Electronic Supplementary Information

Synthesis and electronic properties of π -expanded carbazole-based porphyrins

Chihiro Maeda,* Yumi Tanaka, Takuma Shirakawa and Tadashi Ema*

Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan. E-mail: cmaeda@okayama-u.ac.jp: ema@cc.okayama-u.ac.jp

Table of Contents

[A] Instrumentation and Materials	. S2
[B] Experimental Procedures and Compound Data	S2
[C] References	S15
[D] UV/vis/NIR Absorption Spectra	S15
[E] DFT Calculations	S16
[F] NMR Spectra	S18

[A] Instrumentation and Materials

¹H and ¹³C NMR spectra were taken on a JEOL ECS-400 spectrometer, and chemical shifts are reported as the delta scale in ppm using an internal reference ($\delta = 7.26$ for ¹H NMR, 77.00 for ¹³C NMR, for CDCl₃, and $\delta = 8.71$ for ¹H NMR for pyridine-*d*₅). UV/vis/NIR absorption spectra were recorded on a Shimadzu UV-2600 spectrophotometer. Mass spectra were taken on a Bruker micrOTOF. Redox potentials were measured by the cyclic voltammetry method on an ALS electrochemical analyzer model CHI-600B. Gel permeation chromatography (GPC) was performed with BIO-Rad Bio-Beads (ϕ 4 cm × 70 cm). Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. **1'**,^[S1] **4a**,^[S1] **11a**,^[S1] tributyl(1-hexynyl)tin,^[S2] 1,3,5-tribromo-2-nitrobenzene,^[S3] bromo(triisopropylsilyl)acetylene,^[S4] and tributyl(triisopropylsilylethynyl)tin^[S5] were prepared according to the literature method.

Single crystals of **3b'** were obtained by slow diffusion of acetonitrile vapor into a chloroform solution of **3b'**. X-ray data at 93 K were taken on a Rigaku XtaLAB P200 with Cu- K_{α} radiation ($\lambda = 1.54187$ Å). The structures were solved by direct methods and refined with the full-matrix least square technique. All non-hydrogen atoms were refined anisotropically, and the hydrogen atoms were calculated in ideal positions.

[B] Experimental Procedures and Compound Data

Scheme S1 Synthesis of 2a-d

Synthesis of 4b

To a suspension of **1'** (188 mg, 151 μ mol) and SiO₂ (6.00 g) in CHCl₃ (70 mL) was added dropwise a solution of *N*-bromosuccinimide (NBS) (36.8 mg, 207 μ mol) in CHCl₃ (30 mL) over 5 min at 0 °C. The mixture was stirred at rt for 15 h. The reaction mixture was passed through a silica gel column with CHCl₃ and evaporated. The residue was dissolved in toluene (10 mL), and

tributyl(1-hexynyl)tin (137 mg, 369 µmol) and Pd(PPh₃)₄ (10.9 mg, 9.43 µmol) were added. The mixture

was degassed and heated at reflux for 15 h under N_2 . After cooling to rt and concentrating, the residue was separated over a silica gel column with CHCl₃/hexane as an eluent to give **4b** as a reddish-brown solid (156 mg, 117 μ mol, 78%).

¹H NMR (CDCl₃) δ = 10.45 (s, 1H, NH), 10.40 (s, 1H, NH), 8.47 (d, *J* = 1.2 Hz, 1H, carbazole-H), 8.39 (s, 1H, carbazole-H), 8.38 (s, 1H, carbazole-H), 8.36 (s, 2H, carbazole-H), 8.01 (d, *J* = 1.2 Hz, 1H, carbazole-H), 7.99 (d, *J* = 0.8 Hz, 1H, carbazole-H), 7.98 (d, *J* = 1.2 Hz, 1H, carbazole-H), 7.63–7.61 (m, 8H for Ar, 1H for thiophene-H), 7.56 (s, 2H, thiophene-H), 7.51 (d, *J* = 2.4 Hz, 3H, Ar), 7.48 (s, 1H, Ar), 2.41 (t, *J* = 7.2 Hz, 2H, CH₂), 1.47 (s, 54H, *t*-Bu), 1.46 (s, 18H, *t*-Bu), 1.27 (m, 4H, CH₂), and 0.69 ppm (t, *J* = 7.2 Hz, 3H, CH₃); ¹³C NMR (CDCl₃) δ = 151.44, 151.18, 141.50, 141.37, 139.90, 139.76, 139.22, 137.89, 137.32, 137.16, 137.00, 136.00, 135.89, 135.42, 130.74, 127.10, 126.98, 126.11, 125.09, 125.02, 124.96, 124.57, 124.42, 122.36, 122.31, 122.27, 121.31, 121.05, 120.35, 120.12, 120.03, 118.06, 117.93, 117.44, 116.91, 94.01, 75.62, 35.23, 35.19, 31.79, 30.71, 22.05, 19.46, and 13.50 ppm; MS (ESI): *m*/*z* = 1326.7735. calcd for C₉₄H₁₀₅N₂S₂: 1326.7757 [M–H]⁻.

Synthesis of 4c

Compound **4c** was synthesized according to the method similar to the synthesis of **4b**.

Reddish-brown solid, 108 mg, 61% yield: ¹H NMR (CDCl₃) δ = 10.48 (s, 1H, NH), 10.47 (s, 1H, NH), 8.62 (s, 1H, carbazole-H), 8.45 (s, 1H, carbazole-H), 8.41 (s, 1H, carbazole-H), 8.39 (s, 1H, carbazole-H), 8.38 (s, 1H, carbazole-H),

8.03 (s, 3H, carbazole-H), 7.65 (s, 1H, thiophene-H), 7.63 (s, 8H, Ar), 7.58 (s, 2H, thiophene-H), 7.53 (s, 3H, Ar), 7.49 (s, 1H, Ar), 7.31 (d, J = 7.2 Hz, 2H, Ph), 7.26 (t, J = 7.0 Hz, 1H, Ph), 7.16 (t, J = 7.6 Hz, 2H, Ph), 1.48 (s, 54H, *t*-Bu), and 1.37 ppm (s, 18H, *t*-Bu); ¹³C NMR (CDCl₃) $\delta = 151.44$, 151.37, 141.52, 141.48, 141.38, 141.33, 140.39, 139.89, 139.74, 138.29, 137.31, 137.16, 137.01, 136.06, 136.00, 135.97, 135.45, 131.76, 129.92, 128.47, 127.16, 127.09, 126.44, 125.17, 125.13, 125.11, 124.99, 124.58, 124.50, 124.42, 122.87, 122.37, 122.31, 122.26, 121.72, 121.33, 121.05, 120.49, 120.32, 120.14, 120.10, 118.09, 117.97, 117.30, 116.78, 92.82, 84.71, 35.24, 35.12, 31.80, and 31.70 ppm; MS (APCI): m/z = 1346.7447. calcd for C₉₆H₁₀₁N₂S₂: 1346.7444 [M–H]⁻.

Synthesis of 4d

Compound 4d was synthesized according to the method similar to the synthesis of **4b**.

Reddish-brown solid, 99.1 mg, 50% yield: ¹H NMR (CDCl₃) δ = 10.51 (s, 1H, NH), 10.42 (s, 1H, NH), 8.66 (s, 1H, carbazole-H), 8.39 (s, 2H, carbazole-H), 8.38 (s, 2H, carbazole-H), 8.033 (s, 1H, carbazole-H), 8.027 (d, J = 1.6 Hz, 1H,

carbazole-H), 8.00 (s, 1H, carbazole-H), 7.66 (s, 1H, thiophene-H), 7.63 (s, 6H, Ar), 7.60 (d, J = 1.2 Hz, 2H, Ar), 7.58 (d, J = 4.0 Hz, 1H, thiophene-H), 7.57 (d, J = 3.6 Hz, 1H, thiophene-H), 7.52 (s, 3H, Ar), 7.39 (s, 1H, Ar), 7.16 (t, J = 8.4 Hz, 1H, Ph), 6.46 (d, J = 8.4 Hz, 2H, Ph), 3.85 (t, J = 6.6 Hz, 4H, CH₂), 1.48 (s, 54H, t-Bu), 1.30 (s, 18H, t-Bu), 1.23 (m, 4H, CH₂), 1.09–0.98 (m, 20H, CH₂), 0.70 ppm (t, J =7.0 Hz, 6H, CH₃); ¹³C NMR (CDCl₃) δ = 161.30, 151.42, 151.40, 151.36, 151.06, 141.68, 141.56, 141.45, 139.99, 139.79, 139.25, 137.62, 137.29, 137.14, 137.05, 135.95, 135.92, 135.88, 135.41, 130.80, 129.82, 127.04, 127.01, 126.85, 125.19, 125.01, 124.99, 124.97, 124.53, 124.42, 124.35, 122.71, 122.37, 122.27, 121.28, 121.22, 120.77, 120.26, 120.09, 119.99, 119.91, 118.10, 117.93, 117.57, 117.06, 104.97, 102.69, 92.33, 85.62, 69.04, 35.23, 34.98, 31.80, 31.60, 29.33, 29.28, 29.06, 25.99, 22.68, and 14.17 ppm; MS (APCI): m/z = 1602.9838. calcd for C₁₁₂H₁₃₃N₂O₂S₂: 1602.9847 [M-H]⁻.

Synthesis of 2a'

A suspension of 4a (67.4 mg, 53.0 μ mol) and PtCl₂ (5.65 mg, 21.2 μ mol) in toluene (10 mL) was degassed and heated at reflux for 48 h under N₂. After cooling to rt and concentrating, the residue was purified by silica gel column chromatography with CHCl₃/hexane as an eluent to give 2a' as a yellow solid (44.7 mg, 35.1 µmol, 66%).

¹H NMR (CDCl₃) δ = 11.44 (s, 1H, NH), 11.13 (s, 1H, NH), 8.39 (s, 1H, carbazole-H), 8.37 (s, 2H, carbazole-H), 8.33 (s, 1H, carbazole-H), 8.29 (s, 1H, carbazole-H), 8.09 (d, J = 9.2 Hz, 1H, -CH=CH-), 8.05 (s, 2H for carbazole-H, 1H for thiophene-H), 7.95 (d, J = 8.4 Hz, 1H, -CH=CH-), 7.66–7.62 (m, 6H, Ar), 7.60 (s, 2H, thiophene-H), 7.57 (t, J = 2.0 Hz, 1H, Ar), 7.56–7.51 (m, 5H, Ar), 1.49 (s, 18H, t-Bu), 1.48 (s, 18H, t-Bu), 1.473 (s, 18H, t-Bu), and 1.468 ppm (s, 18H, t-Bu); 13 C NMR (CDCl₃) δ = 151.44, 150.80, 141.71, 141.56, 141.49, 140.70, 140.02, 139.69, 139.26, 137.44, 136.95, 136.70, 136.35, 136.23, 136.00, 134.80, 134.33, 130.95, 128.53, 127.89, 127.61, 126.34, 125.57, 125.38, 125.05, 123.19, 123.05, 122.37, 121.56, 121.40, 121.34, 121.23, 121.13, 121.05, 120.59, 120.22, 120.14, 119.75, 119.28, 118.61, 118.45, 117.65, 116.05, 35.23, 35.18, and 31.81 ppm; MS (APCI): m/z = 1270.7146. calcd for $C_{90}H_{97}N_2S_2$: 1270.7132 [*M*-H]⁻; UV/vis (CH₂Cl₂) $\lambda_{max}(\varepsilon) = 299$ (85800), 405 (19800), 423 nm (27600) $M^{-1}cm^{-1}$).

Synthesis of 2b'

Compound **2b**' was synthesized according to the method similar to the synthesis of **2a**'.

Yellow solid, 27.2 mg, 71% yield: ¹H NMR (CDCl₃) δ = 11.42 (s, 1H, NH), 11.16 (s, 1H, NH), 8.38 (s, 2H, carbazole-H), 8.36 (d, J = 0.8 Hz, 1H, carbazole-

H), 8.29 (d, J = 1.2 Hz, 1H, carbazole-H), 8.20 (s, 1H, carbazole-H), 8.055 (d, J = 1.2 Hz, 1H, carbazole-H), 8.047 (d, J = 1.6 Hz, 1H, carbazole-H), 8.03 (s, 1H, thiophene-H), 7.86 (s, 1H, -C*H*=CBu-), 7.640 (d, J = 1.2 Hz, 2H, Ar), 7.636 (d, J = 2.0 Hz, 2H, Ar), 7.63 (d, J = 2.0 Hz, 2H, Ar), 7.61–7.59 (m, 2H, thiophene-H), 7.53 (t, J = 1.2 Hz, 1H, Ar), 7.52 (t, J = 1.8 Hz, 2H, Ar), 7.50 (t, J = 1.6 Hz, 1H, Ar), 7.43 (d, J = 2.0 Hz, 2H, Ar), 2.58 (t, J = 8.0 Hz, 2H, CH₂), 1.48 (s, 18H, *t*-Bu), 1.47 (s, 18H, *t*-Bu), 1.45 (s, 18H, *t*-Bu), 1.42 (s, 18H, *t*-Bu), 1.34 (m, 2H, CH₂), 0.91 (m, 2H, CH₂), and 0.71 ppm (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (CDCl₃) $\delta = 151.45$, 151.41, 150.20, 144.54, 141.61, 141.58, 141.54, 140.38, 140.07, 139.76, 139.17, 137.71, 137.50, 137.09, 136.75, 136.24, 136.19, 135.97, 135.29, 134.79, 129.51, 127.81, 127.74, 127.57, 126.22, 125.36, 125.00, 124.92, 124.63, 123.82, 123.54, 123.26, 123.08, 122.39, 122.32, 121.38, 121.33, 121.21, 120.74, 120.53, 120.24, 120.04, 119.26, 118.97, 118.61, 118.47, 117.70, 117.28, 36.34, 35.12, 34.57, 31.80, 22.82, and 14.02 ppm; MS (ESI): m/z = 1326.7773. calcd for C₉₄H₁₀₅N₂S₂: 1326.7757 [M-H]⁻; UV/vis (CH₂Cl₂) λ_{max} (ε) = 300 (88300), 408 (20600), 427 nm (30400 M⁻¹cm⁻¹).

Synthesis of 2c'

Compound **2c'** was synthesized according to the method similar to the synthesis of **2a'**.

Yellow solid, 44.3 mg, 49% yield: ¹H NMR (CDCl₃) δ = 11.47 (s, 1H, NH), 11.16 (s, 1H, NH), 8.38 (s, 3H, carbazole-H), 8.30 (s, 1H, carbazole-H), 8.26 (s,

1H, carbazole-H), 8.09 (s, 1H, thiophene-H), 8.07 (s, 1H, carbazole-H), 8.06 (s, 1H, carbazole-H), 7.90 (s, 1H, -C*H*=CPh-), 7.64–7.63 (m, 6H for Ar, 2H for thiophene-H), 7.53–7.52 (m, 2H, Ar), 7.51 (t, J = 1.2 Hz, 1H, Ar), 7.17 (d, J = 6.4 Hz, 2H, Ph), 7.06 (t, J = 1.6 Hz, 1H, Ar), 7.03 (d, J = 1.6 Hz, 2H, Ar), 7.01–6.92 (m, 3H, Ph), 1.47 (s, 36H, *t*-Bu), 1.46 (s, 18H, *t*-Bu), and 1.28 ppm (s, 18H, *t*-Bu); ¹³C NMR (CDCl₃) $\delta = 151.47$, 151.43, 149.15, 143.52, 143.27, 141.62, 141.56, 141.50, 140.40, 140.03, 139.77, 139.64, 137.53, 137.25, 137.17, 136.75, 136.42, 136.26, 136.06, 135.52, 134.86, 130.53, 130.11, 127.89, 127.62, 127.47, 126.78, 126.39, 126.33, 125.88, 125.45, 125.04, 125.00, 124.82, 124.64, 123.33, 123.24, 122.38, 121.42, 121.36, 121.27, 120.68, 120.38, 120.28, 120.20, 119.80, 119.43, 118.69, 118.49, 117.59, 117.50, 35.25, 34.82, 31.81, and 31.58 ppm; MS (APCI): m/z = 1346.7432. calcd for C₉₆H₁₀₁N₂S₂: 1346.7444 [M–H]⁻; UV/vis (CH₂Cl₂) λ_{max} (ε) = 293 (86700), 409 (21800), 426 nm (23900 M⁻¹cm⁻¹).

Synthesis of 2d'

Compound **2d'** was synthesized according to the method similar to the synthesis of **2a'**.

Yellow solid, 39.8 mg, 70% yield: ¹H NMR (CDCl₃) δ = 11.45 (s, 1H, NH), 11.26 (s, 1H, NH), 8.39 (s, 1H, carbazole-H), 8.38 (s, 1H, carbazole-H), 8.35 (s,

1H, carbazole-H), 8.29 (d, J = 0.8 Hz, 1H, carbazole-H), 8.07 (d, J = 1.2 Hz, 1H, carbazole-H), 8.06 (s, 1H, carbazole-H), 8.05 (s, 1H, carbazole-H), 8.03 (s, 1H, thiophene-H), 7.81 (s, 1H, -C*H*=CR-), 7.64–7.63 (m, 6H for Ar, 2H for thiophene-H), 7.53 (t, J = 1.6 Hz, 2H, Ar), 7.50 (t, J = 1.6 Hz, 1H, Ar), 7.13 (d, J = 2.0 Hz, 2H, Ar), 7.11 (t, J = 1.6 Hz, 1H, Ar), 6.84 (t, J = 8.2 Hz, 1H, Ph), 6.20 (d, J = 8.4 Hz, 2H, Ph), 3.97–3.92 (m, 2H, CH₂), 3.73–3.67 (m, 2H, CH₂), 1.48 (s, 36H, *t*-Bu), 1.46 (s, 18H, *t*-Bu), 1.30 (s, 18H, *t*-Bu), 1.12–0.90 (m, 24H, CH₂), and 0.65 ppm (t, J = 7.0 Hz, 6H, CH₃); ¹³C NMR (CDCl₃) $\delta = 156.36$, 151.45, 151.38, 151.35, 148.44, 143.41, 141.80, 141.67, 141.62, 140.38, 139.73, 138.77, 137.54, 137.29, 137.05, 136.76, 136.21, 136.13, 136.08, 136.03, 134.96, 132.45, 130.29, 128.89, 128.07, 127.79, 127.62, 126.67, 126.21, 125.71, 125.02, 124.96, 123.97, 123.39, 123.24, 122.67, 122.43, 122.39, 122.35, 121.62, 121.35, 121.31, 121.08, 120.22, 119.48, 119.02, 118.53, 117.86, 116.66, 104.53, 68.01, 35.24, 35.21, 34.73, 31.80, 31.65, 29.37, 29.32, 29.29, 26.22, 22.64, and 14.16 ppm; MS (APCI): m/z = 1602.9839. calcd for C₁₁₂H₁₃₃N₂O₂S₂: 1602.9847 [M–H]⁻; UV/vis (CH₂Cl₂) $\lambda_{max} (\varepsilon) = 301 (89400), 407 (20000), 427 nm (28900 M⁻¹cm⁻¹).$

Synthesis of 2a

To a solution of 2a' (30.8 mg, 24.2 µmol) in CH₂Cl₂ (15 mL) was added MnO₂ (940 mg, 10.8 mmol), and the resulting suspension was stirred. After 14 h, MnO₂ (745 mg, 8.57 mmol) was added, and the mixture was stirred for further 5 h. The reaction mixture was then passed through a silica gel column with CH₂Cl₂. The solvent was evaporated to give **2a** as a green solid (18.6 mg, 14.6 µmol, 60% yield).

Green solid, 18.6 mg, 60% yield: ¹H NMR (pyridine- d_5) δ = 10.21 (s, 1H), 10.07 (s, 2H), 9.97 (s, 1H), 9.77 (s, 1H), 9.57 (s, 1H), 9.48 (s, 2H), 9.25 (s, 1H), 9.09 (s, 1H), 8.74–8.62 (m, 2H, CH=CH), 8.25 (s, 2H, Ar), 8.23 (s, 2H, Ar), 8.21 (s, 2H, Ar), 8.00 (s, 2H, Ar), 7.91 (s, 2H, Ar), 7.84 (s, 2H, Ar), 1.54 (s, 36H, *t*-Bu), 1.52 (s, 18H, *t*-Bu), and 1.51 ppm (s, 18H, *t*-Bu); ¹³C NMR couldn't detect peaks due to very low solubility; MS (ESI): m/z = 1270.7127. calcd for C₉₀H₉₇N₂S₂: 1270.7121 [M+H]⁺; UV/vis/NIR (CH₂Cl₂) λ_{max} (ε) = 277 (60100), 421 (15700), 963 (14700), 1180 nm (4490 M⁻¹cm⁻¹).

Synthesis of 2b

Compound **2b** was synthesized according to the method similar to the synthesis of **2a**.

Green solid, 14.0 mg, 64% yield: ¹H NMR (pyridine- d_5) $\delta = 10.24$ (s, 1H), 10.08 (s, 2H), 10.01 (s, 1H), 9.79 (s, 1H), 9.60 (s, 1H), 9.50 (s, 2H), 9.19 (s, 1H),

8.97 (s, 1H), 8.64 (s, 1H, -C*H*=CBu-), 8.25 (s, 4H, Ar), 8.22 (s, 2H, Ar), 7.84 (s, 6H, Ar), 3.06 (s, 2H, CH₂), 1.67 (m, 2H, CH₂), 1.52 (s, 72H, *t*-Bu), 1.15 (m, 2H, CH₂), and 0.85 ppm (s, 3H, CH₃); ¹³C NMR couldn't detect peaks due to very low solubility; MS (ESI): m/z = 1326.7714. calcd for C₉₄H₁₀₅N₂S₂: 1326.7747 [M+H]⁺; UV/vis/NIR (CH₂Cl₂) λ_{max} (ε) = 277 (52700), 328 (44700), 960 (22000), 1176 nm (6460 M⁻¹cm⁻¹).

Synthesis of 2c

Compound 2c was synthesized according to the method similar to the synthesis of 2a.

Green solid, 10.9 mg, 62% yield: ¹H NMR (pyridine- d_5) δ = 10.16 (s, 1H), 9.99 (s, 2H), 9.92 (s, 1H), 9.72 (s, 1H), 9.56 (s, 1H), 9.43 (s, 2H), 9.19 (s, 1H),

9.03 (s, 1H), 8.65 (s, 1H, -C*H*=CPh-), 8.24 (s, 4H, Ar), 8.22 (s, 2H, Ar), 7.85 (s, 3H, Ar), 7.63 (d, J = 6.4 Hz, 2H, Ph), 7.49 (s, 2H, Ar), 7.38 (s, 1H, Ar), 7.25 (t, J = 7.2 Hz, 2H, Ph), 7.14 (t, J = 8.0 Hz, 1H, Ph), 1.56 (s, 18H, *t*-Bu), 1.55 (s, 18H, *t*-Bu), 1.54 (s, 18H, *t*-Bu), and 1.42 ppm (s, 18H, *t*-Bu); ¹³C NMR couldn't detect peaks due to very low solubility; MS (ESI): m/z = 1346.7406. calcd for C₉₆H₁₀₁N₂S₂: 1346.7434 [M+H]⁺; UV/vis/NIR (CH₂Cl₂) $\lambda_{max}(\varepsilon) = 276$ (68400), 962 (15900), 1177 nm (4970 M⁻¹cm⁻¹).

Synthesis of 2d

Compound **2d** was synthesized according to the method similar to the synthesis of **2a**.

Green solid, 17.2 mg, 88% yield: ¹H NMR (CDCl₃) δ = 9.71 (s, 3H, thiophene-H), 9.49 (s, 1H, carbazole-H), 9.43 (s, 1H, carbazole-H), 9.18 (s, 1H, carbazole-

H), 8.89 (s, 2H, carbazole-H), 8.61 (s, 1H, carbazole-H), 8.54 (s, 1H, carbazole-H), 8.39 (s, 1H, -CH=CR-), 7.96 (s, 2H, Ar), 7.92 (s, 2H, Ar), 7.87 (s, 2H, Ar), 7.66–7.61 (m, 3H, Ar), 7.35 (s, 2H, Ar), 7.22 (s, 1H, Ar), 6.92 (t, J = 8.0 Hz, 1H, 2,6-dioctyloxyphenyl-*p*-H), 6.30 (d, J = 7.6 Hz, 2H, 2,6dioctyloxyphenyl-*m*-H), 4.01 (m, 2H, CH₂), 3.80 (m, 2H, CH₂), 1.57–1.54 (s, 54H, *t*-Bu), 1.37 (s, 18H, *t*-Bu), 0.94–0.82 (m, 24H, CH₂), 0.49 ppm (s, 6H, CH₃); ¹³C NMR couldn't detect peaks due to very low solubility; MS (ESI): m/z = 1602.9800 calcd for C₁₁₂H₁₃₃N₂O₂S₂: 1602.9836 [M+H]⁺; UV/vis/NIR (CH₂Cl₂) λ_{max} (ε) = 279 (61900), 424 (17500), 951 (19800), 1180 nm (5980 M⁻¹cm⁻¹).

Scheme S2 Synthesis of 10 and 11b

Synthesis of 5

A solution of 1,3,5-tribromo-2-nitrobenzene (644 mg, 1.79 mmol), 2,4,6trimethylphenylboronic acid (362 mg, 1.97 mmol), Pd(PPh₃)₄ (113 mg, 97.8 µmol), and

 K_2CO_3 (735 mg, 5.33 mmol) in toluene/EtOH/H₂O (4/2/2 mL) was heated at 100 °C for 41 h under N₂. After cooling to rt, organic products were extracted with EtOAc, and the organic layer was passed through a silica gel column with EtOAc and evaporated. The residue was separated over a silica gel column with CHCl₃/hexane as an eluent to give **5** as a white solid (506 mg, 1.27 mmol, 71%).

¹H NMR (CDCl₃) δ = 7.50 (s, 2H, H^a), 7.02 (s, 2H, Mes), 2.40 (s, 3H, Me), and 2.10 ppm (s, 6H, Me); ¹³C NMR (CDCl₃) δ = 150.13, 145.92, 138.31, 135.25, 134.50, 133.58, 128.58, 113.73, 21.08, and 20.72 ppm; MS (APCI): *m*/*z* = 398.9294. calcd for C₁₅H₁₃NO₂Br₂: 398.9288 [*M*]⁺.

Synthesis of 6

A solution of **5** (506 mg, 1.27 mmol), naphthalene-1-boronic acid (175 mg, 1.02 mmol), Pd(PPh₃)₄ (50.2 mg, 43.4 μ mol), and K₂CO₃ (409 mg, 2.96 mmol) in toluene/EtOH/H₂O (2/1/1 mL) was heated at 100 °C for 15 h under N₂. After cooling

to rt, organic products were extracted with EtOAc, and the organic layer was passed through a silica gel column with EtOAc and evaporated. The residue was separated over a silica gel column with CHCl₃/hexane as an eluent to give **6** as a white solid (367 mg, 823 μ mol, 65%).

¹H NMR (CDCl₃) δ = 7.949 (d, *J* = 7.2 Hz, 1H, Np), 7.945 (t, *J* = 7.2 Hz, 1H, Np), 7.68 (d, *J* = 8.4 Hz, 1H, Np), 7.65 (d, *J* = 1.2 Hz, 1H, H^b), 7.58–7.50 (m, 4H, Np), 7.27 (d, *J* = 1.2 Hz, 1H, H^a), 7.00 (s, 1H, Mes), 6.99 (s, 1H, Mes), 2.38 (s, 3H, Me), 2.22 (s, 3H, Me), and 2.14 ppm (s, 3H, Me); ¹³C NMR (CDCl₃) δ = 150.24, 144.42, 137.91, 135.49, 135.35, 134.92, 133.76, 133.61, 132.58, 132.52, 131.58, 129.59, 128.55, 128.52, 127.10, 126.85, 126.33, 125.09, 125.06, 113.16, 21.09, 20.95, and 20.82 ppm; MS (APCI): *m*/*z* = 447.0634. calcd for C₂₅H₂₀NO₂Br: 447.0655 [*M*]⁺.

Synthesis of 7

A solution of **6** (872 mg, 1.96 mmol) and PPh₃ (5.23 g, 19.9 mmol) in 1,2dichlorobenzene (8.0 mL) was heated at 190 °C for 42 h under Ar. After cooling to rt, excess 1,2-dichlorobenzene was removed by distillation. The residue was separated

over a silica gel column with CHCl₃/hexane as an eluent to give 7 as a white solid (324 mg, 783 μ mol, 40%).

¹H NMR (CDCl₃) δ = 8.77 (d, *J* = 8.0 Hz, 1H, H^f), 8.68 (s, 1H, NH), 8.42 (s, 1H, H^g), 8.07 (d, *J* = 8.0 Hz, 1H, H^e), 7.95 (d, *J* = 8.4 Hz, 1H, H^b), 7.74 (dt, *J* = 1.5, 7.5 Hz, 1H, H^e), 7.69 (d, *J* = 8.8 Hz, 1H, H^a), 7.57 (t, *J* = 6.8 Hz, 1H, H^d), 7.57 (d, *J* = 0.8 Hz, 1H, H^h), 7.16 (s, 2H, Mes), 2.52 (s, 3H, Me), and 2.25 ppm (s, 6H, Me); ¹³C NMR (CDCl₃) δ = 138.80, 137.29, 137.02, 136.78, 135.93, 134.49, 129.92, 129.44, 129.37, 128.30, 128.25, 127.64, 127.17, 125.42, 123.48, 123.19, 121.76, 116.12, 112.75, 104.64, 21.22, and 21.18 ppm; MS (APCI): *m/z* = 414.0679. calcd for C₂₅H₁₉NBr: 414.0689 [*M*-H]⁻.

Synthesis of 8

A solution of 7 (197 mg, 476 μ mol), (Bpin)₂ (92.8 mg, 365 μ mol), [Ir(OMe)(cod)]₂ (8.3 mg, 13 μ mol), and dtbpy (6.5 mg, 24 μ mol) in dry THF (0.50 mL) was heated at reflux for 18 h under N₂. The mixture was passed through a silica gel column with CHCl₃ and evaporated. A solution of the

residue, bromo(triisopropylsilyl)acetylene (595 mg, 2.24 mmol), $Pd_2(dba)_3$ (11.3 mg, 12.3 µmol), Xantphos (26.3 mg, 45.4 µmol), and K₃PO₄ (235 mg, 1.11 mmol) in 1,4-dioxane/water (0.9 mL/0.1 mL) was heated at reflux for 16 h under N₂. After cooling to rt, the solvents were evaporated, and the residue was passed through a silica gel column with CHCl₃. Purification of the residue by silica gel column chromatography with CHCl₃/hexane as an eluent gave **8** as a white solid (152 mg, 255 µmol, 54%).

¹H NMR (CDCl₃) δ = 8.91 (s, 1H, NH), 8.60 (d, *J* = 8.0 Hz, 1H, H^e), 8.25 (s, 1H, H^f), 8.07 (s, 1H, H^a), 7.96 (d, *J* = 8.0 Hz, 1H, H^b), 7.65 (dt, *J* = 1.3, 7.7 Hz, 1H, H^d), 7.48 (t, *J* = 8.0 Hz, 1H, H^e), 7.46 (s, 1H, H^g), 7.04 (s, 2H, Mes), 2.41 (s, 3H, Me), 2.11 (s, 6H, Me), and 1.29 ppm (m, 21H, TIPS); ¹³C NMR (CDCl₃) δ = 138.74, 137.83, 137.12, 136.81, 135.66, 134.78, 130.90, 129.93, 129.48, 129.18, 128.28, 127.98, 125.68, 123.94, 123.23, 121.90, 115.68, 108.32, 104.91, 102.36, 97.17, 21.25, 21.15, 19.02, and 11.46 ppm; MS (APCI): *m*/*z* = 594.2009. calcd for C₃₆H₃₉NBrSi: 594.2027 [*M*–H]⁻.

Synthesis of 9

A solution of **8** (202 mg, 339 μ mol), tributyl(triisopropylsilylethynyl)tin (330 mg, 701 μ mol), and Pd(PPh₃)₄ (23.2 mg, 20.1 μ mol) in toluene (5 mL) was heated at reflux for 12 h under N₂. After cooling to rt, the mixture was evaporated. The

residue was purified by silica gel column chromatography with $CHCl_3$ /hexane as an eluent to give **9** as a white solid (211 mg, 303 µmol, 89%).

¹H NMR (CDCl₃) δ = 8.88 (s, 1H, NH), 8.63 (d, *J* = 8.0 Hz, 1H, H^e), 8.30 (s, 1H, H^f), 8.09 (s, 1H, H^a), 7.97 (d, *J* = 8.0 Hz, 1H, H^b), 7.64 (dt, *J* = 1.2, 7.6 Hz, 1H, H^d), 7.47 (t, *J* = 7.2 Hz, 1H, H^e), 7.44 (d, *J* = 1.2 Hz, 1H, H^g), 7.04 (s, 2H, Mes), 2.41 (s, 3H, Me), 2.11 (s, 6H, Me), 1.25 (m, 21H, TIPS), and 1.22 ppm (m, 21H, TIPS); ¹³C NMR (CDCl₃) δ = 139.15, 137.77, 137.11, 137.02, 136.92, 133.39, 132.00, 130.10, 129.83, 129.26, 129.07, 128.25, 127.84, 124.50, 123.80, 123.38, 123.29, 115.67, 108.23, 106.93, 102.96, 102.59, 96.34, 96.05, 21.24, 21.20, 18.96, and 11.54 ppm; MS (APCI): *m/z* = 694.4285. calcd for C₄₇H₆₀NSi₂: 694.4270 [*M*–H][–].

Synthesis of 10

To a solution of **9** (203 mg, 292 μ mol) in dry THF (10 mL) was added TBAF (1 M in THF, 1.2 mL, 1.2 mmol), and the resulting mixture was heated at 60 °C for 1 h under N₂. After the mixture was evaporated, the residue was purified by silica gel column chromatography with CHCl₃/hexane as an eluent to give **10** as a pale yellow solid (104 mg, 272 μ mol, 93%).

¹H NMR (CDCl₃) δ = 9.02 (s, 1H, NH), 8.64 (d, *J* = 8.4 Hz, 1H, H^e), 8.36 (s, 1H, H^f), 8.08 (s, 1H, H^a), 7.96 (d, *J* = 8.0 Hz, 1H, H^b), 7.67 (t, *J* = 7.0 Hz, 1H, H^d), 7.491 (t, *J* = 7.4 Hz, 1H, H^c), 7.488 (s, 1H, H^g), 7.07 (s, 2H, Mes), 3.59 (s, 2H, C=CH), 2.43 (s, 3H, Me), and 2.14 ppm (s, 6H, Me); ¹³C NMR (CDCl₃) δ = 138.95, 138.48, 137.40, 137.02, 136.83, 133.46, 131.85, 129.97, 129.46, 129.40, 128.88, 128.28, 128.13, 124.36, 123.95, 123.89, 123.24, 115.66, 106.67, 105.30, 82.50, 80.03, 79.68, 21.24, and 21.18 ppm; MS (APCI): *m*/*z* = 382.1596. calcd for C₂₉H₂₀N: 382.1601 [*M*–H]⁻.

Synthesis of 3,6-bis(2,4,6-trimethylphenyl)-1,8-dibromocarbazole

To a suspension of 3,6-bis(2,4,6-trimethylphenyl)carbazole (500 mg, 1.24 mmol) and SiO_2 (2.09 g) in CHCl₃ (70 mL) was added dropwise a solution of NBS (883 mg, 4.96 mmol) in CHCl₃ (30 mL) over 10 min, and the mixture was stirred at rt for 19 h. After

concentrating, the residue was passed through a silica gel column with CHCl₃ and evaporated to give a desired product as a pale brown solid (685 mg, 1.22 mmol, 98%).

¹H NMR (CDCl₃) δ = 8.46 (s, 1H, NH), 7.76 (d, *J* = 0.8 Hz, 2H, H^b), 7.48 (d, *J* = 1.2 Hz, 2H, H^a), 7.02 (s, 4H, Mes), 2.40 (s, 6H, Me), and 2.10 ppm (s, 12H, Me); ¹³C NMR (CDCl₃) δ = 138.18, 137.06, 137.03, 136.57, 134.63, 130.11, 128.27, 125.15, 120.60, 104.51, 21.19, and 21.10 ppm; MS (APCI): *m*/*z* = 560.0437. calcd for C₃₀H₂₆NBr₂: 560.0419 [*M*–H]⁻.

Synthesis of 11b

A solution of 3,6-bis(2,4,6-trimethylphenyl)-1,8-dibromocarbazole (685 mg, 1.22 mmol), tributyl(trimethylsilylethynyl)tin (1.91 g, 4.94 mmol), and Pd(PPh₃)₄ (141 mg,

122 μ mol) in toluene (10 mL) was degassed and heated at reflux for 17 h under N₂. After cooling to rt, the reaction mixture was passed through a silica gel column with CHCl₃ and evaporated. To a solution of the residue in CHCl₃ (10 mL) was added TBAF (1.0 M in THF, 5.0 mL, 5.0 mmol), and the mixture was stirred at rt for 10 min. After concentrating, the residue was separated over a silica gel column with CHCl₃/hexane as an eluent to give **11b** as a yellow solid (315 mg, 697 μ mol, 57%).

¹H NMR (CDCl₃) δ = 8.73 (s, 1H, NH), 7.81 (d, *J* = 1.6 Hz, 2H, H^b), 7.42 (d, *J* = 1.6 Hz, 2H, H^a), 7.00 (s, 4H, Mes), 3.55 (s, 2H, C=CH), 2.38 (s, 6H, Me), and 2.07 ppm (s, 12H, Me); ¹³C NMR (CDCl₃) δ = 139.90, 138.57, 136.87, 136.66, 132.96, 131.16, 128.25, 123.67, 122.43, 104.93, 82.35, 79.98, 21.20, and 21.11 ppm; MS (APCI): *m/z* = 450.2249. calcd for C₃₄H₂₈N: 450.2227 [*M*–H][–].

Scheme S3 Synthesis of 3

Synthesis of 12a

To a suspension of $Cu(OAc)_2 \cdot H_2O(2.00 \text{ g}, 10.0 \text{ mmol})$ in pyridine (75 mL) was added dropwise a solution of **10** (174 mg, 454 µmol) and **11a** (323 mg, 546 µmol) in toluene (250 mL) over 2 h. The mixture was stirred for further 4.5 d under air. After the solvents were evaporated, the

residue was separated over a silica gel column with CHCl₃ and GPC to give **12a** as a yellow solid (101 mg, 104 μ mol, 21%) and **13a** as a yellow solid (190 mg, 161 μ mol, 32%). Separation of **12a** and **13a** was achieved by GPC with TLC analysis (CHCl₃/hexane = 1/2). **13a** (R_f = 0.80) is faster fraction in GPC than **12a** (R_f = 0.75).

¹H NMR (CDCl₃) δ = 9.33 (s, 1H, NH), 9.04 (s, 1H, NH), 8.58 (d, *J* = 8.4 Hz, 1H, H^e), 8.33 (s, 1H, H^f), 8.32 (s, 1H, Hⁱ or H^j), 8.30 (d, *J* = 1.6 Hz, 1H, Hⁱ or H^j), 8.03 (s, 1H, H^a), 7.95 (d, *J* = 8.0 Hz, 1H, H^b), 7.83 (d, *J* = 1.2 Hz, 1H, H^h or H^k), 7.79 (d, *J* = 1.2 Hz, 1H, H^h or H^k), 7.63 (t, *J* = 7.6 Hz, 1H, H^d), 7.52–7.48 (m, 6H, Ar), 7.47 (t, *J* = 7.2 Hz, 1H, H^d), 7.42 (d, *J* = 0.8 Hz, 1H, H^g), 7.06 (s, 2H, Mes), 2.41 (s, 3H, Me), 2.13 (s, 6H, Me), 1.45 (s, 18H, *t*Bu), and 1.44 ppm (s, 18H, *t*Bu); ¹³C NMR (CDCl₃) δ = 151.50, 142.38, 142.33, 140.61, 140.25, 138.78, 138.42, 137.23, 136.88, 135.69, 133.86, 130.39, 129.81, 129.07, 128.59, 128.37, 127.75, 127.58, 124.83, 124.40, 124.24, 123.98, 123.87, 123.40, 122.15, 121.93, 121.71, 121.51, 115.97, 106.44, 105.04, 104.84, 104.61, 80.61, 80.38, 80.21, 79.78, 79.66, 79.54, 79.46, 35.21, 31.77, and 21.25 ppm; MS (APCI): *m/z* = 969.5134. calcd for C_{73H65}N₂: 969.5153 [*M*–H]⁻.

Synthesis of 12b

To a suspension of Cu(OAc)₂·H₂O (1.06 g, 5.30 mmol) in pyridine (30 mL) was added dropwise a solution of **10** (98.4 mg, 257 µmol) and **11b** (115 mg, 254 µmol) in toluene (100 mL) over 2.5 h. The mixture was stirred for further 4.5 d under air. After the solvents were evaporated, the residue was separated over a silica gel column with CHCl₃ and GPC to give **12b** as a yellow solid (60.1 mg, 72.3 µmol, 28%) and **13b** as a yellow solid (62.0 mg, 69.0 µmol, 27%). Separation of **12b** and **13b** was achieved by GPC with TLC analysis (CHCl₃/hexane = 1/2). **13b** (R_f = 0.73) is faster fraction in GPC than **12b** (R_f = 0.66).

12b: ¹H NMR (CDCl₃) δ = 9.45 (s, 1H, NH), 9.16 (s, 1H, NH), 8.60 (d, J = 8.4 Hz, 1H, H^e), 8.32 (s, 1H, H^f), 8.09 (s, 1H, H^a), 7.99 (d, J = 7.6 Hz, 1H, H^b), 7.82 (d, J = 1.6 Hz, 1H, Hⁱ or H^j), 7.81 (d, J = 0.8 Hz, 1H,

Hⁱ or H^j), 7.68 (t, J = 7.0 Hz, 1H, H^d), 7.50 (t, J = 6.8 Hz, 1H, H^c), 7.41 (s, 1H, H^a), 7.38 (d, J = 1.6 Hz, 1H, H^h or H^k), 7.36 (d, J = 1.2 Hz, 1H, H^h or H^k), 7.04 (s, 2H, Mes), 7.00 (s, 2H, Mes), 6.99 (s, 2H, Mes), 2.40 (s, 3H, Me), 2.37 (s, 3H, Me), 2.36 (s, 3H, Me), 2.11 (s, 6H, Me), 2.074 (s, 6H, Me), and 2.068 ppm

(s, 6H, Me); ¹³C NMR couldn't detect peaks due to very low solubility; MS (APCI): m/z = 829.3617. calcd for C₆₃H₄₅N₂: 829.3588 [*M*-H]⁻.

13b: ¹H NMR (CDCl₃) δ = 9.24 (s, 2H, NH), 7.81 (d, *J* = 1.2 Hz, 4H, H^b), 7.35 (d, *J* = 1.2 Hz, 4H, H^a), 6.99 (s, 8H, Mes), 2.34 (s, 12H, Me), and 2.07 ppm (s, 24H, Me); ¹³C NMR (CDCl₃) δ = 141.89, 138.39, 137.06, 136.67, 133.35, 129.00, 128.33, 123.64, 123.44, 80.57, 79.64,

Mes H^b NH Mes Mes Mes

21.23, and 21.17 ppm; MS (APCI): m/z = 897.4232. calcd for C₆₈H₅₃N₂: 897.4214 [*M*-H]⁻.

Synthesis of 3a'

A solution of **12a** (75.5 mg, 77.8 μ mol) and Na₂S·9H₂O (189 mg, 788 μ mol) in toluene/2-methoxyethanol (2.3/2.3 mL) was heated at reflux for 17 h under Ar. After cooling to rt, the mixture was diluted with CHCl₃, washed with water, passed through a silica gel column with CHCl₃, and evaporated to dryness to give **3a**' as a yellow solid (53.5 mg, 51.5 μ mol, 66%).

¹H NMR (CDCl₃) δ = 10.83 (s, 1H, NH), 10.57 (s, 1H, NH), 8.74 (d, *J* = 8.4 Hz, 1H, H^e), 8.39 (s, 1H, H^f), 8.37 (d, *J* = 1.6 Hz, 1H, H^k or H¹), 8.36 (d, *J* = 0.8 Hz, 1H, H^k or H¹), 8.22 (s, 1H, H^a), 8.12 (d, *J* = 8.0 Hz, 1H, H^b), 8.02 (d, *J* = 1.6 Hz, 1H, H^j or H^m), 8.01 (d, *J* = 1.6 Hz, 1H, H^j or H^m), 7.70 (t, *J* = 8.0 Hz, 1H, H^d), 7.64 (d, *J* = 1.2 Hz, 1H, H^g), 7.63 (d, *J* = 3.6 Hz, 1H, H^o), 7.62 (d, *J* = 1.6 Hz, 2H, Ar), 7.61 (d, *J* = 1.6 Hz, 2H, Ar), 7.58 (d, *J* = 3.6 Hz, 1H, H^a), 7.56 (d, *J* = 3.2 Hz, 1H, H^h or Hⁱ), 7.54 (t, *J* = 7.6 Hz, 1H, H^c), 7.51 (t, *J* = 2.0 Hz, 1H, Ar), 7.50 (t, *J* = 2.0 Hz, 1H, Ar), 7.48 (d, *J* = 4.0 Hz, 1H, H^h or Hⁱ), 7.09 (s, 2H, Mes), 2.43 (s, 3H, Me), 2.19 (s, 6H, Me), 1.47 (s, 18H, *t*-Bu), and 1.46 ppm (s, 18H, *t*-Bu); ¹³C NMR (CDCl₃) δ = 151.44, 141.50, 140.41, 139.85, 139.74, 139.61, 139.35, 137.15, 137.07, 137.00, 135.97, 135.69, 134.99, 134.11, 129.98, 129.79, 128.38, 127.72, 127.56, 127.39, 127.10, 126.88, 125.59, 125.52, 125.02, 124.99, 124.45, 124.25, 124.13, 123.93, 123.37, 123.05, 122.34, 121.32, 120.31, 120.14, 119.65, 118.34, 118.01, 117.97, 116.89, 35.23, 31.80, 21.34, and 21.29 ppm; MS (APCI): *m/z* = 1037.4886. calcd for C₇₃H₆₉N₂S₂: 1037.4908 [*M*-H]⁻. UV/vis (CH₂Cl₂) λ_{max} (ε) = 277 (66400), 410 nm (22200 M⁻¹cm⁻¹).

Synthesis of 3b'

A solution of **21b** (76.8 mg, 92.4 μ mol) and Na₂S·9H₂O (222 mg, 924 μ mol) in toluene/2-methoxyethanol (2.3/2.3 mL) was heated at reflux for

13 h under Ar. After cooling to rt, the mixture was diluted with CHCl₃, washed with water, passed through a silica gel column with CHCl₃ to give **3b'** as a brown solid (68.2 mg, 82.1 μmol, 89%).

¹H NMR (CDCl₃) δ = 10.86 (s, 1H, NH), 10.59 (s, 1H, NH), 8.72 (d, *J* = 8.0 Hz, 1H, H^e), 8.39 (s, 1H, H^f), 8.20 (s, 1H, H^a), 8.08 (d, *J* = 8.4 Hz, 1H, H^b), 7.872 (s, 1H, H^I or H^k), 7.865 (s, 1H, H^I or H^k), 7.68 (t, *J* = 7.0 Hz, 1H, H^d), 7.64 (d, *J* = 0.8 Hz, 1H, H^g), 7.61–7.60 (m, 3H, H^j, H^m, H^o), 7.51 (t, *J* = 7.6 Hz, 1H, H^c), 7.47–7.44 (m, 3H, H^h, Hⁱ, Hⁿ), 7.09 (s, 2H, Mes), 7.05 (s, 2H, Mes), 7.04 (s, 2H, Mes), 2.43 (s, 3H, Me), 2.41 (s, 3H, Me), 2.40 (s, 3H, Me), 2.19 (s, 6H, Me), 2.16 (s, 6H, Me), and 2.15 ppm (s, 6H, Me); ¹³C NMR (CDCl₃) δ = 140.37, 139.75, 139.65, 139.58, 139.30, 139.11, 137.04, 136.94, 136.89, 136.82, 136.47, 136.34, 135.59, 134.90, 134.12, 133.55, 129.91, 129.77, 129.74, 128.36, 128.33, 127.52, 127.00, 126.71, 125.61, 125.53, 125.37, 124.72, 124.70, 124.04, 123.89, 123.35, 123.00, 121.70, 121.58, 119.61, 118.34, 117.93, 116.90, 21.31, and 21.28 ppm; MS (APCI): *m/z* = 897.3347. calcd for C₆₃H₄₉N₂S₂: 897.3343 [*M*–H]⁻. UV/vis (CH₂Cl₂) λ_{max} (ε) = 317 (40500), 406 nm (26900 M⁻¹cm⁻¹).

Synthesis of 3a

To a solution of **3a'** (4.90 mg, 4.72 μ mol) in CH₂Cl₂ (20 mL) was added PbO₂ (1.75 g, 7.32 mmol), and the resulting suspension was stirred for 15 h. The reaction mixture was passed through a Cerite with CH₂Cl₂ and evaporated to give **3a** as a deep green solid (3.40 mg, 3.28 μ mol, 69%).

¹H NMR (CDCl₃) δ = 9.68 (s, 1H, H^a), 9.56 (s, 1H, H^o), 9.51 (s, 2H, H^h, Hⁱ), 9.43 (s, 1H, Hⁿ), 9.32 (s, 1H, H^m), 9.15 (s, 1H, H^j), 8.95 (s, 1H, H^e), 8.87 (s, 1H, H^g), 8.78 (s, 1H, H^f), 8.75 (s, 2H, H^l, H^k), 8.40 (d, *J* = 9.2 Hz, 1H, H^b), 7.93 (s, 2H, Ar), 7.88 (s, 2H, Ar), 7.78 (t, *J* = 7.4 Hz, 1H, H^d), 7.66 (s, 3H, Ar, H^c), 7.21 (s, 2H, Mes), 2.52 (s, 3H, Me), 2.45 (s, 6H, Me), 1.59 (s, 18H, *t*-Bu), and 1.56 ppm (s, 18H, *t*-Bu); ¹³C NMR couldn't detect peaks due to very low solubility; MS (ESI): *m/z* = 1037.4843. calcd for C₇₃H₆₉N₂S₂: 1037.4897 [*M*+H]⁺. UV/vis/NIR (CH₂Cl₂) $\lambda_{max}(\varepsilon) = 271$ (50000), 356 (39700), 910 (25900), 1100 nm (16300 M⁻¹cm⁻¹).

Synthesis of 3b

To a solution of **3b'** (63.9 mg, 71.1 μ mol) in CH₂Cl₂ (20 mL) was added PbO₂ (6.04 g, 25.3 mmol), and the resulting suspension was stirred for 15 h. The reaction mixture was passed through a Celite with CH₂Cl₂ and evaporated to give **3b** as a deep green solid (42.2 mg, 47.0 μ mol, 66%).

¹H NMR (CDCl₃) δ = 9.92 (s, 1H, H^a), 9.76 (d, *J* = 4.8 Hz, 1H, H^o), 9.61 (d, *J* = 4.8 Hz, 1H, H^h or Hⁱ), 9.57 (d, *J* = 4.8 Hz, 1H, H^h or Hⁱ), 9.53 (d, *J* = 4.0 Hz, 1H, Hⁿ), 9.08 (s, 1H, H^m), 9.01 (d, *J* = 8.4 Hz, 1H, H^e), 8.92 (s, 1H, H^g), 8.89 (s, 1H, H^j), 8.85 (s, 1H, H^f), 8.52 (d, *J* = 8.8 Hz, 1H, H^b), 8.29 (s, 2H, H^l, H^k), 7.84 (t, *J* = 7.0 Hz, 1H, H^d), 7.71 (t, *J* = 7.6 Hz, 1H, H^e), 7.20 (s, 2H, Mes), 7.164 (s, 2H, Mes), 7.157 (s, 2H, Mes), 2.51 (s, 3H, Me), 2.48 (s, 3H, Me), 2.47 (s, 3H, Me), 2.39 (s, 6H, Me), 2.34 (s, 6H, Me), and 2.31 ppm (s, 6H, Me); ¹³C NMR couldn't detect peaks due to very low solubility; MS (ESI): m/z = 897.3340. calcd for C₆₃H₄₉N₂S₂: 897.3332 [*M*+H]⁺; UV/vis/NIR (CH₂Cl₂) λ_{max} (ε) = 271 (49700), 359 (39300), 392 (35600), 870 (25700), 1103 nm (15200 M⁻¹cm⁻¹).

[C] References

- [S1] C. Maeda, M. Takata, A. Honsho and T. Ema, Org. Lett., 2016, 22, 6070.
- [S2] I. Meana, A. C. AlbØniz and P. Espinet, Adv. Synth. Catal., 2010, 352, 2887.
- [S3] J. T. Manka, F. Guo, J. Huang, H. Yin, J. M. Farrar, M. Sienkowska, V. Benin and P. Kaszynski, J. Org. Chem., 2003, 68, 9574.
- [S4] T. Ohmura, A. Kijima, Y. Komori and M. Suginome, Org. Lett. 2013, 15, 3510.
- [S5] M. Toganoh, T. Kimura and H. Furuta, Chem. Eur. J., 2008, 14, 10585.

[D] UV/vis/NIR Absorption Spectra

Fig. S1 UV/vis/NIR absorption spectra of (a) 2' and 2, (b) 3' and 3.

[E] DFT Calculations

State	Transition energy	Oscillator	Composition of band and CI coefficiencies
	(nm)	strength	
1	918.53	0.2160	$H-1 \rightarrow L (95\%), H \rightarrow L+2 (3\%)$
2	885.61	0.7529	$H \rightarrow L (97\%), H-1 \rightarrow L+2 (3\%)$
3	760.95	0.0000	$H-2 \rightarrow L (98\%)$
4	740.57	0.0069	$H-3 \rightarrow L (98\%)$
5	586.52	0.0000	$H-4 \rightarrow L (98\%)$
6	561.97	0.0000	$H-10 \rightarrow L (93\%)$
7	529.37	0.0000	$\text{H-9} \rightarrow \text{L} \text{ (63\%), H-11} \rightarrow \text{L} \text{ (30\%), H-6} \rightarrow \text{L} \text{ (5\%)}$
8	499.32	0.0006	$\text{H-6} \rightarrow \text{L} \text{ (92\%), H-9} \rightarrow \text{L} \text{ (7\%),}$
9	499.12	0.0000	$H-7 \rightarrow L (100\%)$
10	499.11	0.0006	$H-8 \rightarrow L (100\%)$

 Table S1
 Selected data of calculated electronic transitions in 1

 Table S2
 Selected data of calculated electronic transitions in 2a

State	Transition energy	Oscillator	Composition of band and CI coefficiencies
	(nm)	strength	
1	1130.59	0.1106	$H-1 \rightarrow L (58\%), H-2 \rightarrow L (24\%), H \rightarrow L (18\%)$
2	942.65	0.6195	$H \rightarrow L (72\%), H-1 \rightarrow L (25\%)$
3	847.19	0.1853	$\mathrm{H}2 \rightarrow \mathrm{L} \ (75\%), \mathrm{H}1 \rightarrow \mathrm{L} \ (16\%), \mathrm{H} \rightarrow \mathrm{L} \ (8\%)$
4	782.23	0.0122	$H-3 \rightarrow L (98\%)$
5	639.04	0.0078	$H-4 \rightarrow L (74\%), H-5 \rightarrow L (22\%)$
6	586.54	0.0001	H−10 → L (86%), H−6 → L (5%), H−9 → L (2%)

State	Transition energy	Oscillator	Composition of band and CI coefficiencies
	(nm)	strength	
1	1130.78	0.1074	$H \rightarrow L (70.5\%), H-2 \rightarrow L (20\%), H-1 \rightarrow L (9.5\%)$
2	920.20	0.1202	$\text{H-2} \rightarrow \text{L}$ (65%), $\text{H-1} \rightarrow \text{L}$ (26%), $\text{H} \rightarrow \text{L}$ (6%)
3	867.79	0.6016	$H-1 \rightarrow L (61\%), H \rightarrow L (23\%), H-2 \rightarrow L (13\%)$
4	771.26	0.0103	$H-3 \rightarrow L (97\%)$
5	608.62	0.0209	$H-4 \rightarrow L (95\%)$
6	583.35	0.0001	$H-10 \rightarrow L (88\%), H-9 \rightarrow L (9\%)$
7	572.73	0.0021	$H-5 \rightarrow L (98\%)$
8	550.07	0.0008	$H-8 \rightarrow L (73\%), H-11 \rightarrow L (13\%), H-6 \rightarrow L (6\%)$
9	543.58	0.0003	$H-6 \rightarrow L (93\%), H-8 \rightarrow L (5\%)$
10	516.34	0.0003	$H-7 \rightarrow L (98\%)$

 Table S3
 Selected data of calculated electronic transitions in 3a

Fig. S2 NICS(0) values at the selected points of (a) **1**, (b) **2a**, and (c) **3a** calculated at B3LYP/6-31G(d) levels.

[F] NMR spectra

¹H NMR spectrum of **4b** in CDCl₃

¹³C NMR spectrum of **4b** in CDCl₃

¹³C NMR spectrum of **4c** in CDCl₃

¹³C NMR spectrum of **4d** in CDCl₃

¹³C NMR spectrum of **2a'** in CDCl₃

¹³C NMR spectrum of **2b'** in CDCl₃

¹³C NMR spectrum of **2c'** in CDCl₃

¹H NMR spectrum of **2d'** in CDCl₃

¹³C NMR spectrum of **2d'** in CDCl₃

¹H NMR spectrum of 2a in pyridine- d_5

¹H NMR spectrum of **2b** in pyridine- d_5

¹H NMR spectrum of **2d** in CDCl₃

¹³C NMR spectrum of **5** in CDCl₃

¹³C NMR spectrum of **6** in CDCl₃

¹H NMR spectrum of 7 in CDCl₃

¹³C NMR spectrum of 7 in CDCl₃

¹³C NMR spectrum of **8** in CDCl₃

¹³C NMR spectrum of **9** in CDCl₃

¹³C NMR spectrum of **10** in CDCl₃

¹H NMR spectrum of 3,6-bis(2,4,6-trimethylphenyl)-1,8-dibromocarbazole in CDCl₃

¹³C NMR spectrum of 3,6-bis(2,4,6-trimethylphenyl)-1,8-dibromocarbazole in CDCl₃

¹³C NMR spectrum of **11b** in CDCl₃

¹³C NMR spectrum of **12a** in CDCl₃

¹H NMR spectrum of **12b** in CDCl₃

¹H NMR spectrum of **13b** in CDCl₃

 ^{13}C NMR spectrum of 13b in CDCl_3

¹³C NMR spectrum of **3a'** in CDCl₃

¹³C NMR spectrum of **3b'** in CDCl₃

¹H NMR spectrum of **3a** in CDCl₃

¹H NMR spectrum of **3b** in CDCl₃