Preparation and Spectroscopic Identification of Methyl-Se-nitrososelenol

Lijuan Song, Felix Keul, and Artur Mardyukov*

Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.

Table of Contents

Synthesis of 2,5-Selenohexane	2
Computational methods	2
Matrix Apparatus Design	2
Figure S1	3
Figure S2	4
Figure S3	4
Figure S4	5
Figure S5	5
Figure S6	6
Figure S7	6
Figure S8	6
Figure S9	7
Table S1	8
Table S2	9
Table S31	0
Table S41	1
Table S51	1
References1	2
Geometric Structures and Electronic energies (Hartree)1	2

Synthesis of 2,5-Selenohexane

2.000 g (25.3 mmol, 1.00 equiv.) selenium powder was dissolved in 60 mL dry THF under a nitrogen atmosphere. The solution was frozen in a liquid nitrogen bath and 17.2 mL (27.8 mmol, 1.10 equiv.) of an ethereal solution of 1.6 M methyl-lithium was slowly added. The mixture was allowed to warm up to room temperature with stirring, then 1.00 mL (12.7 mmol, 0.50 equiv.) 1,2-dichloroethane was added. The resulting solution was stirred for 1 h at room temperature and refluxed for 15 min. After cooling to room temperature, the mixture was hydrolysed with 25 mL water, the organic phases are separated, washed with saturated NaHCO₃ solution and brine and dried with MgSO₄. The solvent was distilled and the residue fractioned in vacuum (boiling point: 82 °C, 2 mbar) (0.315 g, 1.46 mmol, 12%). ¹H-NMR (400 MHz, CDCl₃): δ /ppm = 2.84 (s, 4H), 2.04 (s, 6H); ¹³C-NMR (100MHz, CDCl₃): δ /ppm = 25.0, 4.3; ⁷⁷Se-NMR (CDCl₃): δ /ppm = 120.4

2,5-Selenohexane-d₆ was prepared in analogy. (0.302 g, 1.36 mmol, 7%); ¹H-NMR (400 MHz, CDCl₃): δ /ppm = 2.82 (s, 4H); ¹³C-NMR (100MHz, CDCl₃): δ /ppm = 24.8

⁷⁷Se-NMR (CDCl₃): δ/ppm = 114.0;

Computational methods

All computations were carried out with Gaussian16¹ and Orca 4.1² program package. All the structures are optimized by DFT with B3LYP/6-311++G(3df,3pd)^{3,4} inclusion of London dispersion⁵ corrections at 298.15 K. Local minima were confirmed by vibrational frequency analysis. An intrinsic reaction coordinate (IRC) calculation was performed to identify each transition state uniquely connecting the reactant to product.⁶ The two radical pairs CH₃Se•···•ON in the open-shell singlet state were computed by broken-symmetry approach (using keyword guess=mix and stable=opt). No contamination of the singlet wave function was found, with the calculated large S2 operators in CH₃Se•···•ON of 0.03 for both (*syn* and *anti*) conformers. Vertical transitions were computed with time-dependent (TD) DFT⁷ at the same level (B3LYP-D3/6-311++G(3df,3pd)). CASSCF(10,8)/def2-TZVPP⁸ calculations were performed based on the DFT optimized structures single point energies for all minimum and transition states. Five roots with equal state weights are used NEVPT2 calculations⁹ were performed to include the dynamic electron correlation. The DFT and (TD) DFT computations were performed using the Gaussian16 software package. The CASSCF with NEVPT2 computations were performed using Orca 4.1 package.

Matrix Apparatus Design.

For the matrix isolation studies, we used an APD Cryogenics HC-2 cryostat with a closed-cycle refrigerator system, equipped with an inner CsI window for IR measurements. Spectra were recorded with a Bruker IFS 55 FT-IR spectrometer with a spectral range of $4500-400 \text{ cm}^{-1}$ and a resolution of 0.7 cm⁻¹ and UV/vis spectra were recorded with a JASCO V-670 spectrophotometer equipped with an sapphire windows. Matrices were generated by co-deposition of **3** (evaporated at 0 °C from a storage bulb) with a large excess of argon (typically 60–120 mbar from a 2000 mL storage bulb) on the surface of the matrix window at 10 K (20 K). A high-pressure mercury lamp (HBO 200, Osram) with a monochromator (Bausch & Lomb) was used for irradiation.

Figure S1. (a) IR spectrum of **3** computed at B3LYP-D3/6-311++G(3df,3pd) (unscaled). (b) IR spectrum of **3** in argon at 10 K. (c) IR spectrum of d_6 -**3** computed at B3LYP-D3/6-311++G(3df,3pd) (unscaled). (d) IR spectrum of d_6 -**3** in argon at 10 K.

Figure S2. (a) IR spectrum of **2** computed at UB3LYP-D3/6-311++G(3df,3pd) (unscaled). (b) IR spectra showing the products of the pyrolysis of **3** in argon with subsequent trapping in an argon matrix at 10 K. (c) IR spectrum of d_3 -**2** computed at UB3LYP-D3/6-311++G(3df,3pd) (unscaled). (b) IR spectra showing the products of the pyrolysis of d_6 -**3** in argon with subsequent trapping in an argon matrix at 10 K. Bands attributed to ethylene are marked with an asterisk. Bands attributed to dimethyl diselenide (MeSeSeMe; **5**) are marked with a dot.

Figure S3. Theoretical isomerization pathway between two isomers of methy-Senitrososelenols (**1c** and **1t**). Stationary points and transition state were computed by use B3LYP-D3/6-311++G(3df,3pd) method.

Figure S4. (a) IR spectrum of ¹⁵NO–**1c** computed at B3LYP-D3/6-311++G(3df,3pd) (unscaled). (b) IR difference spectra showing the photochemistry of ¹⁵NO–**1c** after irradiation at λ = 365 nm in argon at 10 K. Bands pointing downwards assigned to ¹⁵NO–**1c** disappear and bands pointing upwards assigned to ¹⁵NO–**1t** appear after 30 min of irradiation time. (c) IR spectrum of ¹⁵NO–**1t** computed at B3LYP-D3/6-311++G(3df,3pd) (unscaled).

Figure S6. Selected bond lengths (Å) and angles of **1** and **4** at the B3LYP-D3/6-311++G(3df,3pd) level.

Figure S7. Potential energy profile (298.15 K) for CH_3SeNO isomers calculated at the B3LYP-D3/6-311++G(3df,3pd) level. The relative enthalpies and free energies (in parentheses) are given.

ξ (reaction coordinate)

Figure S8. Potential energy profile (298.15 K) for CH_3SeNO isomers calculated at the CASSCF(10,8)/def2-TZVPP level with NEVPT2, based on the geometries from B3LYP-D3/6-

311++G(3df,3pd) level. The relative energies (kcal mol⁻¹) and selected distances (Å) are depicted.

Figure S9. HOMO-1 orbitals of *syn*-**2**–ON• depicting non-covalent interactions.

Mada	2	2	<i>d</i> ₃ -2	d ₃ -2	Accignment
woue	Computed ^a	Ar, 10 K ^b	Computed ^a	Ar, 10 K ^b	Assignment
9	3132 (0.3)	2931	2314 (0.03)		CH₃ asym. str.
8	3118 (9.1)	-	2307 (4.1)		CH₃ asym. str.
7	3039 (6.1)	2797	2175 (4.1)	-	CH₃ sym. str.
6	1467 (11.7)	1410	1067 (5.6)	1046	CH₃ def.
5	1368 (5.9)	1348	986 (2.1)	937	CH₃ def.
4	1299 (4.8)	1263	975 (3.4)	969	CH₃ rock.
3	823 (1.5)	820	619 (0.1)	617	CH₃ rock.
2	590 (0.7)	574	547 (0.7)	533	C–Se str.
1	515 (24)	-	392 (11.8)	-	CH₃ twist

Table S1. Experimental (Ar matrix, 10 K) and computed IR frequencies of **2**, band origins in cm^{-1} , computed intensities (km mol⁻¹) in parentheses.

^aUB3LYP-D3/6-311++G(3df,3pd), harmonic approximation, unscaled frequencies, intensities (in parentheses) in km mol⁻¹. ^bExperiment: argon matrix, 10 K.; approximate relative intensities (w: weak, s: strong).

Mo de	1c Computed ^a	1c Computed ^a scaled 0.97	1c Ar, 10 K ^b	¹⁵ NO- 1c Computed ^a	¹⁵ NO- 1c Computed ^a scaled 0.97	¹⁵ NO- 1c Ar, 10 K ^b	Assignme nt
12	1687 (644)	1637 (644)	1591 (s)	1658 (619)	1609 (619)	1564 (s)	N=O str.
11	1470 (13.1)	1426 (13.1)	1423 (w)	1470 (14)	1426 (14)	1423 (w)	CH₃ def.
10	1467 (4.4)	1423 (4.4)	-	1467 (4.4)	1423 (4.4)	-	CH₃ def.
9	1301 (21.2)	1262 (21.2)	1266 (w)	1301 (22.6)	1262 (22.6)	1266 (w)	CH₃ def.
8	912 (2.7)	883 (2.7)	897 (w)	912 (2.7)	883 (2.7)	897 (w)	CH_3 rock
7	909 (8.8)	883 (8.8)	893 (w)	909 (8.1)	882 (8.1)	892 (w)	CH_3 rock
6	629 (79.5)	611 (79.5)	603 (m)	615 (71.1)	598 (71.1)	589 (m)	Se–N str.
5	597 (1.9)	578 (1.9)	560 (w)	597 (2.8)	590 (2.8)	546 (s)	C–Se str.

Table S2. Experimental (Ar matrix, 10 K) and computed IR frequencies of **1c** and ¹⁵NO-**1c**, band origins in cm⁻¹, computed intensities (km mol⁻¹) in parentheses.

^aB3LYP-D3/6-311++G(3df,3pd), harmonic approximation, unscaled and scaled frequencies, intensities (in parentheses) in km mol⁻¹. ^bExperiment: argon matrix, 10 K.; approximate relative intensities (w: weak, m: moderate, s: strong).

Mo de	1t Computed ^a	1t Computed ^a Scaled 0.97	1t Ar, 10 K ^b	¹⁵ NO- 1t Computed ^a	¹⁵ NO- 1t Computed ^a Scaled 0.97	¹⁵ NO- 1t Ar, 10 K ^b	Assignme nt
12	1708 (813)	1659 (813)	1607 (s)	1678 (781)	1678 (781)	1580 (s)	N=O str.
11	1479 (10.7)	1434 (10.7)	1432 (w)	1479 (10.8)	1479 (10.8)	1432 (w)	CH₃ def.
10	1460 (4.2)	1415 (4.2)	1416 (w)	1460 (4.2)	1460 (4.2)	1416 (w)	CH₃ def.
9	1310 (13.8)	1270 (13.8)	1275 (w)	1310 (14.1)	1310 (14.1)	1275 (w)	CH₃ def.
8	931 (3.0)	902 (3.0)	916 (m)	931 (3.0)	931 (3.0)	916 (m)	CH_3 rock
7	912 (0.7)	882 (0.7)	-	912 (0.6)	912 (0.6)	-	CH_3 rock
6	622 (71.4)	605 (71.4)	592 (m)	609 (56)	609 (56)	580 (m)	Se–N str.
5	598 (3.9)	580 (3.9)	-	597 (12.9)	597 (12.9)	-	C–Se str.

Table S3. Experimental (Ar matrix, 10 K) and computed IR frequencies of **1t** and ¹⁵NO-**1t**, band origins in cm⁻¹, computed intensities (km mol⁻¹) in parentheses.

^aB3LYP-D3/6-311++G(3df,3pd), harmonic approximation, unscaled and scaled frequencies, intensities (in parentheses) in km mol⁻¹. ^bExperiment: argon matrix, 10 K.; approximate relative intensities (w: weak, m: moderate, s: strong).

Table S4. Experimental (Ar matrix, 10 K) and computed IR frequencies of syn2-ON, syn2-
O ¹⁵ N, and <i>anti</i> 2-ON , <i>anti</i> 2 -O ¹⁵ N band origins in cm ^{−1} , computed intensities (km mol ^{−1}) in
parentheses.

Мо	2-NO	2-15NO	syn-2-NO	syn2- ¹⁵ NO	anti2-NO	anti2-15NO	Assignment
de	Ar, 10 K ^b	Ar, 10 K ^b	Computed ^a	Computed ^a	Computed ^a	Computed ^a	Assignment
15	-	-	3146 (1.6)	3146 (1.8)	3147 (1.6)	3147 (1.6)	CH₃ asym str.
14	-	-	3096 (10.8)	3096 (10.8)	3121 (8.4)	3121 (8.4)	CH₃ sym str.
13	-	-	2984 (7.7)	2984 (7.7)	3042 (13.6)	3042 (13.6)	CH₃ sym. str.
12	1820 (s)	1788 (s)	1924 (464)	1890 (447)	1936 (285)	1901 (274)	N=O str.
11	1419 (m)	1419 (m)	1470 (9.2)	1470 (9.2)	1471 (7.4)	1471 (7.4)	CH₃ def.
10	1400 (w)	1400 (w)	1447 (3.3)	1447 (3.3)	1444 (13.4)	1444 (4.6)	CH₃ def.
9	1278 (m)	1278 (m)	1308 (16.5)	1308 (16.6)	1300 (26.3)	1300 (13.4)	CH₃ def.
8	883 (w)	883 (w)	895 (6.5)	895 (6.5)	884 (8.1)	884 (8.1)	CH ₃ rock
7	852 (w)	852 (w)	860 (1.3)	860 (1.3)	844 (0.3)	844 (0.3)	CH ₃ rock
6		-	599 (0.8)	599 (0.8)	589 (1.2)	589 (1.2)	C–Se str.

^aUB3LYP-D3/6-311++G(3df,3pd), harmonic approximation, unscaled frequencies, intensities (in parentheses) in km mol⁻¹. ^bExperiment: argon matrix, 10 K.; approximate relative intensities (w: weak, m: moderate, s: strong).

Table S5. Experimental (Ar matrix, 10 K) and computed (scaled:0.97) IR frequencies of *syn***2**-**O**N, *syn***2**-O¹⁵N, and *anti***2**-O¹⁵N band origins in cm⁻¹, computed intensities (km mol⁻¹) in parentheses.

	2 NO	2 15NO	syn-2-NO	syn2- ¹⁵ NO	anti2-NO	anti2-15NO	
do			Computed ^a	Computed ^a	Computed ^a	Computed ^a	Assignment
ue	AI, 10 K*	AI, 10 K*	Scaled 0.97	Scaled 0.97	Scaled 0.97	Scaled 0.97	
12	1820 (s)	1788 (s)	1866 (464)	1834 (447)	1877 (285)	1845 (274)	N=O str.
11	1419 (m)	1419 (m)	1427 (9.2)	1427 (9.2)	1428 (7.4)	1426 (7.4)	CH₃ def.
10	1400 (w)	1400 (w)	1405 (3.3)	1405 (3.3)	1401 (13.4)	1402 (4.6)	CH₃ def.
9	1278 (m)	1278 (m)	1270 (16.5)	1270 (16.6)	1261 (26.3)	1261 (13.4)	CH₃ def.
8	883 (w)	883 (w)	867 (6.5)	867 (6.5)	858 (8.1)	857 (8.1)	CH ₃ rock
7	852 (w)	852 (w)	834 (1.3)	834 (1.3)	819 (0.3)	818 (0.3)	CH ₃ rock
6		-	581 (0.8)	581 (0.8)	572 (1.2)	573 (1.2)	C–Se str.

^aUB3LYP-D3/6-311++G(3df,3pd), harmonic approximation, scaled frequencies, intensities (in parentheses) in km mol⁻¹. ^bExperiment: argon matrix, 10 K.; approximate relative intensities (w: weak, m: moderate, s: strong).

References

(1) Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian, Inc., Wallingford CT*, **2016**.

- (2) Neese, F. WIREs Comput. Mol. Sci. 2011, 2, 73.
- (3) Becke, A. D. J. Chem. Phys. **1993**, *98*, 5648.
- (4) Becke, A. D. *Phys. Rev. A* **1988**, *38*, 3098.
- (5) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. **2010**, 132, 154104.
- (6) Fukui, K. Acc. Chem. Res. **1981**, *14*, 363.
- (7) Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997.
- (8) Roos, B. O.; Taylor, P. R.; Siegbahn, P. E. M. Chem. Phys. 1980, 48, 157.

(9) Angeli, C.; Cimiraglia, R.; Evangelisti, S.; Leininger, T.; Malrieu, J. P. J. Chem.

Phys. 2001, 114, 10252.

Energies	Е(ОК)	E (298K)	H (298K)	G (298K)
ON•	-129.940481	-129.935971	-129.932666	-129.955954
MeSe•	-2441.456111	-2441.421126	-2441.416874	-2441.446780
1c	-2571.443052	-2571.399350	-2571.393006	-2571.428873
1t	-2571.441718	-2571.397965	-2571.391539	-2571.427616
anti- 2 –ON•	-2571.400545	-2571.358935	-2571.351108	-2571.392483
<i>syn-</i> 2 −ON•	-2571.402734	-2571.360538	-2571.353267	-2571.391980
TS1	-2571.423504	-2571.380623	-2571.374517	-2571.410289
TS2	-2571.393374	-2571.352231	-2571.346045	-2571.382858
TS3	-2571.399734	-2571.358451	-2571.351316	-2571.391049
TS4	-2571.285656	-2571.244685	-2571.238495	-2571.273997
MeS•	-438.112666	-438.077262	-438.073125	-438.101530
4c	-568.107946	-568.063420	-568.057351	-568.091667
4t	-568.106211	-568.061586	-568.055446	-568.089790

Geometric Structures and Electronic energies (Hartree)

ON•

N	0.00000000	0.000000000	-0.610471000
0	0.00000000	0.000000000	0.534162000

CH₃Se•

С	-0.002091000	1.518691000	0.000000000

Н	1.045062000	1.823414000	0.000000000
Н	-0.480718000	1.899013000	0.897204000
Н	-0.480718000	1.899013000	-0.897204000
Se	-0.002091000	-0.433341000	0.000000000
1c			
<u> </u>	-1 646964000	-0 309791000	0 00000000
ч	-2 220907000	-0.088118000	0.803842000
н Ц	2.220907000	-0.088118000	0.893842000
	-2.220907000	-0.066116000	-0.895842000
H	-1.345484000	-1.359373000	0.000000000
Se	-0.000547000	0.724616000	0.000000000
Ν	1.288731000	-0.838092000	-0.000001000
0	0.817609000	-1.908231000	0.000001000
1t			
С	-1.874381000	0.085614000	0.000001000
Н	-1.871671000	-1.004139000	0.000004000
Н	-2.364927000	0.459842000	0.892358000
Н	-2.364923000	0.459837000	-0.892362000
Se	0.000113000	0.624751000	0.000004000
N	0.574650000	-1.312800000	-0.000004000
0	1 717714000	-1 544297000	
U	1.717714000	1.544257000	0.000001000
anti	2 _ON•		
C	-1 340464000	1 337162000	
с u	1 012252000	1.557102000	-0.000008000
	-1.912252000	1.501095000	-0.895215000
H	-0.429500000	1.935634000	0.000004000
Н	-1.912262000	1.561677000	0.895198000
Se	-0.789143000	-0.538761000	-0.000024000
Ν	2.844809000	-0.024950000	0.000015000
0	1.851107000	0.529402000	0.000012000
syn-	2 –ON●		
С	0.403500000	1.578183000	-0.000437000
Н	0.773821000	2.069010000	0.894625000
Н	-0.690937000	1.630058000	0.000648000
Н	0.772078000	2.069568000	-0.895911000
Se	0.894157000	-0.304374000	-0.001495000
N	-2.487685000	0.159106000	0.001762000
0	-1 790958000	-0 737154000	0.000809000
0	1.750550000	0.757154000	0.0000000000
тс1			
с С	0 983170000	1 137212000	0.012460000
с u	0.9031/9000	1 505750000	0.012400000
	2.03//33000	1.303/38000	-0.134390000
н	0.46908/000	1.9608/9000	-0.787577000
Н	0.726903000	1.852863000	0.983102000
Se	0.543818000	-0.478897000	-0.032845000
Ν	-1.475554000	0.015448000	0.537016000

TS2

132			
С	-1.716857000	-0.350395000	-0.218751000
Н	-1.436179000	-0.829417000	0.717981000
Н	-2.547361000	0.323433000	-0.032589000
Н	-1.986360000	-1.115610000	-0.940393000
Se	-0.167766000	0.659255000	-0.851341000
Ν	1.520792000	-0.875723000	0.972751000
0	1.005263000	-1.678651000	0.352341000
тѕз			
C	-1.100556000	1.436134000	0.018483000
Н	-0.783728000	1.800240000	-0.954612000
н	-0.532256000	1.903199000	0.817059000
н	-2.157785000	1.663940000	0.151208000
Se	-0.934802000	-0.510689000	0.096401000
Ν	2.713769000	0.221214000	0.329256000
0	1.920793000	0.122586000	-0.482620000
TS4			
C	-1.617626000	0.910919000	0.000000000
Н	-2.531075000	0.302114000	-0.000004000
Н	-1.560650000	1.511829000	-0.900109000
н	-1.560652000	1.511821000	0.900114000
N	1.341218000	1.181265000	0.000012000
0	1.713206000	-0.041695000	0.000006000
Se	-0.227531000	-0.491958000	-0.000004000
Mes	•		
C	, 1 105702000	0 000010000	-0 008794000
н	1 505308000	-0.896460000	-0 478221000
н	1 418839000	-0.000628000	1 039479000
н	1.505264000	0.897032000	-0.477187000
S	-0.691477000	0.000000000	-0.001957000
4C	1 (10010000	0 220704000	0.000000000
C	-1.619919000	-0.320701000	0.000003000
H	-2.193624000	-0.084098000	0.891987000
н	-2.193602000	-0.084112000	-0.892000000
	-1.302102000	-1.382/41000	0.000014000
	1.108/5/000	-0.727254000	-0.00001/000
U c	0.783108000	-1.84506/000	
3	-0.071286000	0.297301000	0.00018000
4t			
С	-1.577483000	-0.317548000	-0.000002000

H -2.165534000 -0.113022000 0.890276000

Н	-2.165564000	-0.113391000	-0.890344000
Н	-1.259077000	-1.360504000	0.000210000
Ν	1.067042000	-0.727718000	0.000070000
0	2.217054000	-0.473873000	0.000016000
S	-0.079768000	0.687752000	-0.000235000