## Supporting information of: A biomimetic cerium-based biosensor

### for the direct visual detection of phosphate under physiological

### **conditions**

#### Dr. Thibaud Rossel<sup>a</sup> and Dr. Marc Creus<sup>b</sup>

<sup>a</sup> Gymnase français de Bienne, Rue du Débarcadère 8, 2503 Bienne, Switzerland. E-mail: <u>thibaud.rossel@emsp.gfbienne.ch</u>

<sup>b</sup> University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland. E-mail: marc.creus@unibas.ch

#### Ligand and complex synthesis:

The ligand synthesis of HXTA-H<sub>5</sub> and the formation of the complex [Ce<sub>2</sub>(HXTA)]<sup>3+</sup> was performed using the described procedure by Que *et al.*<sup>1</sup> <sup>1</sup>Branum, M. E., Tipton, A. K., Zhu, S., and Que, L. (2001). *J. Am. Chem. Soc*, **2001**, *123*, 1898–1904.

#### Assay:

The assay was performed with a TECAN safire 2 multiwell-plate spectrophotometer using magellan sofware to analyse spectra.

#### Stock solutions:

The following stock solutions should be prepared freshly (within minutes for CAN) before each round of experiments:

- 1) A stock solution of HEPES of 100 mM pH = 7. The pH of the solution is adjusted by solid NaOH.
- A stock solution of 0.2 M of CAN, prepared by dissolving the appropriate amount of salt in HEPES 100 mM pH = 7
- A stock solution of 0.1 M of HXTA-H<sub>5</sub>, prepared by dissolving the appropriate amount of ligand in HEPES 100 mM pH = 7
- A stock solution of 0.1 M of PCV, prepared by dissolving the appropriate amount of cathecol in HEPES 100 mM pH = 7
- A stock solution of 0.1 M of Na<sub>3</sub>PO<sub>4</sub>, prepared by dissolving the appropriate amount of salt in HEPES 100 mM pH = 7

#### Working solutions:

Working solutions are prepared by a 100 x dilution in HEPES 100 mM pH = 7 (final concentration of compounds = 100  $\mu$ M or 200  $\mu$ M for the metal precusor). Working solutions are prepared each time for experiments. A 96 multiwell-plate is filled with working solutions.

Well 1: 25  $\mu$ L of PCV and 75  $\mu$ L with HEPES buffer 100 mM pH=7 Well 2: 25  $\mu$ L of CAN, 25  $\mu$ L of HXTA-H<sub>5</sub> and 50  $\mu$ L with HEPES buffer 100 mM pH=7 Well 3: 25  $\mu$ L of CAN, 25  $\mu$ L of HXTA-H<sub>5</sub>, 25  $\mu$ L of PCV, 25  $\mu$ L and 25  $\mu$ L with HEPES buffer 100 mM pH=7.4.

Well 4: 25  $\mu L$  of CAN, 25  $\mu L$  of HXTA-H5, 25  $\mu L$  of PCV, 25  $\mu L$  of PO4  $^{3\text{-}}$  .

A full scan is recorded for each well (with a spectrophotometer allowing comparison between the wells). Colorimetric differentiation can also be carried out with the naked-eye.

#### **Duplicates of the figure 3:**



#### Details of the figure 3:

|         | CAN                  | HXTA-H₅              | PCV                      | HEPES         |
|---------|----------------------|----------------------|--------------------------|---------------|
|         | <b>Final:</b> 666 μΜ | <b>Final:</b> 333 μΜ | <b>Final:</b> 0 - 916 μΜ | 100 mM pH = 7 |
| Well 1  | 25 µL                | 25 µL                | - (0 eq.)                | 25 µL         |
| Well 2  | 25 µL                | 25 µL                | 0.5 µL (0.2 eq.)         | 24.5 µL       |
| Well 3  | 25 µL                | 25 µL                | 1 μL (0.4 eq.)           | 24 µL         |
| Well 4  | 25 µL                | 25 µL                | 1.5 μL (0.6 eq.)         | 23.5 µL       |
| Well 5  | 25 µL                | 25 µL                | 2 µL (0.8 eq.)           | 23 µL         |
| Well 6  | 25 µL                | 25 µL                | 2.5 μL (1. eq.)          | 22.5 µL       |
| Well 7  | 25 µL                | 25 µL                | 3 μL (1.2 eq.)           | 22 µL         |
| Well 8  | 25 µL                | 25 µL                | 3.5 µL (1.4 eq.)         | 21.5 µL       |
| Well 9  | 25 µL                | 25 µL                | 4 µL (1.6 eq.)           | 21 µL         |
| Well 10 | 25 µL                | 25 µL                | 4.5 µL (1.8 eq.)         | 20.5 µL       |
| Well 11 | 25 µL                | 25 µL                | 5 µL (2 eq.)             | 20 µL         |
| Well 12 | 25 µL                | 25 µL                | 5.5 µL (2.2 eq.)         | 19.5 µL       |

A 96 well plate is filled as presented in the following table:

A full scan is recorded for each well.

Colorimetric differentiation can also be carried out with the naked-eye.

#### Details of the figure 4:

A 96 well plate is filled as presented in the following table:

|         | CAN                  | HXTA-H₅              | PCV                    | HEPES         |
|---------|----------------------|----------------------|------------------------|---------------|
|         | <b>Final:</b> 500 μM | <b>Final:</b> 250 μM | <b>Final:</b> 500-0 μΜ | 100 mM pH = 7 |
| Well 1  | 25 µL                | 25 µL                | 50 µL                  | 0 µL          |
| Well 2  | 25 µL                | 25 µL                | 45 µL                  | 5 µL          |
| Well 3  | 25 µL                | 25 µL                | 40 µL                  | 10 µL         |
| Well 4  | 25 µL                | 25 µL                | 35 µL                  | 15 µL         |
| Well 5  | 25 µL                | 25 µL                | 30 µL                  | 20 µL         |
| Well 6  | 25 µL                | 25 µL                | 25 µL                  | 25 µL         |
| Well 7  | 25 µL                | 25 µL                | 20 µL                  | 30 µL         |
| Well 8  | 25 µL                | 25 µL                | 15 µL                  | 35 µL         |
| Well 9  | 25 µL                | 25 µL                | 10 µL                  | 40 µL         |
| Well 10 | 25 µL                | 25 µL                | 5 µL                   | 45 µL         |
| Well 11 | 25 µL                | 25 µL                | 0 µL                   | 50 µL         |

A full scan is recorded for each well with a spectrophotometer (Tecan safire 2) allowing comparison between the wells. Colorimetric differentiation can also be carried out with the naked-eye.

#### Details of the figure 5:

Additional tests for the detection of anions at 10  $\mu$ M of complex [Ce<sub>2</sub>(HXTA)]<sup>3+</sup>:

#### Preparation of [(Ce2(HXTA)(PCV)]+:

A stock solution of 0.01 M of [(Ce<sub>2</sub>(HXTA)(PCV)] <sup>+</sup> is prepared by mixing: 500  $\mu$ L of 0.01 M solution of ligand with 500  $\mu$ L of 0.02 M solution of metal precursor and 500  $\mu$ L of 0.01 M of PCV.

The stock solution is diluted 10 times with HEPES 100 mM pH=7 to form the working solution.

|         | <b>[(Ce₂(HXTA)</b><br>( <b>PCV)]⁺</b><br>Final: 10 μM | <b>Anions</b><br>Final: 10 μΜ | Anions                          | HEPES<br>100 mM pH=7 |
|---------|-------------------------------------------------------|-------------------------------|---------------------------------|----------------------|
| Well 1  | 5 µL                                                  | 15 µL                         | NaCl                            | 30 µL                |
| Well 2  | 5 µL                                                  | 15 µL                         | NaBr                            | 30 µL                |
| Well 3  | 5 µL                                                  | 15 µL                         | NaNO <sub>3</sub>               | 30 µL                |
| Well 4  | 5 µL                                                  | 15 µL                         | NalO <sub>3</sub>               | 30 µL                |
| Well 5  | 5 µL                                                  | 15 µL                         | Na <sub>2</sub> CO <sub>3</sub> | 30 µL                |
| Well 6  | 5 µL                                                  | 15 µL                         | HCOONa                          | 30 µL                |
| Well 7  | 5 µL                                                  | 15 µL                         | CH₃COONa                        | 30 µL                |
| Well 8  | 5 µL                                                  | 15 µL                         | Na Citrate                      | 30 µL                |
| Well 9  | 5 µL                                                  | 15 µL                         | Na <sub>3</sub> PO <sub>4</sub> | 30 µL                |
| Well 10 | 5 µL                                                  | 15 µL                         | Na salicylate                   | 30 µL                |
| Well 11 | 5 µL                                                  | 15 µL                         | Na pyrophosphate                | 30 µL                |

#### A 96 well plate is filled as presented in the following table:

# 1 2 3 4 5 6 7 8 9 10 11



**Picture 1:** From left to right; NaCl (1), NaBr (2), NaNO<sub>3</sub> (3), NalO<sub>3</sub> (4), Na<sub>2</sub>CO<sub>3</sub> (5), HCOONa (6), CH<sub>3</sub>COONa (7), Na citrate (8), Na<sub>3</sub>PO<sub>4</sub> (9), Na salicylate (10), Na pyrophosphate (11).

#### Details of the figure 6:

|         | <b>[(Ce₂(HXTA)</b><br>( <b>PCV)]⁺</b><br>Final: 250 μM | <b>ΡΟ₄<sup>3-</sup></b><br>Final: 500-0 μΜ | <b>HEPES</b><br>100 mM pH = 7 |
|---------|--------------------------------------------------------|--------------------------------------------|-------------------------------|
| Well 1  | 25 µL                                                  | 50 µL                                      | 25 µL                         |
| Well 2  | 25 µL                                                  | 45 μL                                      | 30 µL                         |
| Well 3  | 25 µL                                                  | 40 µL                                      | 35 µL                         |
| Well 4  | 25 µL                                                  | 35 µL                                      | 40 µL                         |
| Well 5  | 25 µL                                                  | 30 µL                                      | 45 µL                         |
| Well 6  | 25 µL                                                  | 25 µL                                      | 50 µL                         |
| Well 7  | 25 µL                                                  | 20 µL                                      | 55 µL                         |
| Well 8  | 25 µL                                                  | 15 µL                                      | 60 µL                         |
| Well 9  | 25 µL                                                  | 10 µL                                      | 65 μL                         |
| Well 10 | 25 µL                                                  | 5 µL                                       | 70 µL                         |
| Well 11 | 25 µL                                                  | 0 µL                                       | 75 µL                         |

| A 96 well plate is filled as | presented in the | following table: |
|------------------------------|------------------|------------------|
|------------------------------|------------------|------------------|





Picture 1 : Additional controls



Picture 2 : Additional controls



## Triplicates

Picture 3 : Triplicates of the figure 2

## Affinity constant determination:

The determination of the  $k_a$  constant of [(Ce<sub>2</sub>(HXTA)(PCV)]<sup>+</sup> was performed using described procedures

in the supporting information by<sup>2</sup>

<sup>2</sup>Wenxiang Yu, Jian Qiang, Jun Yin, Srinivasulu Kambam, Fang Wang, Yong Wang and Xiaoqiang Chen *Org. Lett.*, **2014**, *16* (8), 2220–2223.

## 1) PCV titration

A stock solution of complex [Ce<sub>2</sub>(HXTA)]<sup>3+</sup> is prepared as following:

200  $\mu$ L of 0.001 M (100 x dilution) CAN in 0.1 M HEPES pH = 7 is mixed with 100  $\mu$ L of HXTA of 0.001M (100 x dilution) in 0.1 M HEPES pH = 7

PCV solution:

1000  $\mu$ L of 0.0001 M of PCV (1000x dilution) in HEPES 0.1 M pH = 7

|  | Α | 96 well | plate is | s filled | as follo | wing ( | 3 times | ): |
|--|---|---------|----------|----------|----------|--------|---------|----|
|--|---|---------|----------|----------|----------|--------|---------|----|

| N°      | Volume PCV [µL] | Volume [Ce <sub>2</sub> (HXTA)] <sup>3+</sup> [µL] | Buffer volume [µL] | Total volume [µL] |
|---------|-----------------|----------------------------------------------------|--------------------|-------------------|
| Well 1  | 20              | 20                                                 | 60                 | 100               |
| Well 2  | 20              | 17.5                                               | 62.5               | 100               |
| Well 3  | 20              | 15                                                 | 65                 | 100               |
| Well 4  | 20              | 12.5                                               | 67.5               | 100               |
| Well 5  | 20              | 10                                                 | 70                 | 100               |
| Well 6  | 20              | 7.5                                                | 72.5               | 100               |
| Well 7  | 20              | 5                                                  | 75                 | 100               |
| Well 8  | 20              | 4                                                  | 76                 | 100               |
| Well 9  | 20              | 3                                                  | 77                 | 100               |
| Well 10 | 20              | 2                                                  | 78                 | 100               |
| Well 11 | 20              | 1                                                  | 79                 | 100               |
| Well 12 | 20              | 0                                                  | 80                 | 100               |

#### Measurements:

| N°      | PCV (µM) | С (μМ) | ) Measurements at 445 nm Measurements at 580 nr |        |
|---------|----------|--------|-------------------------------------------------|--------|
| Well 1  | 20       | 66.67  | 0.0907                                          | 0.13   |
| Well 2  | 20       | 58.33  | 0.1672                                          | 0.1292 |
| Well 3  | 20       | 50.00  | 0.1057                                          | 0.1254 |
| Well 4  | 20       | 41.67  | 0.0958                                          | 0.1199 |
| Well 5  | 20       | 33.33  | 0.0867                                          | 0.1166 |
| Well 6  | 20       | 25.00  | 0.0893                                          | 0.1108 |
| Well 7  | 20       | 16.67  | 0.0958                                          | 0.1048 |
| Well 8  | 20       | 13.33  | 0.1017                                          | 0.0997 |
| Well 9  | 20       | 10.00  | 0.1097                                          | 0.0974 |
| Well 10 | 20       | 6.67   | 0.1194                                          | 0.0936 |
| Well 11 | 20       | 3.33   | 0.1317                                          | 0.0898 |
| Well 12 | 20       | 0.00   | 0.1256                                          | 0.0884 |



Equation: Absorbance = n+a\*sqrt((0.00002+x +1/K<sub>a</sub>)^2-0.00008\*x)+a\*(0.00002-x-1/K<sub>a</sub>)

| Coeff. | Value              | ± Error             |
|--------|--------------------|---------------------|
| а      | 1575.54512518984   | 134.298582564086    |
| k      | 44479.7316983058   | 12559.1660127683    |
| n      | 0.0694256272576168 | 0.00582209059595647 |

| Measure | Value             |
|---------|-------------------|
| R²      | 0.996298173335589 |

Calculated affinity constant using Stata SE:  $K_a = 44479 M^{-1}$ 

## 2) Phosphate titration

A stock solution is prepared as following:

200  $\mu$ L of 0.001 M (100x) CAN in 0.1 M HEPES pH = 7 is mixed with 100  $\mu$ L of HXTA of 0.001M (100x) in 0.1 M HEPES pH = 7 is mixed with 100  $\mu$ L of PCV of 0.001M (100x) in 0.1 M HEPES pH = 7 is mixed with

The stock solution is diluted 2.5 times.

Phosphate solution:

A 100x time dilution of phosphate in HEPES 0.1 M pH = 7

#### A 96 well plate is filled as following (3 times):

|         |                                            |                     |                    | Total volume |
|---------|--------------------------------------------|---------------------|--------------------|--------------|
| N°      | Volume [(Ce₂(HXTA)(PCV)] <sup>+</sup> [μL] | Volume analyte [µL] | Buffer volume [µL] | [μL]         |
| Well 1  | 20                                         | 20                  | 60                 | 100          |
| Well 2  | 20                                         | 17.5                | 62.5               | 100          |
| Well 3  | 20                                         | 15                  | 65                 | 100          |
| Well 4  | 20                                         | 12.5                | 67.5               | 100          |
| Well 5  | 20                                         | 10                  | 70                 | 100          |
| Well 6  | 20                                         | 7.5                 | 72.5               | 100          |
| Well 7  | 20                                         | 5                   | 75                 | 100          |
| Well 8  | 20                                         | 4                   | 76                 | 100          |
| Well 9  | 20                                         | 3                   | 77                 | 100          |
| Well 10 | 20                                         | 2                   | 78                 | 100          |
| Well 11 | 20                                         | 1                   | 79                 | 100          |
| Well 12 | 20                                         | 0                   | 80                 | 100          |

#### Measurements:

| N°      | ΡCV<br>(μM) | [(Ce₂(HXTA)(PCV)]⁺<br>(µM) | Measurements at 445 [nm] | Measurements at 580<br>[nm] |
|---------|-------------|----------------------------|--------------------------|-----------------------------|
| Well 1  | 20          | 66.67                      | 0.1083                   | 0.0684                      |
| Well 2  | 20          | 58.33                      | 0.0996                   | 0.0695                      |
| Well 3  | 20          | 50.00                      | 0.0954                   | 0.0694                      |
| Well 4  | 20          | 41.67                      | 0.0866                   | 0.0728                      |
| Well 5  | 20          | 33.33                      | 0.078                    | 0.0753                      |
| Well 6  | 20          | 25.00                      | 0.0757                   | 0.0715                      |
| Well 7  | 20          | 16.67                      | 0.0707                   | 0.079                       |
| Well 8  | 20          | 13.33                      | 0.0739                   | 0.0767                      |
| Well 9  | 20          | 10.00                      | 0.0723                   | 0.0914                      |
| Well 10 | 20          | 6.67                       | 0.0677                   | 0.0966                      |
| Well 11 | 20          | 3.33                       | 0.0736                   | 0.0977                      |
| Well 12 | 20          | 0.00                       | 0.0681                   | 0.1049                      |



### Equation: Absorbance = n+m\*(0.00002+x-sqrt((0.00002-x)^2+0.00008\*K<sub>b</sub>\*x))/(1-K<sub>b</sub>)

| Coeff. | Value             | ± Error            |
|--------|-------------------|--------------------|
| m      | -899.062057237362 | 53.220816910875    |
| k      | 0.0031894         | 0.0171249          |
| n      | 0.106172817884357 | 0.0016777559231092 |

| Measure | Value             |  |  |
|---------|-------------------|--|--|
| R²      | 0.966145577869551 |  |  |

Calculated affinity constant using Stata SE: K<sub>b</sub> = 0.0031 M<sup>-1</sup>

Determination of the affinity constants:

$$k = \frac{K_a}{K_b}$$

 $K_a = 4.479 \times 10^4 M^{-1}$ 

 $K_b = K_a / k = 44790 \times 10^4 / 0.0031 = 1.44 \times 10^7 M^{-1}$ 



Picture 4: Visual results of the titration in triplicates



**Picture 5:** a) Screening for the detection phosphate with  $[Ce_2(HXTA)(PCV)]^+$  (250 µM) at various pHs and in pure water. b) Absorbance spectra (in brown) of  $[Ce_2(HXTA)(PCV)]^+$  and in the presence of 1 eq. of phosphate (in red) in pure Water c) Absorbance spectra (in brown) of  $[Ce_2(HXTA)(PCV)]^+$  and in the presence of 1 eq. of phosphate (in red) at pH = 5 in HEPES 100 mM d) Absorbance spectra (in brown) of  $[Ce_2(HXTA)(PCV)]^+$  and in the presence of 1 eq. of phosphate (in red) at pH = 5 in HEPES 100 mM d) Absorbance spectra (in brown) of  $[Ce_2(HXTA)(PCV)]^+$  and in the presence of 1 eq. of phosphate (in red) at pH = 6 in HEPES 100 mM.



**Picture 6:** a) addition of see water to the heteroleptic  $[Ce_2(HXTA)(PCV)]^+$  (250 µM) doesn't perturb the sensor. Addition of see water spiked with phosphate (1 eq.) allows the recognition of phosphate in a complex medium b) Absorbance spectras of the addition of phosphate to the sensor; in dark blue the sensor alone (250 µM in HEPES 100 mM pH=7), in light blue the sensor in see water, in yellow the sensor in the presence of 1 eq. of phosphate and in orange the sensor in the presence of see water spiked with 1 eq. of phosphate.



**Picture 7:** a) addition of phosphate (1 eq.) to the homoleptic complex  $[Ce_2(HXTA)]^{3+}$  (250 µM) increases the absorbance of the complex between 390 to 670 nm turning the color of the complex from pink to violet and can be seen with the naked-eye. The formed complexes are at least stable 24h. b) Absorbance spectras of  $[Ce_2(HXTA)]^{3+}$  in absence of phosphate (pink) or in the presence of phosphate (violet). The complexes are stable at least 24h.

| Table of the extinction coefficients at 2 wavelengths (425 | 5 nm and 595 nm): |
|------------------------------------------------------------|-------------------|
|------------------------------------------------------------|-------------------|

|                                                          | A(595 nm) | A(425 nm) | <b>ε</b> (595 nm) | <b>ɛ</b> (425 nm) |
|----------------------------------------------------------|-----------|-----------|-------------------|-------------------|
| [Ce <sub>2</sub> (HXTA)] <sup>3+</sup>                   | 0.1841    | 0.3225    | 736               | 1290              |
| [Ce <sub>2</sub> (HXTA)] <sup>3+</sup> + PCV + Phosphate | 0.5370    | 1.1406    | 2148              | 4562              |
| PCV                                                      | 1.1469    | 2.8219    | 4587              | 11287             |
| [Ce <sub>2</sub> (HXTA)] <sup>3+</sup> + PCV             | 0.6750    | 0.7690    | 2700              | 3076              |