Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supporting Information for

Transition metal free hydrodefluorination of acid fluorides and organofluorines by Ph₃GeH promoted by catalytic [Ph₃C][B(C₆F₅)₄]

By

Ardalan Hayatifar, Alejandro Borrego, David Bosek, Matthew Czarnecki, Gabriel Derocher, Adam Kuplicki, Erik Lytle, Jonas Padilla, Charles Paroly, Gillian Tubay, Jackson Vyletel, and Charles S. Weinert* Department of Chemistry Oklahoma State University Stillwater, Oklahoma 74078 USA And University of Detroit Jesuit High School and Academy 8400 S. Cambridge Detroit, MI 48221 USA

Experimental Procedures and Data

General Considerations

All reactions were carried out using standard Schlenk, syringe, and glovebox techniques. The reagents benzoyl fluoride, pentanoyl fluoride, 1-fluorooctane, 1-fluorocyclohexane, 1,1,1-trifluoromethyltoluene, and 1,3-bis(trifluoromethyl)xylene were purchased from Alfa Aesar. The reagents triphenylgermanium hydride and $[Ph_3C][B(C_6F_5)_4]$ were purchased from Aldrich. All reagents were used without further purification. All NMR solvents were dried over activated molecular sieves and non-deuterated solvents were purified using a Glass Contour Solvent Purification System. NMR spectra were acquire using a Bruker Avance III spectrometer operating at 400.00 (¹H) or 376.31 (¹⁹F) MHz. GC/MS data were acquired using a Shimadzu QP2010 instrument.

1). Experimental Procedures, NMR, and GC/MS data for the reaction

a). Reaction to determine conversion

In a 20 mL vial equipped with a stir bar, benzoyl fluoride (0.200 g, 1.62 mmol) was added via pipette to Ph₃GeH (0.545 g, 1.79 mmol) resulting in the formation of a liquid mixture. To the mixture was added [Ph₃C][B(C₆F₅)₄] (0.045 g, 0.049 mmol) resulting in a yellow liquid. The reaction mixture was stirred at room temperature under nitrogen for 18 h. An aliquot of the product mixture was analyzed by ¹H and ¹⁹F NMR spectroscopy in benzene-*d*₆. The percent conversion (>99 %) was determined by integration of the ¹⁹F NMR signals for the benzoyl fluoride starting material and the Ph₃GeF product. An aliquot of the product mixture was also analyzed by GC/MS in CH₂Cl₂ solution.

b). Reaction to provide isolated product

A Schlenk flask was charged with Ph₃GeH (0.811 g, 2.66 mmol) and to this was added benzoyl fluoride (0.300 g, 2.42 mmol) via pipette, resulting in a liquid mixture. To this was added [Ph₃C][B(C₆F₅)₄] (0.030 g, 0.033 mmol), resulting in the formation of a yellow liquid mixture. The mixture was stirred at room temperature for 18 h under nitrogen and then was washed with water to separate benzaldehyde from the Ph₃GeF and Ph₃CH byproducts. The benzaldehyde was then extracted from the water layer with Et₂O. The ethereal layer was separated and the solvent was removed *in vacuo* to yield a clear liquid, which was identified to be pure benzaldehyde by NMR (¹H and ¹⁹F) spectroscopy in CDCl₃. Yield: 0.121 g, 46.8%. **c)**. ¹⁹F NMR in CDCl₃ of crude product mixture:

a). Experimental procedure

In a 20 mL vial equipped with a stir bar, pentanoyl fluoride (0.100 g, 0.960 mmol) was added via pipette to Ph₃GeH (0.322 g, 1.06 mmol) resulting in the formation of a liquid mixture. To the mixture was added [Ph₃C][B(C₆F₅)₄] (0.026 g, 0.029 mmol) resulting in a yellow liquid. The reaction mixture was stirred at room temperature under nitrogen for

18 h. An aliquot of the product mixture was analyzed by ¹H and ¹⁹F NMR spectroscopy in CD_2Cl_2 . The percent conversion (>99 %) was determined by integration of the ¹⁹F NMR signals for the pentanoyl fluoride starting material and the Ph₃GeF product. An aliquot of the product mixture was also analyzed by GC/MS in CH₂Cl₂ solution.

b). ¹⁹F NMR in CD₂Cl₂ of crude product mixture:

c). ¹H NMR in CD₂Cl₂ of crude product mixture:

d). GC of product mixture:

e). MS of product mixture:

a). Experimental procedure

In a 20 mL vial equipped with a stir bar, 1-fluorooctane (0.110 g, 0.833 mmol) was added via pipette to Ph₃GeH (0.270 g, 0.886 mmol) resulting in the formation of a liquid mixture. To the mixture was added [Ph₃C][B(C₆F₅)₄] (0.020 g, 0.022 mmol) and a white solid formed. The reaction mixture was stirred at room temperature under nitrogen for 1 h. An aliquot of the product mixture was analyzed by ¹H and ¹⁹F NMR spectroscopy in benzene- d_6 after filtration of the benzene- d_6 solution through Celite. The percent conversion (>99 %) was determined by integration of the ¹⁹F NMR signals for the 1-fluorooctane starting material and the Ph₃GeF product. An aliquot of the product

mixture was also analyzed by GC/MS in CH_2Cl_2 solution, which was filtered through Celite prior to injection of the sample.

S7

d). GC of product mixture:

e). MS of product mixture:

Mass Table Line#:1 R.Time:6.0(Scan#:5) MassPeaks:19 RawMode:Single 6.0(5) BasePeak:49(24358) BG Mode:None # m/2 Abs_Int__Rel_Int___

#	m/z	Abs. Int.	Rel. Int.
1	35.05	2163	8.88
2	39.05	1512	6.21
3	41.05	5281	21.68
4	42.05	2609	10.71
5	43.10	2686	11.03
6	45.10	2226	9.14
7	47.00	4450	18.27
8	48.00	2159	8.86
9	49.00	24358	100.00
10	50.00	1098	4.51
11	51.05	7734	31.75
12	55.05	2294	9.42
13	56.05	5704	23.42
14	57.10	1814	7.45
15	69.05	1578	6.48
16	83.00	1031	4.23
17	83.95	16483	67.67
18	86.00	8926	36.65
19	87.95	1443	5.92

4). Experimental Procedure, NMR, and GC/MS data for the reaction

a). Experimental procedure

In a 20 mL vial equipped with a stir bar, 1-fluorocyclohexane (0.100 g, 0.978 mmol) was added via pipette to Ph₃GeH (0.328 g, 1.08 mmol) resulting in the formation of a liquid mixture. To the mixture was added [Ph₃C][B(C₆F₅)₄] (0.027 g, 0.029 mmol) and a white solid formed. The reaction mixture was stirred at room temperature under nitrogen for 5 min. An aliquot of the product mixture was analyzed by ¹H and ¹⁹F NMR spectroscopy in benzene-*d*₆ after filtration of the benzene-*d*₆ solution through Celite. The percent conversion (>99 %) was determined by integration of the ¹⁹F NMR signals for the 1-fluorocyclohexane starting material and the Ph₃GeF product. An aliquot of the product mixture was also analyzed by GC/MS in CH₂Cl₂ solution, which was filtered through Celite prior to injection of the sample.

b). ¹⁹F NMR in C₆D₆ of crude product mixture:

d). GC of product mixture:

e). MS of product mixture:

Spectrum

5). Experimental Procedure, NMR, and GC/MS data for the reaction

a). Experimental procedure

In a 20 mL vial equipped with a stir bar, 1,1,1-trifluorotoluene (0.060 g, 0.41mmol) was added via pipette to Ph₃GeH (0.388 g, 1.27 mmol) resulting in the formation of a liquid mixture. To the mixture was added [Ph₃C][B(C₆F₅)₄] (0.011 g, 0.012 mmol) and a white solid formed. The reaction mixture was stirred at room temperature under nitrogen for 18 h. An aliquot of the product mixture was analyzed by ¹H and ¹⁹F NMR spectroscopy in benzene-*d*₆ after filtration of the benzene-*d*₆ solution through Celite. The percent conversion (56 %) was determined by integration of the ¹⁹F NMR signals for the 1,1,1-trifluorotoluene starting material and the Ph₃GeF product. An aliquot of the product mixture was also analyzed by GC/MS in hexane solution, which was filtered through Celite prior to injection of the sample.

b). ¹⁹F NMR in C_6D_6 of crude product mixture:

d). GC of product mixture:

e). MS of product mixture:

Spectrum

2	41.05	10025	100.00
3	42.10	4660	46.48
4	43.10	9546	95.22
5	44.10	1609	16.05
6	51.05	1091	10.88
7	55.10	1980	19.75
8	56.10	9719	96.95
9	57.10	9916	98.91
10	69.05	1757	17.53
11	71.10	1097	10.94
12	77.05	1180	11.77
13	86.10	1020	10.17
14	91.05	7854	78.34
15	105.10	1510	15.06
16	106.10	3846	38.36

6). Experimental Procedure, NMR, and GC/MS data for the reaction

a). Experimental procedure

In a 20 mL vial equipped with a stir bar, 1,3-bis(trifluoromethyl)xylene (0.080 g, 0.37 mmol) was added via pipette to Ph₃GeH (0.695 g, 2.28 mmol) resulting in the formation of a liquid mixture. To the mixture was added [Ph₃C][B(C₆F₅)₄] (0.010 g, 0.011 mmol) and a white solid formed. The reaction mixture was stirred at room temperature under nitrogen for 18 h. An aliquot of the product mixture was analyzed by ¹H and ¹⁹F NMR spectroscopy in benzene- d_6 after filtration of the benzene- d_6 solution through Celite. The percent conversion (74 %) was determined by integration of the ¹⁹F NMR signals for the 1,3-bis(trifluoromethyl)xylene starting material and the Ph₃GeF product. An aliquot of the product mixture was also analyzed by GC/MS in hexane solution, which was filtered through Celite prior to injection of the sample.

b). ¹⁹F NMR in C₆D₆ of crude product mixture:

e). MS of product mixture:

7). Experimental Procedure and ¹⁹F NMR data for the reaction

a). Experimental procedure

In a 20 mL vial equipped with a stir bar, 1,1,1-trifluorotoluene (0.100 g, 0.684 mmol) was added via pipette to Ph₃GeH (0.647 g, 2.12 mmol) resulting in the formation of a liquid mixture. To the mixture was added B(C₆F₅)₃ (0.011 g, 0.021 mmol). The reaction mixture was stirred at room temperature under nitrogen for 18 h. An aliquot of the product mixture was analyzed by ¹⁹F NMR spectroscopy in benzene- d_6 after filtration of the benzene- d_6 solution through Celite. No formation of Ph₃GeF was detected.

b). ¹⁹F NMR in C_6D_6 of crude product mixture:

a). Experimental procedure

In a 20 mL vial equipped with a stir bar, benzoyl fluoride (0.120 g, 0.967 mmol) was added via pipette to Ph₃GeH (0.324 g, 1.06 mmol) resulting in the formation of a liquid mixture. To the mixture was added B(C_6F_5)₃ (0.015 g, 0.029 mmol) resulting in a yellow liquid. The reaction mixture was stirred at room temperature under nitrogen for 18 h. An aliquot of the product mixture was analyzed by ¹⁹F NMR spectroscopy in benzene-*d*₆.

The percent conversion was determined by integration of the 19 F NMR signals for the benzoyl fluoride starting material and the Ph₃GeF product.

b). ¹⁹F NMR in C₆D₆ of crude product mixture:

In a 20 mL screw-cap vial, benzoyl fluoride (0.243 g, 1.96 mmol) and Ph₃GeH (0.657 g, 2.16 mmol) were combined in hexane (10 mL) and solid $[Ph_3C][B(C_6F_5)_4]$ was added (0.054 g, 0.059 mmol) to the reaction mixture. After stirring at room temperature for 18 h under nitrogen, the vial was opened, the reaction mixture was filtered through Celite, and the hexane was removed *in vacuo*. The resulting pale yellow liquid was analyzed by NMR (¹H and ¹⁹F) spectroscopy and GC/MS.

In a 20 mL screw-cap vial, pentanoyl fluoride (0.481 g, 4.62 mmol) and Ph₃GeH (1.55 g, 5.09 mmol) were combined in hexane (15 mL) and solid $[Ph_3C][B(C_6F_5)_4]$ was added (0.127 g, 0.138 mmol) to the reaction mixture. After stirring at room temperature for 18 h under nitrogen, the vial was opened, the reaction mixture was filtered through Celite, and the hexane was removed *in vacuo*. The resulting clear liquid was analyzed by NMR (¹H and ¹⁹F) spectroscopy and GC/MS.

c). Experimental Procedure for the reaction

 $F = \frac{1.1 \text{ equiv. Ph}_3\text{GeH}}{\frac{3 \text{ mol } \% \text{ [Ph}_3\text{C}][\text{B}(\text{C}_6\text{F}_5)_4]}{\text{hexane, r.t., 18 h}} + Ph_3\text{GeF} + Ph_3\text{CH}$

In a 20 mL screw-cap vial, 1-fluorooctane (0.650 g, 4.92 mmol) and Ph₃GeH (1.65 g, 5.41 mmol) were combined in hexane (15 mL) and solid [Ph₃C][B(C₆F₅)₄] was added (0.136 g, 0.148 mmol) to the reaction mixture. After stirring at room temperature for 18 h under nitrogen, the vial was opened, the reaction mixture was filtered through Celite, and the hexane was removed *in vacuo*. The resulting clear liquid was analyzed by NMR (¹H and ¹⁹F) spectroscopy and GC/MS.

d). Experimental Procedure for the reaction

1.1 equiv. Ph₃GeH

$$\begin{array}{c} & 1.1 \text{ equiv. Ph}_3\text{GeH} \\ & & 1.1 \text{ equiv. Ph}_3\text{GeH} \\ \hline &$$

In a 20 mL screw-cap vial, 1-fluorocyclohexane (0.477 g, 4.67 mmol) and Ph₃GeH (1.57 g, 5.14 mmol) were combined in hexane (10 mL) and solid $[Ph_3C][B(C_6F_5)_4]$ was added (0.136 g, 0.129 mmol) to the reaction mixture. After stirring at room temperature for 18 h under nitrogen, the vial was opened, the reaction mixture was filtered through Celite, and the hexane was removed *in vacuo*. The resulting clear liquid was analyzed by NMR (¹H and ¹⁹F) spectroscopy and GC/MS.

e). Experimental Procedure for the reaction

$$CF_3$$
 3.1 equiv. Ph₃GeH CH₃
3 mol % [Ph₃C][B(C₆F₅)₄] + Ph₃GeF + Ph₃CH
hexane, r.t., 18 h

In a 20 mL screw-cap vial, 1,1,1-trifluorotoluene (0.187 g, 1.28 mmol) and Ph₃GeH (1.20 g, 3.97 mmol) were combined in hexane (15 mL) and solid $[Ph_3C][B(C_6F_5)_4]$ was added (0.0351 g, 0.0381 mmol) to the reaction mixture. After stirring at room temperature for 18 h under nitrogen, the vial was opened, the reaction mixture was filtered through Celite, and the hexane was removed *in vacuo*. The resulting clear liquid was analyzed by NMR (¹H and ¹⁹F) spectroscopy and GC/MS.

f). Experimental Procedure for the reaction

In a 20 mL screw-cap vial, 1,3-bis(trifluoromethyl)xylene (0.211 g, 0.986 mmol) and Ph₃GeH (1.83 g, 6.00 mmol) were combined in hexane (15 mL) and solid [Ph₃C][B(C₆₋F₅)₄] was added (0.0273 g, 0.0296 mmol) to the reaction mixture. After stirring at room temperature for 18 h under nitrogen, the vial was opened, the reaction mixture was filtered through Celite, and the hexane was removed *in vacuo*. The resulting clear liquid was analyzed by NMR (¹H and ¹⁹F) spectroscopy and GC/MS.

10). Experimental Procedure and ¹⁹F NMR data for the reaction

a). Experimental procedure

In a 20 mL screw-cap vial, benzoyl fluoride (0.321 g, 2.59 mmol) and Ph₃SiH (0.741 g, 2.85 mmol) were combined and solid [Ph₃C][B(C₆F₅)₄] (0.079 g, 0.086 mmol) was added to the reaction mixture and the reaction mixture immediately became exothermic. After stirring at room temperature for 18 h under nitrogen, the vial was opened and an aliquot of the reaction mixture was analyzed by ¹⁹F NMR spectroscopy in C₆D₆ solvent.

b). ¹⁹F NMR in C₆D₆ of crude product mixture:

11). Views of the LUMO of the free Ph_3Ge^+ calculated by DFT using the using B3LYP/6-31G(d) basis set¹:

Minimized geometry of Ph₃Ge⁺ using B3LYP/6-31G(d)

1 C1	4.0853	-2.275	-0.0007	С
2 C2	4.0043	-0.9936	0.5546	С
3 C3	2.793	-0.3097	0.5483	С
4 C4	1.6438	-0.9172	-0.0001	С
5 C5	1.7336	-2.2136	-0.5488	С
6 C6	2.9536	-2.8819	-0.5554	С
7 H7	3.0262	-3.8745	-0.9888	Н
8 H8	0.8566	-2.6843	-0.9836	Н
9 Ge9	0	-0.0005	-0.0014	Ge
10 C10	-0.0287	1.8812	0.0002	С
11 C11	-1.1339	2.5737	0.5379	С
12 C12	-1.1454	3.9646	0.5442	С
13 C13	-0.0696	4.6744	0.0002	С
14 C14	1.0265	3.9968	-0.5438	С
15 C15	1.0558	2.606	-0.5373	С
16 H16	1.9056	2.0809	-0.9638	Н
17 H17	1.8549	4.555	-0.9688	Н
18 H18	-0.0858	5.7603	0.0003	Н
19 H19	-1.9896	4.4984	0.9694	Н
20 H20	-1.9672	2.0238	0.9655	Н
21 C21	-1.6159	-0.9659	-0.002	С
22 C22	-2.7842	-0.3932	-0.5471	С
23 C23	-3.9743	-1.1133	-0.5503	С
24 C24	-4.0152	-2.3968	0.0045	С
25 C25	-2.8642	-2.9699	0.5553	С
26 C26	-1.6649	-2.265	0.5458	С
27 H27	-0.7732	-2.7092	0.9784	Н

-2.9056	-3.9645	0.9881	Н
-4.9481	-2.9528	0.0074	Н
-4.8707	-0.6781	-0.9809	Н
-2.7525	0.6012	-0.9829	Н
2.7302	0.6833	0.9838	Н
4.8859	-0.532	0.9882	Н
5.0345	-2.8028	-0.0015	Н
	-2.9056 -4.9481 -4.8707 -2.7525 2.7302 4.8859 5.0345	-2.9056-3.9645-4.9481-2.9528-4.8707-0.6781-2.75250.60122.73020.68334.8859-0.5325.0345-2.8028	-2.9056-3.96450.9881-4.9481-2.95280.0074-4.8707-0.6781-0.9809-2.75250.6012-0.98292.73020.68330.98384.8859-0.5320.98825.0345-2.8028-0.0015

The computing for this project was performed at the OSU High Performance Computing Center at Oklahoma State University supported in part by the National Science Foundation Grant OCI-1126330. Molecular graphics and analyses performed with UCSF ChimeraX, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from NIH R01-GM129325 and P41-GM103311.²

References

- eferences
 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
- CT, 2013. T. D. Goddard, C. C. Huang, E. C. Meng, E. F. Pettersen, G. S. Couch, J. H. Morris, T. E. Ferrin, J. Protein. Sci., 2018, **27**, 14-25. 2