,130.9,129.1,128.9,127.8,127.1,127.0,126.3,125.4,123.1$, 122.3, 122.3, 120.0, 110.0 (all ArC), $63.3\left(\mathrm{Ph}_{3} C\right), 58.2\left(\mathrm{ArCH}_{2}\right), 53.6\left(\mathrm{PhCH}_{2}\right), 50.1$ $\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 46.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 28.5\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 21.0\left(\mathrm{ArCH}_{3}\right), 20.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{46} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 84.24 ; \mathrm{H}, 6.92$; N, 6.41. Found: C, 84.10; H, 6.98; N, 6.31\%.

1.2.5 Synthesis of 2-\{[N-benzyl-N-(1-benzyl-1H-benzo[d]imidazol-2-yl)methyl] aminomethyl\}-4-methyl-6-(triphenylmethyl)phenol ($\mathbf{L}^{5} \mathbf{H}$)

The procedure was the same as that of $\mathbf{L}^{\mathbf{1}} \mathbf{H}$, except that benzylamine $(10.72 \mathrm{~g}, 100$ mmol) was used in the first step, and 2-bromomethyl-4-methyl-6(triphenylmethyl)phenol $\quad(2.70 \quad \mathrm{~g}, \quad 6.10 \mathrm{mmol})$, crude $\quad \mathrm{N}-((1-$ benzyl-1 $\mathrm{H}-$ benzo[d]imidazol-2-yl)methyl)benzylamine (1.99 g , about 6.10 mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.01 \mathrm{~g}, 7.32 \mathrm{mmol})$ were used in the second step. White solids were obtained via recrystallization from dichloromethane and petroleum ether ($2.51 \mathrm{~g}, 59.6 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.71\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 7.23-7.10(\mathrm{~m}$, $21 \mathrm{H}, \mathrm{Ar} H), 7.05\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H\right), 6.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 6.85(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 6.52$ (d, $\left.{ }^{3} J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 4.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 3.93\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.62(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CNCH}_{2} \mathrm{Ph}$), $3.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right.$), $2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 153.6,150.4(\mathrm{~N} C=\mathrm{N}), 146.2,142.3,137.0,135.6,133.9,131.3,131.1,130.0$, $129.6,128.8,128.6,127.7,127.6,127.1,127.0,126.2,125.5,123.1,122.3,122.2$, 119.9, 110.1 (all ArC$), 63.4\left(\mathrm{Ph}_{3} \mathrm{C}\right), 58.4\left(\mathrm{ArCH}_{2}\right), 57.8\left(\mathrm{PhCH}_{2}\right), 49.1\left(\mathrm{PhCH}_{2}\right), 46.7$ $\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right)$, $21.0\left(\mathrm{ArCH}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{49} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 85.31 ; \mathrm{H}, 6.28 ; \mathrm{N}, 6.09$. Found: C, 85.30; H, 6.33; N, 6.03\%.

1.2.6 Synthesis of 2-\{[N-cyclohexyl-N-(1-methyl-1H-benzo[d]imidazol-2-yl)methyl]

 aminomethylf-4-methyl-6-(triphenylmethyl)phenol ($L^{6} \mathrm{H}$)The procedure was the same as that of $\mathbf{L}^{1} \mathbf{H}$, except that 1-methyl-2chloromethylbenzoimidazole $(1.84 \mathrm{~g}, 10.0 \mathrm{mmol})$ was used in the first step, and 2-bromomethyl-4-methyl-6-(triphenylmethyl)phenol ($2.20 \mathrm{~g}, 5.00 \mathrm{mmol}$), crude N -((1-methyl-1 H -benzo[d]imidazol-2-yl)methyl)cyclohexylamine (1.22 g , about 5.00 mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.83 \mathrm{~g}, 6.00 \mathrm{mmol})$ were used in the second step. White solids were obtained via recrystallization from dichloromethane and petroleum ether (2.17 g , $71.6 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.70-7.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, $7.31-7.27$ (m, 1H, ArH), $7.20-7.09(\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ar} H), 6.86\left(\mathrm{~d},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right)$, $6.71\left(\mathrm{~d},{ }^{4} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 3.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 3.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 3.18(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{NCH}_{3}$), 2.44 (m, 1H, NCH of cyclohexyl), 2.12 (s, $3 \mathrm{H}, \mathrm{ArCH}_{3}$), 1.78 - 1.73 (m, $4 \mathrm{H}, \mathrm{CH}$ of cyclohexyl), 1.61 (d, ${ }^{3} J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ of cyclohexyl), $1.29(\mathrm{~m}, 2 \mathrm{H}$, CH_{2} of cyclohexyl), $1.18-1.00\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 153.9,150.7(\mathrm{NC}=\mathrm{N}), 146.1,142.1,136.4,133.4,131.3,130.6,128.8,127.0$, 126.8, 125.3, 122.8, 122.1, 121.8, 119.6, 109.5 (all ArC$), 63.2\left(\mathrm{Ph}_{3} C\right), 58.8\left(\mathrm{ArCH}_{2}\right)$, $53.8\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 46.6(\mathrm{NCH}), 30.0\left(\mathrm{NCH}_{3}\right), 27.5\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $26.1\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $26.0\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $21.0\left(\mathrm{ArCH}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{42} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}$, 83.27; H, 7.15; N, 6.94. Found: C, 82.84; H, 6.97; N, 6.81\%.

1.2.7 Synthesis of 2-\{[N-cyclohexyl-N-(1-methyl-1H-benzo[d]imidazol-2-yl)methyl] aminomethyl\}-4-methyl-6-(triphenylmethyl)phenol ($L^{7} \mathrm{H}$)

The procedure was the same as that of $\mathbf{L}^{1} \mathbf{H}$, except that 1-methyl-2chloromethylbenzoimidazole ($2.59 \mathrm{~g}, 10.0 \mathrm{mmol}$) and n-butylamine ($7.31 \mathrm{~g}, 100 \mathrm{mmol}$) were used in the first step, and 2-bromomethyl-4-methyl-6-(triphenylmethyl)phenol $(2.34 \mathrm{~g}, \quad 5.30 \mathrm{mmol}), \quad$ crude $\quad \mathrm{N}$-((1-methyl-1 H -benzo[d]imidazol-2yl)methyl)butylamine (1.15 g , about 5.30 mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.88 \mathrm{~g}, 6.36 \mathrm{mmol})$ were used in the second step. White solids were obtained via column chromatography (silica gel 200-300 Merck, petroleum ether/ethyl acetate $=10: 1$) after removal of all the volatiles ($1.94 \mathrm{~g}, 63.1 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}\right.$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.31-7.06(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ar} H), 6.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, 3.77 (s, 2H, ArCH_{2}), 3.75 (s, 2H, $\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}$), 3.16 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 2.47 - 2.38 (m, 2H, CH_{2} of n-butyl), $2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.41-1.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of n-butyl), $1.16-1.06$
(m, 2H, CH H_{2} of n-butyl), $0.81\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of n-butyl). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 153.7,150.2(\mathrm{NC}=\mathrm{N}), 146.1,142.2,136.1,133.6,131.3,131.0,129.0$, 127.2, 127.1, 125.4, 122.8, 122.2, 122.0, 119.7, 109.4 (all $\mathrm{Ar} C), 63.3\left(\mathrm{Ph}_{3} C\right), 58.5$ $\left(\mathrm{ArCH}_{2}\right), 53.8\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 50.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 30.0\left(\mathrm{NCH}_{3}\right), 28.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 21.0$ $\left(\mathrm{ArCH}_{3}\right), 20.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 82.86 ; \mathrm{H}$, 7.13; N, 7.25. Found: C, 82.99; H, 7.52; N, 6.87\%.

1.2.8 Synthesis of 2-\{[N-benzyl-N-(1-methyl-1H-benzo[d]imidazol-2-yl)methyl] aminomethyl $\}$-4-methyl-6-(triphenylmethyl)phenol ($L^{8} \mathbf{H}$)

The procedure was the same as that of $\mathbf{L}^{\mathbf{1}} \mathbf{H}$, except that 1-methyl-2chloromethylbenzoimidazole $(1.84 \mathrm{~g}, 10.0 \mathrm{mmol})$ and benzylamine $(10.72 \mathrm{~g}, 100$ mmol) were used in the first step, and 2-bromomethyl-4-methyl-6(triphenylmethyl)phenol (3.41 g, 7.70 mmol$)$, crude N -((1-methyl-1 $\mathrm{H}-$ benzo[d]imidazol-2-yl)methyl)benzylamine (1.93 g , about 7.70 mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.28 \mathrm{~g}, 9.24 \mathrm{mmol})$ were used in the second step. White solids were obtained via recrystallization from dichloromethane and petroleum ether ($3.16 \mathrm{~g}, 66.9 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.76-7.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.34-7.18(\mathrm{~m}$, $21 \mathrm{H}, \mathrm{Ar} H), 7.01\left(\mathrm{dd},{ }^{3} J=7.1,{ }^{4} J=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H\right), 6.97\left(\mathrm{~d},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right)$, 6.88 (d, ${ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 3.91 (s, 2H, ArCH 2), 3.75 (s, 2H, PhCH_{2}), 3.59 (s, 2H, $\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}$), $3.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ $11.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.67\left(\mathrm{~d},{ }^{3} J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 7.72-7.66(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar} H), 7.46(\mathrm{~d}$, ${ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.33-7.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.24\left(\mathrm{~d},{ }^{4} J=1.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{ArH}\right), 7.22$ (m, 6H, ArH), $7.21-7.18(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.13(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 6.88\left(\mathrm{~d},{ }^{4} J=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{Ar} H), 6.80\left(\mathrm{~d},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 3.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 3.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 3.34$ (s, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}$), $2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 153.5,150.2(\mathrm{NC}=\mathrm{N}), 146.2,142.1,136.8,136.1,133.8,131.3,131.1,130.0$, $129.4,128.6,127.7,127.1,127.0,125.5,122.8,122.2,121.8,119.7,109.4$ (all ArC), $63.4\left(\mathrm{Ph}_{3} \mathrm{C}\right), 58.4\left(\mathrm{ArCH}_{2}\right), 58.2\left(\mathrm{PhCH}_{2}\right), 49.5\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 29.8\left(\mathrm{NCH}_{3}\right), 21.0$ $\left(\mathrm{ArCH}_{3}\right)$. Anal. Calcd. for $\mathrm{C}_{43} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 84.14 ; \mathrm{H}, 6.40 ; \mathrm{N}, 6.85$. Found: C, 84.17; H, 6.34; N, 6.91\%.

1.3 Synthesis of zinc complexes 1-8

1.3.1 Synthesis of $\left[L^{1} \mathrm{ZnN}\left(\mathrm{SiMe}_{3}\right)_{2}\right](1)$

In a glovebox, the aminophenol $\mathbf{L}^{1} \mathbf{H}(538 \mathrm{mg}, 1.00 \mathrm{mmol})$ was dissolved in toluene $(5 \mathrm{~mL})$ and was added dropwise to a solution of $\mathrm{Zn}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}(384 \mathrm{mg}, 1.00$ mmol) in toluene (3 mL). The reaction mixture was stirred at room temperature overnight, and all the volatiles were removed under vacuum to afford a white solid which was then recrystallized with a mixture of n-hexane and toluene. Colorless crystals of complex 1 were obtained in 56.1% yield (427 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.91\left(\mathrm{~d},{ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 7.23\left(\mathrm{~d},{ }^{4} J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 7.13(\mathrm{~m}, 2 \mathrm{H} \times$ 0.2 , toluene), $7.02\left(\mathrm{~m}, 3 \mathrm{H} \times 0.2\right.$, toluene), $6.96\left(\mathrm{td},{ }^{3} J=7.6 \mathrm{~Hz},{ }^{4} J=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right)$, $6.94-6.90(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 6.82\left(\mathrm{~d},{ }^{4} J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 6.75\left(\mathrm{td},{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=1.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.48-6.41(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 4.44\left(\mathrm{~d},{ }^{2} J=16.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.32$ (d, $\left.{ }^{2} J=16.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.30\left(\mathrm{~d},{ }^{2} J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.64\left(\mathrm{~d},{ }^{2} J=16.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}$), $3.31\left(\mathrm{~d},{ }^{2} J=16.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 3.03\left(\mathrm{~d},{ }^{2} J=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{NCH}_{2} \mathrm{Ph}$), $2.90-2.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), $2.10(\mathrm{~s}, 3 \mathrm{H} \times 0.2$, toluene), $1.80-$ $1.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), $1.63-1.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), $1.54(\mathrm{~s}, 9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 1.49-1.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), $1.38\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right), 1.33-1.17(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$ of cyclohexyl), $1.14-1.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), $1.01-0.83(\mathrm{~m}, 2 \mathrm{H}$, CH_{2} of cyclohexyl), $0.60\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{N}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ 165.1, $153.2(\mathrm{~N} C=\mathrm{N}), 138.9,138.1,135.3,134.7,134.0,129.5,126.2,125.1,124.5$, 124.3, 123.9, 121.2, 119.6, 110.1 (all ArC), $66.9\left(\mathrm{Ph}_{3} C\right), 56.8\left(\mathrm{ArCH}_{2}\right), 49.3\left(\mathrm{NCH}_{2} \mathrm{Ph}\right)$, $46.9\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 35.6(\mathrm{NCH}), 34.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 32.4\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 30.10\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) \text {, }}\right.$ $30.05\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $26.9\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $26.4\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $26.0\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $6.4\left(\mathrm{~N}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$. Anal. Calcd. for $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{OSi} \mathrm{Zn} \cdot 0.2 \mathrm{C}_{7} \mathrm{H}_{8}: \mathrm{C}, 66.75$; H, 8.47; N, 7.17. Found: C, 66.38; H, 8.33; N, 7.29\%.

1.3.2 Synthesis of $\left[L^{2} \mathrm{ZnN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ (2)

The procedure was the same as that of complex 1, except that $\mathbf{L}^{2} \mathbf{H}(662 \mathrm{mg}, 1.00$ $\mathrm{mmol})$ and $\mathrm{Zn}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}$ ($384 \mathrm{mg}, 1.00 \mathrm{mmol}$) were used to afford complex 2 as colorless crystals ($434 \mathrm{mg}, 48.9 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{Ar} H), 7.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H\right), 7.20-7.16(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 7.13-7.10(\mathrm{~m}$, $2 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{Ar} H \& 2 \mathrm{H} \times 0.5$ of toluene), $7.07-6.99(\mathrm{~m}, 6.5 \mathrm{H}, 5 \mathrm{H}$ of $\mathrm{Ar} H \& 2 \mathrm{H} \times 0.5$ of toluene), $6.92-6.86(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar} H), 6.66-6.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 6.47-6.41(\mathrm{~m}, 2 \mathrm{H}$,
$\mathrm{Ar} H), 4.40\left(\mathrm{~d},{ }^{2} J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.16\left(\mathrm{~d},{ }^{2} J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.02(\mathrm{~d}$, ${ }^{2} J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}$), $3.44\left(\mathrm{~d},{ }^{2} J=16.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 3.21\left(\mathrm{~d},{ }^{2} J=16.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}$), 2.78 ($\mathrm{d},{ }^{2} \mathrm{~J}=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}$), $2.72-2.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), $2.10\left(\mathrm{~s}, 3 \mathrm{H} \times 0.5\right.$, toluene), $1.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.66(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.66-1.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), $1.60-1.57\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), 1.56 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.47 (br d, ${ }^{3} \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ of cyclohexyl), 1.37 (br, d, ${ }^{3} \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ of cyclohexyl), $1.17-1.01$ (m, 2H, CH2 of cyclohexyl), $0.91-0.74\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}\right.$ of cyclohexyl), $0.47\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{N}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 165.0,153.1(\mathrm{~N} C=\mathrm{N}), 153.0,152.4,138.1,137.9$ (toluene), 135.3, 134.8, 132.9, 129.4, 129.3 (toluene), 128.6 (toluene), 128.2, 127.9, 127.5, 127.3, 127.0, 126.9, 126.1, 125.6 (toluene), 124.9, 124.3, 124.0, 121.8, 119.8, 110.1 (all ArC), 66.7 $\left(\mathrm{ArCH}_{2}\right), 56.5\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 49.6\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 46.6(\mathrm{NCH}), 43.4,42.2\left(\mathrm{PhC}\left(\mathrm{CH}_{3}\right)_{2}\right), 31.8$, 31.7, 31.1, $29.8\left(\mathrm{PhC}\left(\mathrm{CH}_{3}\right)_{2}\right), 28.0\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $26.6\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), 26.3 $\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $25.9\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $25.9\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), 21.4 (toluene), $6.30\left(\mathrm{~N}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$. Anal. Calcd. for $\mathrm{C}_{52} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{OSi}_{2} \mathrm{Zn}$: C, 70.44; H, 7.73; N , 6.32. Found: C, 70.23 ; H, 7.67; N, 5.88\%.

1.3.3 Synthesis of $\left[L^{3} \mathrm{ZnN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ (3)

The procedure was the same as that of complex 1, except that $\mathbf{L}^{3} \mathbf{H}(682 \mathrm{mg}, 1.00$ $\mathrm{mmol})$ and $\mathrm{Zn}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}$ ($384 \mathrm{mg}, 1.00 \mathrm{mmol}$) were used to afford complex 3 as white solids ($563 \mathrm{mg}, 62.1 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.57\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{Ar} H), 7.50\left(\mathrm{~d},{ }^{3} J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ar} H\right), 7.33\left(\mathrm{~d},{ }^{4} J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 7.11\left(\mathrm{td},{ }^{3} J=7.3\right.$ $\left.\mathrm{Hz},{ }^{4} J=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 6.96-6.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 6.94\left(\mathrm{t},{ }^{3} J=7.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ar} H\right)$, 6.89-6.85 (m, 3H, ArH), $6.72\left(\mathrm{t},{ }^{3} J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar} H\right), 6.67\left(\mathrm{~d},{ }^{4} J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right)$, $6.62\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 6.38-6.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 4.47\left(\mathrm{~d},{ }^{2} J=11.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, ArCH_{2}), $4.17\left(\mathrm{~d},{ }^{2} \mathrm{~J}=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.77\left(\mathrm{~m}, 1 \mathrm{H}\right.$ of $\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}, 1 \mathrm{H}$ of ArCH_{2}), $3.09\left(\mathrm{~d},{ }^{2} J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.08\left(\mathrm{~d},{ }^{2} J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 2.87\left(\mathrm{~d},{ }^{3} J\right.$ $=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ of cyclohexyl), $2.43\left(\mathrm{t},{ }^{3} \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of cyclohexyl), 2.19 (s, $3 \mathrm{H}, \mathrm{ArCH}_{3}$), 1.68 (br d, ${ }^{3} \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ of cyclohexyl), 1.50 (br, d, ${ }^{3} \mathrm{~J}=11.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ of cyclohexyl), $1.40-1.31$ (m, 2H, 2 H of cyclohexyl), $1.25-1.17$ (m, $1 \mathrm{H}, \mathrm{CH}_{2}$ of cyclohexyl), $1.16-1.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), $1.04-0.93(\mathrm{~m}, 1 \mathrm{H}$, CH_{2} of cyclohexyl), $0.91-0.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), $0.82-0.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), $0.28\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{N}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 165.2$,
$154.0(\mathrm{~N} C=\mathrm{N}), 147.9,138.3,137.4,135.2,134.6,133.8,132.0,131.8,129.3,128.6$, 127.0, 126.1, 125.2, 124.3, 123.7, 121.6, 121.0, 120.1, 109.6 (all ArC$), 64.6\left(\mathrm{ArCH}_{2}\right)$, $64.3\left(\mathrm{Ph}_{3} \mathrm{C}\right), 55.0\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 46.0\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 44.7(\mathrm{NCH}), 29.9\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $26.7\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $26.1\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $25.2\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), 21.1 $\left(\mathrm{ArCH}_{3}\right), 6.3\left(\mathrm{~N}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$. Anal. Calcd. for $\mathrm{C}_{54} \mathrm{H}_{64} \mathrm{~N}_{4} \mathrm{OSi}_{2} \mathrm{Zn} \cdot 0.3 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}: \mathrm{C}, 71.42$; H, 7.21; N, 6.04. Found: C, 71.13; H, 7.04; N, 6.06\%.

1.3.4 Synthesis of $\left[L^{4} \mathrm{ZnN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ (4)

The procedure was the same as that of complex 1, except that $\mathbf{L}^{4} \mathbf{H}(656 \mathrm{mg}, 1.00$ $\mathrm{mmol})$ and $\mathrm{Zn}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}(384 \mathrm{mg}, 1.00 \mathrm{mmol})$ were used to afford complex 4 as white solids ($453 \mathrm{mg}, 51.4 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.54$ (d, ${ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ar} H), 7.51\left(\mathrm{~d},{ }^{3} J=7.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ar} H\right), 7.35\left(\mathrm{~d},{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 7.14-6.97$ (m, $2 \mathrm{H}, \mathrm{ArH} ; 5 \mathrm{H} \times 0.5$, toluene), $6.97-6.90\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ar} H\right), 6.89-6.85(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{Ar} H), 6.72\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar} H\right), 6.66\left(\mathrm{~d},{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 6.60\left(\mathrm{~d},{ }^{3} J=8.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.37-6.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 4.54\left(\mathrm{~d},{ }^{2} J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.08\left(\mathrm{~d},{ }^{2} J\right.$ $\left.=16.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.80\left(\mathrm{~d},{ }^{2} J=17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 3.75\left(\mathrm{~d},{ }^{2} J=16.9 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 2.92\left(\mathrm{~d},{ }^{2} J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 2.75\left(\mathrm{td},{ }^{2} J=12.0 \mathrm{~Hz},{ }^{3} J=4.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH}_{2}$ of n-butyl), 2.69 (d, ${ }^{2} J=17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}$), $2.30-2.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of n-butyl), $2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H} \times 0.5\right.$, toluene), $1.91-1.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of n-butyl), $1.27-1.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of n-butyl), $1.13-1.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of n-butyl), $0.98-0.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of n-butyl), $0.82\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of n-butyl), 0.26 (s, $\left.18 \mathrm{H}, \mathrm{N}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 165.0,153.5(\mathrm{NC}=\mathrm{N}), 147.8$, $138.3,137.7,135.3,134.5,133.7,131.8,129.3,127.0,125.9,125.2,124.3,123.7,109.6$ (all ArC$), 64.2\left(\mathrm{Ph}_{3} \mathrm{C}\right), 60.1\left(\mathrm{ArCH}_{2}\right), 59.5\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 47.7\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 45.9$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 31.9$ (n-hexane), $26.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 23.1$ (n-hexane), $21.1\left(\mathrm{ArCH}_{3}\right), 21.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.4$ (n-hexane), $14.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $6.4\left(\mathrm{~N}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$. Anal. Calcd. for $\mathrm{C}_{52} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{OSi}_{2} \mathrm{Zn} \cdot 0.5 \mathrm{C}_{7} \mathrm{H}_{8}$: C, 71.93; H, 7.18; N, 6.05. Found: C, 71.87; H, 6.91; N, 6.14\%.

1.3.5 Synthesis of $\left[\mathrm{L}^{5} \mathrm{ZnN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ (5)

The procedure was the same as that of complex 1, except that $\mathbf{L}^{\mathbf{5}} \mathbf{H}(690 \mathrm{mg}, 1.00$ $\mathrm{mmol})$ and $\mathrm{Zn}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}(384 \mathrm{mg}, 1.00 \mathrm{mmol})$ were used to afford complex 5 as white solids ($586 \mathrm{mg}, 64.1 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.59-7.50(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar} H$), $7.31\left(\mathrm{~d},{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 7.14-7.03(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar} H$ \& toluene), $7.03-6.94(\mathrm{~m}$,

12H, $\operatorname{ArH}), 6.92-6.88(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 6.83\left(\mathrm{t},{ }^{3} J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar} H\right), 6.57\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 6.42\left(\mathrm{~d},{ }^{3} J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H\right), 6.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 6.36\left(\mathrm{~d},{ }^{4} J=1.8 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{Ar} H), 4.50\left(\mathrm{~d},{ }^{2} J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.39\left(\mathrm{~d},{ }^{2} J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.09$ (d, $\left.{ }^{2} J=17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CNCH}_{2} \mathrm{Ph}\right), 3.79\left(\mathrm{~d},{ }^{2} J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH} H_{2} \mathrm{Ph}\right), 3.60\left(\mathrm{~d},{ }^{2} J=\right.$ $17.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}$), $3.49\left(\mathrm{~d},{ }^{2} J=17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CNCH}_{2} \mathrm{Ph}\right), 3.43\left(\mathrm{~d},{ }^{2} J=17.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}$), 3.32 ($\mathrm{d},{ }^{2} \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}$), 2.10 ($\mathrm{s}, 3 \mathrm{H} \times 1.2$, toluene), 2.06 (s, $\left.3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 0.29\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{N}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 165.8$, $153.6(\mathrm{~N} C=\mathrm{N}), 147.8,138.1,137.9$ (toluene) 137.5, 135.7, 134.8, 133.9, 132.1, 131.9, $131.8,129.5,129.3$ (toluene), 128.9, 128.6, 128.6 (toluene) 127.1, 126.0, 125.7 (toluene), 125.3, 124.5, 123.7, 121.2, 121.1, 120.2, 109.5 (all ArC), $64.3\left(\mathrm{Ph}_{3} C\right), 60.6$ $\left(\mathrm{ArCH}_{2}\right), 59.7\left(\mathrm{PhCH}_{2}\right), 45.7\left(\mathrm{PhCH}_{2}\right), 43.7\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 21.4\left(\mathrm{ArCH}_{3}\right), 21.1$ (toluene), $6.5\left(\mathrm{~N}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$. Anal. Calcd. for $\mathrm{C}_{55} \mathrm{H}_{60} \mathrm{~N}_{4} \mathrm{OSi}_{2} \mathrm{Zn} \cdot 1.2 \mathrm{C}_{7} \mathrm{H}_{8}$: C, 74.28; H, 6.84; N , 5.46. Found: C, 73.74; H, 6.68; N, 5.21\%.

1.3.6 Synthesis of $\left[L^{6} \mathrm{ZnN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ (6)

The procedure was the same as that of complex 1, except that $\mathbf{L}^{6} \mathbf{H}(830 \mathrm{mg}, 1.00$ $\mathrm{mmol})$ and $\mathrm{Zn}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}$ ($384 \mathrm{mg}, 1.00 \mathrm{mmol}$) were used to afford complex $\mathbf{6}$ as colorless crystals ($500 \mathrm{mg}, 60.2 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.54-7.46(\mathrm{~m}, 7 \mathrm{H}$, $\mathrm{Ar} H), 7.27\left(\mathrm{~d},{ }^{4} J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 7.10\left(\mathrm{td},{ }^{3} J=7.7 \mathrm{~Hz},{ }^{4} J=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 6.97$ $(\mathrm{m}, 7 \mathrm{H}, \mathrm{Ar} H), 6.76\left(\mathrm{t},{ }^{3} J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar} H\right), 6.66\left(\mathrm{~d},{ }^{4} J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 6.50(\mathrm{~d}$, $\left.{ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 4.45\left(\mathrm{~d},{ }^{2} J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 3.59\left(\mathrm{~d},{ }^{2} J=17.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}$), $3.58-3.53(\mathrm{~m}, 4 \mathrm{H} \times 0.5, \mathrm{THF}), 3.11\left(\mathrm{~d},{ }^{2} J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 3.07$ (d, ${ }^{2} J=17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}$), 2.75 (br, d, ${ }^{2} J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ of cyclohexyl), $2.69-2.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), $2.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.85$ (br, d, ${ }^{2} J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ of cyclohexyl), $1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of cyclohexyl), 1.46 (d, ${ }^{2} J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ of cyclohexyl), $1.43-1.38(\mathrm{~m}, 2 \mathrm{H} \times 0.5, \mathrm{THF}), 1.27-1.10(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{CH}_{2}$ of cyclohexyl), $1.09-0.91$ (m, $2 \mathrm{H}, \mathrm{CH}_{2}$ of cyclohexyl), 0.29 (s, 18H, $\left.\mathrm{N}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 165.5,153.6(\mathrm{NC}=\mathrm{N}), 148.0,138.2$, 137.0, 135.3, 133.7, 131.8, 131.4, 127.0, 125.1, 123.7, 123.6, 121.6, 120.7, 119.9, 109.3 (all ArC), 67.8 (THF), $64.9\left(\mathrm{ArCH}_{2}\right), 64.3\left(\mathrm{Ph}_{3} \mathrm{C}\right), 55.8\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 44.7(\mathrm{NCH}), 32.0$ (hexane), $29.6\left(\mathrm{NCH}_{3}\right), 28.0\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $26.5\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), 26.14 $\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), $26.06\left(\mathrm{CH}_{2}\right.$ of cyclohexyl), 25.7 (THF), 23.1 (hexane), 21.1 $\left(\mathrm{ArCH}_{3}\right), 14.4$ (hexane), $6.4\left(\mathrm{~N}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$. The great solvent signal strength is
attributed to the poor solubility of the complex. Anal. Calcd. for $\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{~N}_{4} \mathrm{OSi}_{2} \mathrm{Zn} \cdot 0.5$ $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}: \mathrm{C}, 69.30 ; \mathrm{H}, 7.44$; N, 6.46. Found: C, 69.13; H, 7.80; N, 6.11\%.

1.3.7 Synthesis of $\left[L^{7} \mathrm{ZnN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ (7)

The procedure was the same as that of complex 1, except that $\mathbf{L}^{7} \mathbf{H}(580 \mathrm{mg}, 1.00$ $\mathrm{mmol})$ and $\mathrm{Zn}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}(384 \mathrm{mg}, 1.00 \mathrm{mmol})$ were used to afford complex 7 as white solids ($456 \mathrm{mg}, 56.7 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.52$ (d, ${ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}), 7.48\left(\mathrm{~d},{ }^{3} J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ar} H\right), 7.32\left(\mathrm{~d},{ }^{4} J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 7.10\left(\mathrm{t},{ }^{3} J=7.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.01\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 6.93\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ar} H\right), 6.75(\mathrm{~d}$, $\left.{ }^{4} J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 6.72\left(\mathrm{t},{ }^{3} J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar} H\right), 6.55\left(\mathrm{~d},{ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right)$, $4.61\left(\mathrm{~d},{ }^{2} J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 3.71\left(\mathrm{~d},{ }^{2} J=17.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 3.57(\mathrm{~m}, 4 \mathrm{H}$ $\times 0.8, \mathrm{THF}), 2.96\left(\mathrm{~d},{ }^{2} J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 2.87-2.77(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}$ of n-butyl), $2.59\left(\mathrm{~d},{ }^{2} J=17.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 2.39-2.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of n-butyl), 2.22 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$), $2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.55-1.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ of n-butyl), $1.41(\mathrm{~m}, 4 \mathrm{H} \times$ 0.8 , THF), $1.29-1.16$ (m, 1H, CH2 of n-butyl), $1.16-1.02$ (m, $1 \mathrm{H}, \mathrm{CH}_{2}$ of n-butyl), $0.92\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\right.$ of n-butyl), $0.26\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{N}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 165.1,153.1(\mathrm{NC}=\mathrm{N}), 147.8,138.3,137.7,135.5,133.7,131.8$, 131.7, 127.0, 125.1, 123.9, 123.6, 121.4, 120.7, 120.0, 109.4 (all ArC), 67.8 (THF), $64.3\left(\mathrm{Ph}_{3} \mathrm{C}\right), 60.4\left(\mathrm{ArCH}_{2}\right), 60.1\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 47.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 28.1\left(\mathrm{NCH}_{3}\right), 26.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 25.7(\mathrm{THF}), 21.1\left(\mathrm{ArCH}_{3}\right), 14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.4\left(\mathrm{~N}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$. Anal. Calcd. for $\mathrm{C}_{46} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{OSi}_{2} \mathrm{Zn} \cdot 0.8 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$: C, 68.54; H, 7.53; N, 6.50. Found: C, 68.28; H, 7.62; N, 6.46\%.

1.3.8 Synthesis of $\left[\mathrm{L}^{8} \mathrm{ZnN}\left(\mathrm{SiMe}_{3}\right)_{2} /\right.$ (8)

The procedure was the same as that of complex 1, except that $\mathbf{L}^{8} \mathbf{H}(614 \mathrm{mg}, 1.00$ $\mathrm{mmol})$ and $\mathrm{Zn}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}(384 \mathrm{mg}, 1.00 \mathrm{mmol})$ were used to afford complex $\mathbf{8}$ as white solids ($444 \mathrm{mg}, 52.9 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.55-7.48$ (m, 7H, ArH), $7.27\left(\mathrm{~d},{ }^{4} J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 7.14-7.08(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.06-7.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, $6.98\left(\mathrm{t},{ }^{3} J=7.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ar} H\right), 6.87\left(\mathrm{dd},{ }^{3} J=7.1,{ }^{4} J=2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H\right), 6.79\left(\mathrm{t},{ }^{3} J=\right.$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar} H), 6.54\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 6.42\left(\mathrm{~d},{ }^{4} J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 4.55$ (d, ${ }^{2} J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}$), $4.39\left(\mathrm{~d},{ }^{2} J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right), 3.95\left(\mathrm{~d},{ }^{2} J=14.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{PhCH}_{2}$), 3.56 (m, $4 \mathrm{H} \times 0.7$, THF), $3.43-3.36$ (m, 2H, 1 H of $\mathrm{ArCH}_{2}, 1 \mathrm{H}$ of $\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}$), $3.31\left(\mathrm{~d},{ }^{2} J=17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right.$), $2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 1.99(\mathrm{~s}, 3 \mathrm{H}$,
$\left.\mathrm{ArCH}_{3}\right), 1.43-1.38(\mathrm{~m}, 4 \mathrm{H} \times 0.7, \mathrm{THF}), 0.31\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{N}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 165.7,153.0(\mathrm{NC}=\mathrm{N}), 147.9,138.3,137.4,135.5,133.7,132.1$, $132.0,131.8,131.7,129.0,128.9,127.0,125.2,123.9,123.7,121.0,120.6,120.1,109.5$ (all ArC), $64.3\left(\mathrm{Ph}_{3} \mathrm{C}\right), 60.5\left(\mathrm{ArCH}_{2}\right), 59.8\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 43.7\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{N}\right), 28.0\left(\mathrm{NCH}_{3}\right)$, $20.9\left(\mathrm{ArCH}_{3}\right)$, $6.6\left(\mathrm{~N}\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right)$. Anal. Calcd. for $\mathrm{C}_{49} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{OSi}_{2} \mathrm{Zn} \cdot 0.7 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}: \mathrm{C}$, 69.98; H, 6.98; N, 6.30. Found: C, 69.36; H, 6.57; N, 6.39\%.

1.4 X-Ray Crystallography

The X-ray diffraction measurements of single crystals of complexes $\mathbf{2}$ and $\mathbf{6}$ were performed on a Bruker SMART APEX II diffractometer with graphite-monochromated Mo-K α radiation ($\lambda=0.71073 \AA$). The structures were solved by using the SHELXTL program. Refinement was performed on F^{2} anisotropically for all non-hydrogen atoms by the full-matrix least-squares method. ${ }^{\mathrm{S5}}$ The hydrogen atoms were placed at calculated positions and were included in the structure calculations without further refinement of the parameters. The cell refinement, data collection, and reduction were done by Bruker SAINT. ${ }^{56}$ Molecular structures were generated using ORTEP program. ${ }^{\text {S7 }}$ For further crystal data collection and details of measurements, see Table S1. CCDC numbers 1919496 (for 2), 1919497 (for 6) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

1.5 General Polymerization Procedure

In a glovebox, a catalyst solution (0.05 mmoL) from a stock solution in toluene or THF was injected sequentially into a series of 10 mL of Schlenk tubes loaded with racLA $(0.144 \mathrm{~g}, 1.00 \mathrm{mmol})$ and a suitable amount $(0.5 \mathrm{~mL})$ of the same dry solvent. The mixture was stirred at $25^{\circ} \mathrm{C}$ and quenched at specific time intervals by adding an excess amount of normal light petroleum ether. After being dissolved with dichloromethane, a small amount of an aliquot of the bulk solution was withdrawn and dried under reduced pressure for monomer conversion determination via ${ }^{1} \mathrm{H}$ NMR spectroscopy. The bulk solution was slightly concentrated and the polymer was precipitated from dichloromethane via the addition of excess methanol. The collected polymer sample was further dried in vacuo to constant weight for GPC and ${ }^{1} \mathrm{H}$ and homonucleardecoupled ${ }^{1} \mathrm{H}$ NMR analyses. In the cases where 2-propanol was used, the catalyst was
dissolved in toluene or THF and treated with the respective amount of 2-propanol, otherwise, the procedures were the same.

2. NMR spectra of zinc complexes 1-8

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of complex $1\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right.$; *: signals of residual toluene; **: impurity in $\mathrm{C}_{6} \mathrm{D}_{6}$; $\#$: free $\left.\mathrm{HN}\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}\right)$.

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\mathbf{1}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of complex $2\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right.$; *: signals of residual toluene; **: impurity in $\mathrm{C}_{6} \mathrm{D}_{6}$; $\#$: free $\left.\mathrm{HN}\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}\right)$.

Figure S4. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $2\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of complex $3\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right.$; *: signals of residual tetrahydrofuran; ${ }^{* *}$: signals of residual toluene; \#: free $\left.\mathrm{HN}\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}\right)$.

Figure S6. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\mathbf{3}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of complex $4\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right.$; *: signals of residual toluene; ${ }^{* *}$, impurity in $\mathrm{C}_{6} \mathrm{D}_{6}$; $\#$: free $\left.\mathrm{HN}\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}\right)$.

Figure S8. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $4\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of complex $5\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right.$; *: signals of residual toluene; \#: free $\mathrm{HN}\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}$).

Figure S10. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $5\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of complex $6\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right.$; *: signals of residual tetrahydrofuran; **: impurity in $\mathrm{C}_{6} \mathrm{D}_{6}$; $\#$: free $\left.\mathrm{HN}\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}\right)$.

Figure S12. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $6\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of complex $7\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right.$; *: signals of residual tetrahydrofuran; **: impurity in $\mathrm{C}_{6} \mathrm{D}_{6}$; $\#$: free $\left.\mathrm{HN}\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}\right)$.

Figure S14. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $7\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$.

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of complex $8\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right.$; *: signals of residual tetrahydrofuran; **: impurity in $\mathrm{C}_{6} \mathrm{D}_{6}$; $\#$: free $\left.\mathrm{HN}\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}\right)$.

3. Crystallographic data

Table S1. Crystallographic data for complexes 2 and $\mathbf{6}$

	2	6
Empirical formula	$\mathrm{C}_{52} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{OSi} 2 \mathrm{Zn}$	$\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{~N}_{4} \mathrm{OSi}_{2} \mathrm{Zn}$
Formula weight	886.65	830.55
Temp (K)	190	169.99
Crystal size (mm^{3})	$0.20 \times 0.18 \times 0.12$	$0.15 \times 0.12 \times 0.08$
Crystal system	Triclinic	Monoclinic
Space group	P-1	P21/c
$a(\AA)$	15.3692(6)	10.78250(10)
$b(\AA)$	18.4170(8)	41.7789(6)
$c(\AA)$	19.6974(8)	11.4854(2)
$\alpha\left({ }^{\circ}\right)$	86.9530(10)	90
$\beta\left({ }^{\circ}\right)$	89.9900(10)	114.1380(10)
$\gamma\left({ }^{\circ}\right)$	86.4220(10)	90
Volume (\AA^{3})	5556.7(4)	4721.56(12)
Z	4	4
Density $_{\text {calcd }}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.060	1.168
Abs coeff (mm^{-1})	0.521	0.940
F (000)	1896	1768.0
θ range (${ }^{\circ}$)	2.297 to 25.999	8.212 to 109.798
Data collected ($h k l$)	-18 to $18,-22$ to $22,-24$ to 24	-13 to $13,-50$ to $47,-14$ to 13
Reflections collected/unique	110512	36826
R (int)	0.0586	0.0441
Max. and min. transmn	0.7456, 0.5821	0.7508, 0.6258
Data/restraints/parameters	21771/0/1102	8922/108/567
Goodness-of-fit on F^{2}	1.013	1.024
Final $R_{1}, w R_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0417	0.0608, 0.1395
$R_{1}, w R_{2}$ (all data)	0.1080	$0.0772,0.1519$
$\Delta \rho_{\text {max, min }}\left(\mathrm{e} \AA^{-3}\right)$	0.649, -0.385	0.69, -0.73

Figure 17. The molecular structures of 2. Hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$) for 2: $\mathrm{Zn} 1-\mathrm{N} 41.9127(16), \mathrm{Zn1}-\mathrm{O} 1$ 1.9423(13), Zn1-N1 2.0669(17), Zn1-N3 2.2106(16); N4-Zn1-O1 122.63(7), N4-Zn1-N1 123.85(7), O1-Zn1-N1 101.75(6), N4-Zn1-N3 122.66(7), O1-Zn1-N3 94.38(6), N1-Zn1-N3 81.55(6).

Figure 18. The molecular structures of 6. Hydrogen atoms are omitted for clarity.
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 6: Zn1-O1 1.9281(19), Zn1-N1 2.267(2), Zn1-N2 2.051(3), Zn1-N4 1.925(2); O1-Zn1-N1 94.88(9), O1-Zn1-N2 107.54(9), N2-Zn1-N1 80.60(11), N4-Zn1-O1 120.12(10), N4-Zn1-N1 120.96(10), N4-Zn1-N2 123.28(11).

4. Ring-opening polymerization of rac-lactide

Table S2. ROPs of rac-LA initiated by zinc complexes $\mathbf{1 - 8}$ in THF ${ }^{a}$

Cat.	Feed ratio	Time (min)	Conv. b $(\%)$	$M_{\mathrm{n}, \text {,alad }{ }^{c}}{ }^{c}$ $\left(\times 10^{4}\right)$	$M_{\mathrm{n}}{ }^{d}$ $\left(\times 10^{4}\right)$	$M_{\mathrm{w}} / M_{\mathrm{n}}{ }^{d}$	$P_{\mathrm{m}}{ }^{e}$
$\mathbf{1}$	$200: 1: 0$	27	87	2.50	7.08	1.53	0.67
	$200: 1: 1$	12	89	2.51	1.85	1.19	0.66
$\mathbf{2}$	$200: 1: 0$	40	90	2.59	12.42	1.60	0.76
	$200: 1: 1$	13	88	2.54	3.10	1.23	0.75
$\mathbf{3}$	$200: 1: 0$	45	90	2.60	4.30	1.28	0.87
	$200: 1: 1$	15	90	2.60	3.26	1.11	0.86
$\mathbf{4}$	$200: 1: 0$	18	96	2.65	7.99	1.63	0.86
	$200: 1: 1$	12	95	2.74	3.03	1.34	0.86
$\mathbf{5}$	$200: 1: 0$	14	91	2.62	2.91	1.51	0.85
	$200: 1: 1$	9	82	2.37	1.80	1.13	0.86
$\mathbf{6}$	$200: 1: 0$	41	70	2.02	11.96	1.38	0.87
	$200: 1: 1$	20	86	2.48	3.51	1.19	0.86
$\mathbf{7}$	$200: 1: 0$	18	92	2.65	12.84	1.28	0.88
	$200: 1: 1$	12	93	2.69	3.27	1.16	0.88
$\mathbf{8}$	$200: 1: 0$	15	93	2.68	5.66	1.34	0.86
	$200: 1: 1$	11	88	2.54	2.70	1.16	0.86

${ }^{a}[r a c-L A]_{0}=1.0 \mathrm{M}$, feed ratio $=[r a c-L A]_{0}:[\mathrm{Zn}]_{0}:\left[{ }^{i} \mathrm{PrOH}\right]_{0}, \mathrm{THF}, 25{ }^{\circ} \mathrm{C} .{ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{c} M_{\mathrm{n}, \text { calcd }}=\left([r a c-L A]_{0} /[\mathrm{Zn}]_{0}\right) \times 144.13 \times$ Conv. $\%$; with the presence of ${ }^{i} \mathrm{PrOH}, M_{\mathrm{n}, \text { calcd }}=\left([\mathrm{rac}-\mathrm{LA}]_{0} /\left[{ }^{i} \mathrm{PrOH}\right]_{0}\right) \times 144.13 \times$ Conv. $\%+60 .{ }^{d}$ Determined by GPC. ${ }^{e} P_{\mathrm{m}}$ is the probability of forming a new m-dyad, determined by homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Figure S19. Methine region of the homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectrum of PLA produced by complex 3 in toluene at $25^{\circ} \mathrm{C}$ (Table 1, $[\mathrm{rac}-\mathrm{LA}]_{0}:[\mathrm{Zn}]_{0}:[\mathrm{PrOH}]_{0}=$ 200:1:0, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$).

Figure S20. The carbonyl and methine regions of ${ }^{13} \mathrm{C}$ NMR spectrum of PLA produced by complex 3 in toluene at $25^{\circ} \mathrm{C}$ (Table 1, $[\text { rac-LA }]_{0}:[\mathrm{Zn}]_{0}:[\mathrm{PrOH}]_{0}=$ 200:1:0, $\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$).

Figure S21. Methine region of the homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectrum of PLA produced by complex 4 in toluene at $25^{\circ} \mathrm{C}$ (Table 1, $[\mathrm{rac}-\mathrm{LA}]_{0}:[\mathrm{Zn}]_{0}:[\mathrm{PrOH}]_{0}=$ 200:1:0, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$).

Figure S22. Methine region of the homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectrum of PLA produced by complex 6 in toluene at $25^{\circ} \mathrm{C}$ (Table 1, $[\mathrm{rac}-\mathrm{LA}]_{0}:[\mathrm{Zn}]_{0}:[\mathrm{PrOH}]_{0}=$ 200:1:0, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$).

Figure S23. Methine region of the homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectrum of PLA produced by complex 7 in toluene at $25^{\circ} \mathrm{C}$ (Table 1, $[\mathrm{rac}-\mathrm{LA}]_{0}:[\mathrm{Zn}]_{0}:[\mathrm{PrOH}]_{0}=$ 200:1:0, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$).

Figure S24. Methine region of the homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectrum of PLA produced by complex 7 in toluene at $-20^{\circ} \mathrm{C}$ (Table 1, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$).

Figure S25. Methine region of the homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectrum of PLA produced by complex 7 in toluene at $-40^{\circ} \mathrm{C}$ (Table $1, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$).

Figure S26. Methine region of homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectrum of PLA produced by complex $\mathbf{8} / \mathrm{PrOH}$ in toluene at $25^{\circ} \mathrm{C}$ (Table $1,[\mathrm{rac}-\mathrm{LA}]_{0}:[\mathrm{Zn}]_{0}:[\mathrm{PrOH}]_{0}$ $=200: 1: 1, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$).

Figure S27. Heat flow $v s$. temperature curve of PLA produced by complex 7 in toluene at $-20^{\circ} \mathrm{C}$ (Table $1, P_{\mathrm{m}}=0.91$).

Figure S28. Heat flow $v s$. temperature curve of PLA produced by complex 7 in toluene at $-40^{\circ} \mathrm{C}$ (Table $1, P_{\mathrm{m}}=0.93$).

Figure S29. ${ }^{1} \mathrm{H}$ NMR spectrum of A) complex 3, B) the reaction mixture of complex 3 and ${ }^{i} \mathrm{PrOH}$ (ca. 1:1) and C) the active rac-lactide oligomer obtained by complex 3/iPrOH with 5 equiv. of $r a c-L A\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right.$; , target complex " $\mathrm{L}^{3} \mathrm{ZnO}^{i} \mathrm{Pr}^{\prime}$ "; *, the residual complex $\mathbf{3}$ due to the unsatisfied weighing accuracy of 2-propanol; \#, the residual tetrahydrofuran; \#\#, the residual toluene; $\boldsymbol{\wedge}$, impurity in $\mathrm{C}_{6} \mathrm{D}_{6} ; \boldsymbol{\vee}$, free $\left.\mathrm{HN}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$.

The genereation of isopropoxide derivative " $\mathrm{L}^{3} \mathrm{ZnO}^{i} \mathrm{Pr}^{\prime}$ " could be confirmed by the facts that: 1) the formation of free ligand $\mathbf{L}^{\mathbf{3}} \mathbf{H}$ due to the decomposition of the complex 3 is not observed (characterized singlets attributed three methylene units as well as hydroxyl proton are not observed); 2) the disappearance of the $\mathrm{Zn}-\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}$ signal at $\delta=0.30 \mathrm{ppm}$ and the appearance of a new signal at $\delta=0.09 \mathrm{ppm}$ attributed to $\mathrm{HN}\left(\mathrm{SiMe}_{3}\right)_{2}$ is clear; 3) a new set of resonances attributable to the aminophenolate ligand appears, which is in 1:1 molar ratio with the new signals at around 4.75-4.66 ppm and 1.54 ppm assignable to an isopropoxy group bound to a metal center.

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum of PLA oligomer obtained by complex $\mathbf{3} / \mathrm{PrOH}$ with 5 equiv. of rac-LA ($25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz},{ }^{*}$: methyl signal of residual methanol).

Figure S31. MALDI-TOF mass spectrum of PLA oligomer obtained by complex 3/ PrOH with 5 equiv. of rac -LA.

Figure S32. Semilogrithmic plots of lactide conversion versus time of D-LA, L-LA and rac-LA polymerization mediated by complex 8: D-LA (red circles, $k_{\text {app }}=(1.54 \pm$ $\left.0.09) \times 10^{-1} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.996\right) ; L$-LA (blue triangles, $k_{\text {app }}=(1.55 \pm 0.02) \times 10^{-1} \mathrm{~min}^{-1}, \mathrm{R}^{2}$ $=0.999$); rac-LA (black squares, $\left.k_{\text {app }}=(0.95 \pm 0.04) \times 10^{-1} \mathrm{~min}^{-1}, \mathrm{R}^{2}=0.998\right)$. Conditions: $25^{\circ} \mathrm{C},[\mathrm{LA}]_{0} /[\mathrm{Zn}]_{0} /\left[{ }^{\mathrm{P} P O H}\right]_{0}=200: 1: 0,[\mathrm{LA}]_{0}=0.5 \mathrm{M}$, toluene as solvent.

References

S1. Bürger, H.; Sawodny, W.; Wannagat, U. J. Organomet. Chem., 1965, 3, 113-120.
S2. Appiah, W.; DeGreeff, A.; Razidlo, G.; Spessard, A.; Pink, M.; Young, V.; Hofmeister, G. Inorg. Chem., 2002, 41, 3656-3667.

S3. (a) Cohen, A.; Kopilov, J.; Goldberg, I.; Kol, M. Organometallics, 2009, 28, 1391 - 1405; (b) Larrow, J. F.; Jacobsen, E. N.; Gao, Y.; Hong; Y.; Nie, X.; Zepp, C. M. J. Org. Chem., 1994, 59, 1939-1942.

S4. Rao, S. S.; Reddy, C. V. R.; Dubey, P. K. Asian J. Chem., 2015, 27, 98-100.
S5. G. M. Sheldrick, SHELXTL 5.10 for windows NT, Structure Determination Software Programs, Bruker Analytical X-ray Systems, Inc., Madison, WI, 1997.

S6. SAINT, Version 6.02, Bruker AXS Inc., Madison, WI, 1999.
S7. L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565. ORTEP-III for WindowsVersion 2.0, University of Glasgow, 2008.

