Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

For

Visible-Light-Mediated Defluorinative Cross-Coupling of *gem*-Difluoroalkenes with Thiols

Junlei Wang, Binbin Huang, Chao Yang* and Wujiong Xia*

State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology

(Shenzhen), Shenzhen, China 518055.

E-mail: <u>xyyang@hit.edu.cn</u>;

xiawj@hit.edu.cn (W. X.)

Contents

1	General Information	S2
2	General Procedure for the Preparation of Starting Materials	S2
3	Optimization Studies	S2
4	Typical Procedure for Cross-coupling Reactions	S3
5	Product Characterization	S3
6	Late-stage Monofluoroalkenylation of complex molecules	S16
7	Mechanistic studies	S19
8	Reference	S22
9	Spectra for Substrates and Products Product Characterization	S23

1. General Information

All of the reagents were purchased from Energy-Chemical and Sigma-Aldrich without further purification. Uncommercial available multifluoroarenes were obtained according to literature. Solvents were purified according to the method of Grubbs.¹ ¹H NMR, ¹³C NMR were recorded on a Bruker AV-400 or 600 (¹H NMR at 400 MHz or 600 M, ¹³C NMR at 100 MHz or 151 M, ¹⁹F NMR at 376 MHz) spectrometers using tetramethylsilane (TMS) as internal standard. Chemical shifts were calibrated using residual undeuterated solvent as an internal reference (CDCl₃: 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), brs (broad singlet). High resolution masspectra (HRMS) were collected on Bruker Esquire LC mass spectrometer using electrospray ionization. GC-MS analysis was conducted on a 7890A-5975C/Agilent.

2. General Procedure for the Preparation of Starting Materials

All of the gem-difluoroalkenes (1a - 1s) were prepared according to the previous literatures.²⁻³

3. Optimization Studies

Table S1. Screening of photocatalyst.^a

	F + Sh	h photocatalyst		SPMP
	F MeO	Cs ₂ CO ₃ toluene		F
	1a 2a		3a	
Entry	Photocatalyst	Base	Solvent	Y(%) ^b
1	Ru(bpy) ₃ Cl ₂	Cs_2CO_3	toluene	3
2	$Ru(bpy)_3PF_6$	Cs_2CO_3	toluene	0
3	Eosin Y	Cs_2CO_3	toluene	0
4	fac-Ir(ppy) ₃	Cs_2CO_3	toluene	5
5	5 fac-Ir(dFppy) ₃		toluene	0
6	Ir(dFppy) ₂ bpyPF ₆	Cs_2CO_3	toluene	57
7	7 $Ir(dFCF_3ppy)_2dtbpyPF_6$		toluene	85
8 $Ir(ppy)_2dtbpyPF_6$		Cs_2CO_3	toluene	47

[a] Reaction conditions: photocatalyst (1 mol%), **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mmol, 2 equiv), Cs_2CO_3 (2 equiv), toluene (1 mL), room temperature, N₂ atmosphere, 15 W blue leds. [b] The isolated yields are shown. [c] with the conversion of 80%.

Tal	ble	S2.	Scre	ening	of	base. ^a
-----	-----	-----	------	-------	----	--------------------

	F	+ SH I	r(dFCF ₃ ppy) ₂ dtbpyPF base		SPMP F
	1a	2a	loidene	3a	
Entry	Pho	tocatalyst	Base	Solvent	Y(%) ^b
1	Ir(dFCF ₃	ppy) ₂ dtbpyPF ₆	NaOAc	toluene	0
2	Ir(dFCF ₃	ppy) ₂ dtbpyPF ₆	K_2HPO_4	toluene	0
3	Ir(dFCF ₃)	ppy)2dtbpyPF6	K ₂ CO ₃	toluene	90

[a] Reaction conditions: photocatalyst (1 mol%), **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mmol, 2 equiv), base (2 equiv), toluene (1 mL), room temperature, N_2 atmosphere, 15 W blue leds. [b] The isolated yields are shown.

ĺ	F + SH	Ir(dFCF ₃ ppy) ₂ dtbpyPF ₆ K ₂ CO ₃		SPMP
	1a 2a	solvent	3a	
Entry	Photocatalyst	Base	Solvent	Y(%) ^b
1	Ir(dFCF ₃ ppy) ₂ dtbpyPF ₆	DCE	toluene	3
2	Ir(dFCF ₃ ppy) ₂ dtbpyPF ₆	CH ₃ CN	toluene	83
3	Ir(dFCF ₃ ppy) ₂ dtbpyPF ₆	CF ₃ CH ₂ OH	toluene	0
4	Ir(dFCF ₃ ppy) ₂ dtbpyPF ₆	DMSO	toluene	78
5	Ir(dFCF ₃ ppy) ₂ dtbpyPF ₆	K_2CO_3	toluene	0
6		K_2CO_3	toluene	0
7	Ir(dFCF ₃ ppy) ₂ dtbpyPF ₆		toluene	0

Table S3. Screening of solvents.^a

[a] Reaction conditions: photocatalyst (1 mol%), **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mmol, 2 equiv), base (2 equiv), toluene (1 mL), room temperature, N₂ atmosphere, 15 W blue leds. [b] The isolated yields are shown. [c] the reaction was conducted in dark.

4. Typical Procedure for Cross-coupling Reactions

General procedure: 1 (0.1 mmol), **2** (0.15 mmol), $Ir(dFCF_3ppy)_2dtbpyPF_6$ (1.0 mol %), K_2CO_3 (0.2 mmol), was combined in a 10 mL flask. 1 mL solvent (CH₃CN or toluene) was added. The flask was caped and degassed oxygen with N₂ for three times at -78 °C. Then, the reaction flask was exposed to 15 W blue leds until full completely consumed of *gem*-difluoroalkenes (monitored by TLC). After the reaction finished, the solvent was removed with evaporator and then filtered through an inch of silica gel. The filtrate was concentrated and purification by chromatography on silica gel to afford the desired product.

5. Product Characterization

(1-fluoro-2-(naphthalen-2-yl)vinyl)(4-methoxyphenyl)sulfane (3a)

The reaction was performed according to the general procedure using 2-(2,2-difluorovinyl)naphthalene with toluene as the solvent. The reaction was run for 48 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (50:1) to afford **3a** (27.9 mg, 90% yield) as a yellow solid. Yellow solid, mp. 59-61 °C, 90% isolated yield.

Both isomers: ¹H NMR (400 MHz, CDCl₃): δ_H 7.93 (d, J = 10.9 Hz, 1H), 7.86 - 7.74 (m, 3.55H), 7.64 (dd, J = 8.6, 1.5 Hz, 0.45H), 7.55 - 7.42 (m, 4H), 6.94 - 6.85 (m, 2H), 6.78 (d, J = 16.6 Hz, 0.51H), 6.32 (d, J = 33.0 Hz, 0.38H), 3.82 (s, 1.34H), 3.80 (s, 1.66H).

E isomer: ¹³C NMR (101 MHz, CDCl₃): δ_C 160.1, 154.2 (d, J = 309.9 Hz), 133.3, 132.7, 128.2, 128.1, 127.9, 127.6 (d, J = 5.6 Hz), 126.3, 121.7, 117.2, 116.8 (d, J = 88.6 Hz), 116.3, 115.2, 115.0, 55.4.

Z isomer: ¹³C NMR (101 MHz, CDCl₃): δ_C 160.07, 154.00 (d, J = 296.8 Hz), 133.4, 132.7, 130.7 (d, J = 5.5 Hz), 130.1 (d, J = 9.0 Hz), 128.3, 128.2, 128.0, 127.6 (d, J = 5.6 Hz), 126.2, 120.7, 116.0, 115.6 (d, J = 82.6 Hz), 115.1, 115.0, 55.4

¹⁹F NMR (376 MHz, CDCl₃): δ_F -80.39 (d, J = 16.6 Hz, 0.55F), -85.85 (d, J = 33.0 Hz, 0.45F). GC-MS (EI, QMS, m/z): 139.0, 202.1, 247.1, 277.1, 290.1, 310.1.

HRMS (ESI): calcd for C19H16FOS⁺, (M+H)⁺, 311.0900, found, 311.0909.

(2-([1,1'-biphenyl]-4-yl)-1-fluorovinyl)(4-methoxyphenyl)sulfane (3b)

The reaction was performed according to the general procedure using 4-(2,2-difluorovinyl)-1,1'-biphenyl with toluene as the solvent. The reaction was run for 36 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (50:1) to afford **3b** (27.9 mg, 83% yield) as a yellow solid. Yellow solid, mp. 68-71 °C, 83% isolated yield.

Both isomers: ¹H NMR (400 MHz, CDCl₃): δ_H 7.73 - 7.59 (m, 6H), 7.57 - 7.46 (m, 4H), 7.44 - 7.37 (m, 1H), 6.99 - 6.91 (m, 2H), 6.71 (d, J = 16.7 Hz, 0.36H), 6.26 (d, J = 33.0 Hz, 0.53H), 3.87 (s, 1.79H), 3.85 (s, 1.21H).

E isomer: ¹³C NMR (101 MHz, CDCl₃): δ_C 160.4, 154.4 (d, J = 309.9 Hz), 140.8 (d, J = 4.5 Hz), 133.8, 132.4 (d, J = 5.3 Hz), 129.4 (d, J = 12.3 Hz), 129.0, 127.6, 127.4, 127.1, 122.1, 115.2, 115.1 (d, J = 2.4 Hz), 114.9 (d, J = 2.0 Hz), 55.6.

Z isomer: ¹³C NMR (101 MHz, CDCl₃): δ_C 160.36, 154.2 (d, J = 268.9 Hz), 140.7 (d, J = 6.4 Hz), 133.8, 131.9 (d, J = 9.4 Hz), 129.4 (d, J = 12.3 Hz), 128.97, 127.6, 127.4, 127.1, 121.1, 116.1 (d, J = 2.5 Hz), 115.8 (d, J = 2.7 Hz), 115.2, 55.6.

¹⁹F NMR (376 MHz, CDCl₃): δ_F -80.56 (d, J = 16.7 Hz, 0.40F), -85.73 (d, J = 33.0 Hz, 0.60F). GC-MS (EI, QMS, m/z): 197.1, 273.1, 291.1, 316.1, 336.2.

HRMS (ESI): calcd for C₂₁H₁₈FOS⁺, (M+H)⁺, 337.1057, found, 337.1056.

(2-(4-(tert-butyl)phenyl)-1-fluorovinyl)(4-methoxyphenyl)sulfane (3c)

The reaction was performed according to the general procedure using 1-(tert-butyl)-4-(2,2-difluorovinyl)benzene with toluene as the solvent. The reaction was run for 36 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (50:1) to afford **3c** (23.7 mg, 75% yield) as a colorless oil. Colorless oil, 75% isolated yield.

Both isomers: ¹H NMR (400 MHz, CDCl₃): δ_H 7.54 (dd, J = 24.4, 7.3 Hz, 2H), 7.49 - 7.44 (m, 2H), 7.39 (dd, J = 27.9, 19.5 Hz, 2H), 6.66 (d, J = 16.8 Hz, 0.29H), 6.23 (d, J = 33.0 Hz, 0.58H), 3.86 (s, 1.8H), 3.85 (s, 1.2H), 1.38 (s, 3.0H), 1.36 (s, 6H).

E isomer: ¹³C NMR (101 MHz, CDCl₃): δ_C 159.9, 153.1 (d, J = 309.0 Hz), 133.2 (s), 130.3 (d, J = 5.2 Hz), 128.4, 125.5, 122.16 (d, J = 1.9 Hz), 121.05, 116.4, 115.6 (d, J = 13.1 Hz), 114.9, 55.4, 31.2. **Z isomer**: ¹³C NMR (101 MHz, CDCl₃): δ 159.9, 152.94 (d, J = 295.8 Hz), 150.8, 133.3, 130.2, 128.4, 125.3, 121.1, 116.2 (d, J = 31.5 Hz), 55.4, 34.6, 31.2.

¹⁹F NMR (376 MHz, CDCl₃): δ_F -81.85 (d, J = 16.8 Hz, 0.31F), -86.79 (d, J = 33.0 Hz, 0.69F). GC-MS (EI, QMS, m/z): 207.1, 259.1, 281.1, 301.1, 316.2.

HRMS (ESI): calcd for C₁₉H₂₂FOS⁺, (M+H)⁺, 317.1370, found, 317.1368.

(1-fluoro-2-(4-(trifluoromethyl)phenyl)vinyl)(4-methoxyphenyl)sulfane (3d)

The reaction was performed according to the general procedure using 1-(2,2-difluorovinyl)-4-(trifluoromethyl)benzene with toluene as the solvent. The reaction was run for 36 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (50:1) to afford **3d** (18.0 mg, 55% yield) as a colorless oil. Colorless oil, 55% isolated yield.

Both isomers: ¹H NMR (400 MHz, CDCl₃): δ_H 7.73 - 7.57 (m, 4H), 7.56 - 7.44 (m, 2H), 6.99 - 6.90 (m, 2H), 6.63 (d, J = 16.3 Hz, 0.31H), 6.15 (d, J = 32.7 Hz, 0.6H), 3.87 (s, 2H), 3.86 (s, 1H).

¹³C NMR (101 MHz, CDCl₃): δ_C 160.8, 160.7, 134.6, 134.3, 129.2 (d, J = 1.3 Hz), 128.9, 128.8, 125.6, 125.5, 122.9 (d, J = 4.1 Hz), 121.0, 120.0, 115.3, 114.2 (d, J = 33.8 Hz), 112.6 (d, J = 3.9 Hz), 112.5 (d, J = 2.8 Hz), 55.6.

¹⁹**F NMR (376 MHz, CDCl₃)**: δ_F -62.56 (s, 1F), -62.62 (s, 2F), -78.04 (d, J = 16.3 Hz, 0.33F), -83.62 (d, J = 32.7 Hz, 0.67F).

HRMS (ESI): calcd for C₁₆H₁₃F₄OS⁺, (M+H)⁺, 329.0618, found, 329.0612.

(2-(4-(difluoromethyl)phenyl)-1-fluorovinyl)(4-methoxyphenyl)sulfane (3e)

The reaction was performed according to the general procedure using 1-(difluoromethyl)-4-(2,2-difluorovinyl)benzene with toluene as the solvent. The reaction was run for 36 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (50:1) to afford **3e** (28.8 mg, 93% yield) as a colorless oil. Colorless oil, 93% isolated yield.

Both isomers: ¹H NMR (400 MHz, CDCl₃): δ_H 7.64 - 7.38 (m, 4H), 7.14 (dd, J = 16.6, 8.7 Hz, 2H), 6.98 - 6.90 (m, 2H), 6.74 (d, J = 9.0 Hz, 0.23H), 6.62 (d, J = 16.3 Hz, 0.23H), 6.56 (d, J = 9.0 Hz, 0.46H), 6.38 (d, J = 9.0 Hz, 0.22H), 6.17 (d, J = 32.6 Hz, 0.67H), 3.86 (s, 2.13H), 3.85 (s, 0.87H).

¹³C NMR (101 MHz, CDCl₃): δ_C 160.3, 133.9, 133.8, 130.6 (d, J = 5.4 Hz), 130.4 (d, J = 2.8 Hz), 130.3 (d, J = 8.1 Hz), 121.6, 120.5, 119.6, 119.5, 118.5, 116.0, 115.9, 115.1, 114.9, 114.8, 113.9 (d, J = 12.8 Hz), 113.3, 55.6.

¹⁹F NMR (376 MHz, CDCl₃): δ_F -80.61 (d, J = 16.3 Hz, 0.26F), -80.70 (d, J = 23.5 Hz, 1F), -80.90 (d, J = 23.5 Hz, 1F), -86.46 (d, J = 32.6 Hz, 0.74F).

GC-MS (EI, QMS, m/z): 139.1, 263.1, 281.1, 306.1, 326.1.

HRMS (ESI): calcd for C₁₆H₁₄F₃O₂S⁺, (M+H)⁺, 327.0661, found, 327.0667.

(1-fluoro-2-(3-methoxyphenyl)vinyl)(4-methoxyphenyl)sulfanemethyl (3f)

The reaction was performed according to the general procedure using 1-(2,2-difluorovinyl)-3-methoxybenzene with toluene as the solvent. The reaction was run for 72 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (50:1) to afford **3f** (20.3 mg, 70% yield) as a colorless oil. Colorless oil, 70% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.47 (d, J = 8.4 Hz, 1H), 7.39 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 11.4 Hz, 1H), 7.07 - 7.03 (m, 1H), 6.89 (d, J = 8.4 Hz, 1H), 6.83 (d, J = 8.5 Hz, 2H), 6.63 - 6.53 (d, 0.12H), 6.13 (d, J = 32.8 Hz, 0.63H), 3.80 (s, 6H).

¹³C NMR (151 MHz, CDCl₃): δ_C , 160.0, 159.7, 154.18 (d, J = 310.3 Hz), 134.5 (d, J = 5.5 Hz), 133.8, 132.8, 129.6, 128.6, 121.7, 121.5 (d, J = 7.3 Hz), 115.1 (d, J = 12.2 Hz), 115.1, 114.7, 114.0 (d, J = 2.1 Hz), 113.8 (d, J = 8.8 Hz), 55.5, 55.3.

¹⁹F NMR (376 MHz, CDCl₃): δ_F -80.84 (d, J = 16.9 Hz, 0.08F), -85.47 (d, J = 32.8 Hz, 0.92F). GC-MS (EI, OMS, m/z): 139.1, 242.1, 257.1, 278.1, 290.1.

HRMS (ESI): calcd for C₁₆H₁₅FNaO₂S⁺, (M+Na)⁺, 313.0669, found, 313.0666.

methyl 2-(2-fluoro-2-((4-methoxyphenyl)thio)vinyl)benzoate (3g)

The reaction was performed according to the general procedure using methyl 2-(2,2-difluorovinyl)benzoate with toluene as the solvent. The reaction was run for 48 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (30:1) to afford 3g (25.7 mg, 81% yield) as a colorless oil. Colorless oil, 81% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.99 (dd, J = 28.1, 7.9 Hz, 1H), 7.77 (d, J = 7.9 Hz, 0.29H), 7.61 - 7.49 (m, 2.44H), 7.45 - 7.38 (m, 2H), 7.37 - 7.20 (m, 1H), 6.99 - 6.86 (m, 2H), 3.96 - 3.90 (m, 3H), 3.85 (d, J = 7.0 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃): δ_C , 167.7, 167.3, 160.2, 159.9, 154.8 (d, J = 309.7 Hz), 154.2 (d, J = 296.6 Hz), 138.3, 134.6 (d, J = 9.8 Hz), 133.6 (d, J = 4.2 Hz), 134.1, 133.4, 133.2, 132.1, 132.0, 131.8, 131.3 (d, J = 2.0 Hz), 130.8, 130.7, 130.6, 129.3 (d, J = 3.2 Hz), 128.7, 127.9, 127.8, 127.5, 121.5, 121.1, 116.4, 116.1, 115.0, 115.0, 114.6, 112.5 (d, J = 10.5 Hz), 55.5, 55.47, 52.3, 52.27.

¹⁹F NMR (376 MHz, CDCl₃): δ_F -83.02 (d, J = 15.2 Hz, 0.62 F), -88.46 (d, J = 32.4 Hz, 0.38 F). HRMS (ESI): calcd for C₁₇H₁₅FNaO₃S⁺, (M+Na)⁺, 341.0618, found, 341.0610.

2-(2-fluoro-2-((4-methoxyphenyl)thio)vinyl)benzofuran (3h)

The reaction was performed according to the general procedure using 2-(2,2-difluorovinyl)benzofuran with toluene as the solvent. The reaction was run for 36 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (50:1) to afford **3h** (21.6 mg, 72% yield) as a colorless oil. Colorless oil, 72% isolated yield.

Both isomers: ¹H NMR (400 MHz, CDCl₃): δ_H 7.63 - 7.45 (m, 4H), 7.36 - 7.22 (m, 2H), 7.08 - 6.91 (m, 3H), 6.56 (d, J = 14.3 Hz, 0.2H), 6.24 (d, J = 31.8 Hz, 0.67H), 3.87 (s, 2.22H), 3.86 (s, 0.71H).

E isomer: ¹³C NMR (101 MHz, CDCl₃): δ_C 160.7, 156.3 (d, J = 310.5 Hz), 154.2, 150.1 (d, J = 5.8 Hz), 134.7, 129.0, 124.8, 123.1, 121.1, 120.5, 115.3, 111.1, 106.7 (d, J = 11.4 Hz), 104.1 (d, J = 14.9 Hz), 55.6.

Z isomer: ¹³C NMR (101 MHz, CDCl₃): δ_C 160.65, 156.3 (d, J = 304.0 Hz), 154.2 (s), 150.1 (d, J = 5.8 Hz), 135.0, 128.9, 124.6, 123.1, 121.0, 120.5, 115.1, 111.1, 106.0 (d, J = 6.6 Hz), 104.7 (d, J = 37.0 Hz), 55.57.

¹⁹F NMR (376 MHz, CDCl₃): δ_F -79.83 (d, J = 31.8 Hz, 0.78F), -81.17 (d, J = 14.3 Hz, 0.22F). GC-MS (EI, QMS, m/z): 165.1, 237.1, 267.1, 285.1, 300.1.

HRMS (ESI): calcd for C₁₇H₁₄FO₂S⁺, (M+H)⁺, 301.0693, found, 301.0691.

(2-(4-(difluoromethyl)-3-methoxyphenyl)-1-fluorovinyl)(4-methoxyphenyl)sulfane (3i)

The reaction was performed according to the general procedure using 1-(difluoromethyl)-4-(2,2-difluorovinyl)-2-methoxybenzene with toluene as the solvent. The reaction was run for 42 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (30:1) to afford **3i** (28.9.0 mg, 85% yield) as a colorless oil. Colorless oil, 85% isolated yield.

Both isomers: ¹H NMR (400 MHz, CDCl₃): δ_H 7.49 (dd, J = 24.8, 8.8 Hz, 2H), 7.33 (dd, J = 9.7, 7.7 Hz, 1H), 7.16 (dd, J = 15.2, 8.3 Hz, 1H), 7.07 (ddd, J = 32.9, 8.3, 1.8 Hz, 1H), 6.94 (dd, J = 10.5, 8.9 Hz, 2H), 6.87 (d, J = 8.7 Hz, 0.3H), 6.79 (d, J = 9.3 Hz, 0.2H), 6.60 (dd, J = 12.9, 3.5 Hz, 0.73H), 6.41 (d, J = 9.3 Hz, 0.21H), 6.15 (d, J = 32.5 Hz, 0.65H), 3.92 (d, J = 13.9 Hz, 3H), 3.86 (d, J = 4.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 160.38, 160.34, 154.6 (d, J = 309.6 Hz), 154.20 (d, J = 297.4 Hz), 151.1, 150.9, 139.6, 134.1, 133.8, 131.9 (d, J = 5.3 Hz), 131.4 (d, J = 8.8 Hz), 122.2, 122.2, 122.0 (d, J = 2.8 Hz), 121.8 (d, J = 6.9 Hz), 121.4, 120.4, 118.8, 116.2 (d, J = 3.6 Hz), 115.4, 115.2, 115.1, 114.8, 114.0 (d, J = 12.4 Hz), 113.7 (d, J = 3.7 Hz), 113.0 (d, J = 1.8 Hz), 112.8 (d, J = 9.8 Hz), 56.2, 56.1, 55.6.

¹⁹F NMR (376 MHz, CDCl₃): δ_F -80.18 (d, J = 16.6 Hz, 0.27F), -81.32 (d, J = 21.3 Hz, 1F), -81.52 (d, J = 21.3 Hz, 1F), -86.14 (d, J = 32.5 Hz, 0.73F).

GC-MS (EI, QMS, m/z): 139.1, 256.1, 293.1, 323.2, 356.2.

HRMS (ESI): calcd for C₁₇H₁₆F₃O₃S⁺, (M+H)⁺, 357.0767, found, 357.0775.

(1-fluoro-2,2-diphenylvinyl)(4-methoxyphenyl)sulfane (3j)

The reaction was performed according to the general procedure using (2,2-difluoroethene-1,1-diyl)dibenzene with CH_3CN as the solvent. The reaction was run for 40 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (30:1) to afford **3j** (30.6 mg, 91% yield) as a yellow solid. Yellow solid, mp. 81-84 °C, 91% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: *δ_H* 7.48 - 7.39 (m, 5H), 7.37 - 7.26 (m, 7H), 6.97 - 6.88 (m, 2H), 3.86 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 160.0, 151.4 (d, J = 304.7 Hz), 137.9 (dd, J = 149.4, 3.0 Hz), 133.6, 130.6 (d, J = 2.7 Hz), 129.8 (d, J = 5.3 Hz), 128.4, 128.2 (s), 128.0, 127.9, 127.7, 122.1, 115.0, 55.5. ¹⁹F NMR (376 MHz, CDCl₃): δ_F -88.74 (s, 1F).

GC-MS (EI, QMS, m/z): 165.1, 196.1, 215.1, 228.1, 316.2, 336.2.

HRMS (ESI): calcd for C₂₁H₁₈FO₃S⁺, (M+H)⁺, 337.1057, found, 337.1055.

(1-fluoro-2,2-bis(4-methoxyphenyl)vinyl)(4-methoxyphenyl)sulfane (3k)

The reaction was performed according to the general procedure using 4,4'-(2,2-difluoroethene-1,1-diyl)bis(methoxybenzene) with CH₃CN as the solvent. The reaction was run for 36 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (20:1) to afford **3k** (22.2 mg, 56% yield) as a white solid. White solid, mp. 82-85 °C, 56% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: $\delta_H \delta$ 7.46 - 7.39 (m, 2H), 7.32 - 7.21 (m, 4H), 6.98 - 6.84 (m, 6H), 3.89 (s, 3H), 3.85 (s, 3H), 3.84 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 159.8, 159.3, 159.1, 149.9 (d, J = 302.4 Hz), 133.1, 131.8 (d, J = 2.5 Hz), 131.2 (d, J = 5.3 Hz), 129.9 (d, J = 2.6 Hz), 128.1, 128.0, 122.9, 115.0, 113.7, 113.5, 55.5, 55.4. ¹⁹F NMR (376 MHz, CDCl₃): δ_F -90.50 (s, 1F).

GC-MS (EI, QMS, m/z): 211.2, 226.2, 245.1, 365.2, 396.3.

HRMS (ESI): calcd for C₂₃H₂₂FO₃S⁺, (M+H)⁺, 397.1268, found, 397.1264.

(1-fluoro-2,2-di-p-tolylvinyl)(4-methoxyphenyl)sulfane (31)

The reaction was performed according to the general procedure using 4,4'-(2,2-difluoroethene-1,1-diyl)bis(methylbenzene) with CH₃CN as the solvent. The reaction was run for 36 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (50:1) to afford **31** (31.3 mg, 86% yield) as a colorless oil. Colorless oil, 86% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.45 (d, J = 8.8 Hz, 2H), 7.25 (m, J = 7.3 Hz, 6H), 7.16 (d, J = 8.0 Hz, 2H), 6.93 (d, J = 8.9 Hz, 2H), 3.86 (s, 3H), 2.45 (s, 3H), 2.39 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 159.7, 150.3 (d, J = 303.5 Hz), 137.5 (d, J = 12.8 Hz), 135.8 (d, J = 4.0 Hz), 134.3 (d, J = 2.9 Hz), 133.2, 130.3 (d, J = 3.0 Hz), 129.6 (d, J = 5.4 Hz), 129.5, 129.2, 128.9, 128.7, 122.3, 114.8, 55.4, 21.4, 21.2.

¹⁹F NMR (376 MHz, CDCl₃): δ_F -89.76 (s, 1F).

GC-MS (EI, QMS, m/z): 129.2, 194.2, 229.2, 349.2, 364.2.

HRMS (ESI): calcd for C₂₃H₂₂FOS⁺, (M+H)⁺, 365.1370, found, 365.1371.

(2,2-bis(4-chlorophenyl)-1-fluorovinyl)(4-methoxyphenyl)sulfane (3m)

The reaction was performed according to the general procedure using 4,4'-(2,2-difluoroethene-1,1-diyl)bis(chlorobenzene) with CH₃CN as the solvent. The reaction was run for 36 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (30:1) to afford **3m** (27.5 mg, 68% yield) as a colorless oil. Colorless oil, 68% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.45 - 7.38 (m, 4H), 7.30 (dt, J = 6.8, 2.2 Hz, 2H), 7.24 (dd, J = 10.8, 4.7 Hz, 4H), 6.96 - 6.89 (m, 2H), 3.85 (d, J = 3.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 160.3, 152.3(d, J = 306.3 Hz), 136.6 (d, J = 4.1 Hz), 135.2 (d, J = 2.3 Hz), 134.2, 134.1, 133.7, 132.0 (d, J = 2.6 Hz), 131.0 (d, J = 5.6 Hz), 128.8, 128.5, 125.4 (d, J = 17.5 Hz), 121.2 (s), 115.1 (s), 55.5.

¹⁹F NMR (376 MHz, CDCl₃): δ -86.84 (s, 1F).

GC-MS (EI, QMS, m/z): 199.1, 234.1, 262.1, 336.2, 369.2, 406.2.

HRMS (ESI): calcd for C₂₁H₁₆Cl₂FOS⁺, (M+H)⁺, 405.0277, found, 405.0270.

(1-fluoro-2,2-bis(4-fluorophenyl)vinyl)(4-methoxyphenyl)sulfane (3n)

The reaction was performed according to the general procedure using 4,4'-(2,2-difluoroethene-1,1-diyl)bis(fluorobenzene) with CH₃CN as the solvent. The reaction was run for 36 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (30:1) to afford **3n** (29.1 mg, 78% yield) as a white solid. white solid, mp. 64-67 °C, 78% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.45 - 7.38 (m, 4H), 7.30 (dt, J = 6.8, 2.2 Hz, 2H), 7.24 (dd, J = 10.8, 4.7 Hz, 4H), 6.96 - 6.89 (m, 2H), 3.85 (d, J = 3.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 163.6 (d, J = 42.0 Hz), 161.1 (d, J = 42.7 Hz), 160.2, 151.7 (d, J = 304.6 Hz), 134.4 (t, J = 3.4 Hz), 133.8, 133.0, 132.3 (dd, J = 7.9, 2.7 Hz), 131.5 (dd, J = 7.4, 6.2 Hz), 126.0 (d, J = 17.8 Hz), 121.7 (s), 115.4, 115.33, 115.1, 115.1, 55.5.

¹⁹F NMR (376 MHz, CDCl₃): δ -88.25 (s,1F), -113.03 - -114.19 (m, 2F).

GC-MS (EI, QMS, m/z): 201.1, 264.1, 339.2, 252.2, 372.3.

HRMS (ESI): calcd for C₂₁H₁₆F₃OS⁺, (M+H)⁺, 373.0868, found, 373.0869.

(1-fluoro-2,2-bis(3-(trifluoromethyl)phenyl)vinyl)(4-methoxyphenyl)sulfane (30)

The reaction was performed according to the general procedure using 3,3'-(2,2-difluoroethene-1,1-diyl)bis((trifluoromethyl)benzene) with toluene as the solvent. The reaction was run for 36 h, and the

desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (30:1) to afford **30** (31.1 mg, 66% yield) as a colorless oil. Colorless oil, 66% isolated yield.

¹**H NMR (600 MHz, CDCl₃)**: δ_H 7.64 (d, J = 7.7 Hz, 1H), 7.56 (d, J = 3.6 Hz, 2H), 7.52 (dd, J = 13.1, 7.1 Hz, 2H), 7.46 (d, J = 7.7 Hz, 1H), 7.40 (dd, J = 13.5, 7.6 Hz, 3H), 7.35 (d, J = 7.9 Hz, 1H), 6.88 (d, J = 7.4 Hz, 2H), 3.81 (s, 1H).

¹³C NMR (151 MHz, CDCl₃): δ_C 160.4 (s), 155.0, 152.9, 138.5 (d, J = 4.4 Hz), 137.1 (d, J = 2.6 Hz), 134.6, 133.9 (d, J = 1.3 Hz), 132.8 (d, J = 4.3 Hz), 130.9 (dq, J = 35.6, 32.4 Hz), 129.1, 128.8, 127.5 - 127.3 (m), 126.6, 126.2 (dq, J = 7.5, 3.8 Hz), 125.0 (q, J = 3.6 Hz), 124.8, 124.6 (dd, J = 7.0, 3.4 Hz), 124.3, 124.2, 123.0, 55.40.

¹⁹F NMR (376 MHz, CDCl₃): δ_F -62.52 (s, 3F), -62.62 (s, 3F), -85.15 (s, 1F).

GC-MS (EI, QMS, m/z): 233.1, 257.1, 271.1, 319.1, 334.2.

HRMS (ESI): calcd for C₂₃H₁₆F₇OS⁺, (M+H)⁺, 473.0805, found, 473.0800.

((9H-fluoren-9-ylidene)fluoromethyl)(4-methoxyphenyl)sulfane (3p)

The reaction was performed according to the general procedure using 9-(difluoromethylene)-9H-fluorene with CH_3CN as the solvent. The reaction was run for 18 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (30:1) to afford **3p** (27.0 mg, 81% yield) as a colorless oil. Colorless oil, 81% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 8.57 - 8.45 (m, 1H), 7.99 (d, J = 7.8 Hz, 1H), 7.85 - 7.73 (m, 2H), 7.63 - 7.58 (m, 2H), 7.42 (tt, J = 8.2, 3.6 Hz, 3H), 7.34 (td, J = 7.5, 1.0 Hz, 1H), 7.00- 6.93 (m, 2H), 3.87 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 160.7, 154.5 (d, J = 315.1 Hz), 140.4 (d, J = 4.3 Hz), 138.8, 136.3 (d, J = 4.2 Hz), 135.5 (d, J = 7.6 Hz), 134.87, 128.3 (d, J = 2.0 Hz), 128.1 (d, J = 1.8 Hz), 127.7, 127.2, 126.1 (d, J = 15.9 Hz), 124.5 (d, J = 2.3 Hz), 120.00, 119.6, 119.6, 115.2, 55.6.

¹⁹**F NMR (376 MHz, CDCl₃)**: *δ_F* -72.18 (s, 1F).

GC-MS (EI, QMS, m/z): 183.1,257.1, 271.1, 319.1, 334.2.

HRMS (ESI): calcd for C₂₁H₁₆FOS⁺, (M+H)⁺, 335.0900, found, 335.0897.

(2-(4-chlorophenyl)-1-fluoro-2-phenylvinyl)(4-methoxyphenyl)sulfane (3q)

The reaction was performed according to the general procedure using 1-chloro-4-(2,2-difluoro-1-phenylvinyl)benzene with CH_3CN as the solvent. The reaction was run for 48 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (100:1) to afford **3q** (31.5 mg, 85% yield) as a colorless oil. Colorless oil, 85% isolated yield.

¹H NMR (400 MHz, CDCl₃): δ_H 7.46 - 7.39 (m, 4H), 7.38 - 7.24 (m, 7H), 6.93 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H).

Major isomer: ¹³C NMR (101 MHz, CDCl₃): δ_C 160.0, 151.6 (d, J = 305.2 Hz), 137.0 (d, J = 4.3 Hz), 136.7 (d, J = 1.6 Hz), 133.6, 132.7, 131.8 (d, J = 2.5 Hz), 129.6 (d, J = 5.3 Hz), 128.5, 128.1, 127.8, 126.9 (d, J = 17.8 Hz), 121.6, 114.9, 55.4.

Minor isomer: ¹³C NMR (101 MHz, CDCl₃): δ_C 160.1, 151.96 (d, J = 305.8 Hz), 138.2 (d, J = 3.7 Hz), 135.6, 133.97, 133.4, 131.1 (d, J = 5.7 Hz), 130.6 (d, J = 2.6 Hz), 128.5, 128.4, 128.2, 126.5 (d, J = 16.9 Hz), 121.60, 115.0, 55.5.

¹⁹F NMR (376 MHz, CDCl₃): δ_F -87.47 (s, 0.64F), -88.07 (s, 0.36F).
GC-MS (EI, QMS, m/z): 165.1, 200.1, 228.1, 302.1, 335.2, 370.2.
HRMS (ESI): calcd for C₂₁H₁₇ClFOS⁺, (M+H)⁺, 371.0667, found, 371.0667.

(1-fluoro-2-(4-methoxyphenyl)-2-phenylvinyl)(4-methoxyphenyl)sulfane (3r)

The reaction was performed according to the general procedure using 1-(2,2-difluoro-1-phenylvinyl)-4methoxybenzene with CH_3CN as the solvent. The reaction was run for 48 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (30:1) to afford **3r** (30.0 mg, 82% yield) as a colorless oil. Colorless oil, 82% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.47 - 7.38 (m, 4H), 7.34 (d, J = 4.4 Hz, 2H), 7.33 - 7.25 (m, 3H), 6.98 - 6.85 (m, 4H), 3.89 (s, 1H), 3.85 (s, 1H), 3.85 (s, 2H), 3.84 (s, 2H).

Major isomer: ¹³C NMR (101 MHz, CDCl₃): δ_C 159.7, 158.9, 150.4 (d, J = 303.1 Hz), 139.0 (d, J = 4.0 Hz), 133.2, 131.0 (d, J = 5.9 Hz), 130.44, 129.53, 129.52 (d, J = 2.7 Hz), 128.3, 127.9, 122.7, 115.0, 113.6, 55.5, 55.4.

Minor isomer: ¹³C NMR (101 MHz, CDCl₃): δ_C 159.8, 159.2, 150.7 (d, J = 303.9 Hz), 137.3 (d, J = 1.3 Hz), 133.3, 131.7 (d, J = 2.6 Hz), 130.8 (d, J = 3.6 Hz), 129.7 (d, J = 5.3 Hz), 128.0, 127.5, 122.2, 114.8, 113.6, 55.4, 55.2.

¹⁹**F NMR (376 MHz, CDCl₃)**: *δ_F* -89.23 (s, 0.33F), -90.07 (s, 0.67F).

GC-MS (EI, QMS, m/z): 183.1, 196.1, 258.1, 346.2, 366.2.

HRMS (ESI): calcd for C₂₂H₂₀FO₂S⁺, (M+H)+, 367.1163, found, 367.1165.

1-benzyl-4-((1-(difluoro((4-methoxyphenyl)thio)methyl)-5,6-dimethoxy-2,3-dihydro-1H-inden-2-yl)methyl)piperidine (3s)

The reaction was performed according to the general procedure using 1-benzyl-4-((1-(difluoromethylene)-5,6-dimethoxy-2,3-dihydro-1H-inden-2-yl)methyl)piperidine with CH_3CN as the solvent. The reaction was run for 72 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (10:1) to afford **3s** (41.3 mg, 79% yield) as a colorless oil. Red oil, 79% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.45 (dd, J = 13.0, 8.8 Hz, 2H), 7.31 (dd, J = 7.5, 5.5 Hz, 4H), 7.28 - 7.22 (m, 1H), 6.95 - 6.82 (m, 3H), 6.74 (d, J = 16.9 Hz, 1H), 3.86 (s, 3H), 3.86 (s, 3H), 3.81 (s, 3H), 3.52

(s, 2H), 3.50 - 3.42 (m, 1H), 3.30 (dd, *J* = 15.9, 8.3 Hz, 1H), 2.95 - 2.79 (m, 3H), 2.51 (dd, *J* = 15.9, 3.0 Hz, 1H), 1.98 (t, *J* = 11.2 Hz, 2H), 1.74 (t, *J* = 12.3 Hz, 2H), 1.48 (dd, *J* = 12.3, 6.5 Hz, 1H), 1.43 - 1.25 (m, 4H).

¹³C NMR (101 MHz, CDCl₃): δ_C 161.0, 149.6, 148.1, 138.2, 136.2, 129.3, 128.1, 126.9, 117.0, 114.46, 109.5, 107.4, 63.5, 59.72 (t, *J* = 21.8 Hz), 56.0, 55.8, 55.3, 53.8, 43.6, 38.5, 38.1, 33.5, 32.6, 32.1. ¹⁹F NMR (376 MHz, CDCl₃): δ_F -74.16 (dd, *J* = 33.2, 12.3 Hz, 2F).

HRMS (ESI): calcd for C₃₂H₃₇F₂NNaO₃S⁺, (M+Na)⁺, 576.2354, found, 576.2363.

(1-fluoro-2,2-diphenylvinyl)(phenyl)sulfane (4a)

The reaction was performed according to the general procedure using benzenethiol with CH_3CN as the solvent. The reaction was run for 24 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate to afford **4a** (23.0 mg, 75% yield) as a colorless oil. Colorless oil, 75% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: *δ*_{*H*} 7.50 - 7.45 (m, 2H), 7.42 - 7.38 (m, 7H), 7.37 - 7.29 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ_C 149.4 (d, J = 304.0 Hz), 137.7 (d, J = 3.6 Hz), 136.2 (d, J = 2.4 Hz), 131.8 (d, J = 1.8 Hz), 129.7 (d, J = 17.4 Hz), 129.4 (d, J = 2.1 Hz), 129.2, 128.9 (d, J = 5.2 Hz), 128.4, 127.4, 127.3, 127.0, 127.0, 126.5.

¹⁹**F NMR (376 MHz, CDCl₃)**: *δ_F* -88.49(s, 1F).

GC-MS (EI, QMS, m/z): 165.1, 196.1, 228.1, 386.1, 306.1.

HRMS (ESI): calcd for C₂₀H₁₆FS⁺, (M+H)⁺, 307.0951, found, 307.0958.

(1-fluoro-2,2-diphenylvinyl)(4-fluorophenyl)sulfane (4b)

The reaction was performed according to the general procedure using 4-fluorobenzenethiol with CH_3CN as the solvent. The reaction was run for 72 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate to afford **4b** (17.2 mg, 53% yield) as a colorless oil. White solid, mp. 70-72 °C, 53% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.48 - 7.43 (m, 2H), 7.43 - 7.38 (m, 3H), 7.37 - 7.34 (m, 4H), 7.33 - 7.30 (m, 3H), 7.11 - 7.05 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ_C 162.7 (d, J = 248.0 Hz), 150.4 (d, J = 304.3 Hz), 138.5 (d, J = 3.5 Hz), 136.9, 132.9 (d, J = 8.2 Hz), 130.4 (d, J = 2.3 Hz), 129.80 (d, J = 5.2 Hz), 128.7, 128.4, 128.25 (s), 128.1, 128.0, 127.2, 116.54 (d, J = 22.2 Hz).

¹⁹**F NMR (376 MHz, CDCl₃)**: *δ_F* -89.00 (s, 1F), -113.40 - -113.81 (m, 1F).

GC-MS (EI, QMS, m/z): 165.1, 196.1, 228.1, 286.1, 306.1, 324.1.

HRMS (ESI): calcd for $C_{20}H_{15}F_2S^+$, (M+H)⁺, 325.0857, found, 325.0860.

(4-bromophenyl)(1-fluoro-2,2-diphenylvinyl)sulfane (4c)

The reaction was performed according to the general procedure using 4-bromobenzenethiol with CH_3CN as the solvent. The reaction was run for 48 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (100:1) to afford **4c** (35.0 mg, 91% yield) as a colorless oil. White solid, mp. 74-77 °C, 91% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.52 - 7.47 (m, 2H), 7.42 - 7.38 (m, 3H), 7.36 (t, J = 4.8 Hz, 4H), 7.34 - 7.28 (m, 5H).

¹³C NMR (101 MHz, CDCl₃): δ_C 149.5 (d, J = 303.9 Hz), 138.3 (d, J = 3.4 Hz), 136.7 (d, J = 2.3 Hz), 132.3, 131.8 (d, J = 1.7 Hz), 131.3, 130.1, 129.7, 129.6, 128.2, 128.1, 128.0, 127.9, 121.5.

¹⁹**F NMR (376 MHz, CDCl₃)**: *δ_F* -88.98 (s, 1F).

GC-MS (EI, QMS, m/z): 196.1, 228.1, 272.1, 366.1, 384.1.

HRMS (ESI): calcd for C₂₀H₁₅BrFS⁺, (M+H)⁺, 385.0056, found, 385.0048.

4-((1-fluoro-2,2-diphenylvinyl)thio)aniline (4d)

The reaction was performed according to the general procedure using 4-aminobenzenethiol with CH_3CN as the solvent. The reaction was run for 24 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate to afford **4e** (29.5 mg, 92% yield) as a colorless oil. Yellow solid, mp. 89-91 °C, 92% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.44 (t, J = 7.9 Hz, 3H), 7.41 - 7.27 (m, 9H), 6.70 (d, J = 8.3 Hz, 2H), 3.83 (s, 2H).

¹³C NMR (101 MHz, CDCl₃): δ_C 151.9 (d, J = 304.7 Hz), 147.0, 138.7 (d, J = 4.0 Hz), 137.2, 134.2 , 130.6 (d, J = 2.5 Hz), 129.7 (d, J = 5.3 Hz), 128.2, 128.0, 127.7, 127.5, 126.9 (d, J = 17.1 Hz), 118.5, 115.6.

¹⁹**F NMR (376 MHz, CDCl₃)**: *δ_F* -88.76 (s, 1F).

GC-MS (EI, QMS, m/z): 165.1, 196.1, 228.1, 288.1, 321.1.

HRMS (ESI): calcd for $C_{20}H_{17}FNS^+$, (M+H)+, 322.1060, found, 322.1055.

(3-chlorophenyl)(1-fluoro-2,2-diphenylvinyl)sulfane (4e)

The reaction was performed according to the general procedure using 3-chlorobenzenethiol with CH_3CN as the solvent. The reaction was run for 48 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate to afford **4e** (17.0 mg, 50% yield) as a colorless oil. Colorless oil, 50% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: *δ*_H 7.40 (s, 1H), 7.39 - 7.34 (m, 7H), 7.31 - 7.25 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ_C 148.2 (d, J = 304.1 Hz), 137.4 (d, J = 3.4 Hz), 135.8 (d, J = 2.3 Hz), 134.2, 133.8 (d, J = 2.2 Hz), 131.0, 130.8, 129.4, 129.3 (d, J = 2.7 Hz), 128.9 (d, J = 5.3 Hz), 128.1, 127.4, 127.3, 127.2, 126.6, 126.5.

¹⁹**F NMR (376 MHz, CDCl₃)**: *δ_F* -89.01 (s, 1F).

GC-MS (EI, QMS, m/z): 168.1, 196.1, 228.1, 272.1, 320.1, 340.2.

3-((1-fluoro-2,2-diphenylvinyl)thio)phenol (4f)

The reaction was performed according to the general procedure using 3-hydroxythiophenol with CH_3CN as the solvent. The reaction was run for 72 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate to afford **4f** (24.2 mg, 75% yield) as a colorless oil. Colorless oil, 75% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.41 - 7.36 (m, 7H), 7.34 - 7.30 (m, 3H), 7.24 (t, J = 8.0 Hz, 1H), 7.02 (d, J = 7.8 Hz, 1H), 6.95 (t, J = 2.0 Hz, 1H), 6.77 (ddd, J = 8.1, 2.4, 0.7 Hz, 1H), 5.14 (s, 1H).

¹³C NMR (101 MHz, CDCl₃): δ_C 155.3, 149.0 (d, J = 303.9 Hz), 137.7 (d, J = 3.4 Hz), 136.1 (d, J = 2.4 Hz), 133.3 (d, J = 1.8 Hz), 130.3 (d, J = 17.1 Hz), 129.4, 128.9, 128.9, 127.4, 127.3, 127.1, 127.1, 121.1, 115.5, 113.7.

¹⁹**F NMR (376 MHz, CDCl₃)**: *δ_F* -88.33 (s, 1F).

GC-MS (EI, QMS, m/z): 165.2, 195.9, 208.2, 268.6, 322.2.

HRMS (ESI): calcd for C₂₀H₁₆FOS⁺, (M+H)⁺, 323.0900, found, 323.0901.

(2-bromophenyl)(1-fluoro-2,2-diphenylvinyl)sulfane (4g)

The reaction was performed according to the general procedure using 2-bromobenzenethiol with CH_3CN as the solvent. The reaction was run for 48 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate to afford **4g** (24.2 mg, 63% yield) as a colorless oil. Colorless oil, 63% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.58 (t, J = 6.9 Hz, 2H), 7.44 - 7.35 (m, 8H), 7.35 - 7.28 (m, 3H), 7.19-7.11 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ_C 148.6 (d, J = 303.0 Hz), 138.3 (d, J = 3.4 Hz), 136.9 (d, J = 1.4 Hz), 134.7 (d, J = 2.0 Hz), 133.4, 133.0, 132.8, 130.1 (d, J = 2.4 Hz), 129.9 (d, J = 5.1 Hz), 129.5, 128.4, 128.3, 128.2, 122.9.

¹⁹**F NMR (376 MHz, CDCl₃)**: *δ_F* -89.99 (s, 1F).

GC-MS (EI, QMS, m/z): 165.1, 196.1, 272.1, 285.1, 384.2.

HRMS (ESI): calcd for C₂₀H₁₅BrFS⁺, (M+H)⁺, 385.0056, found, 385.0057.

2-((1-fluoro-2,2-diphenylvinyl)thio)aniline (4h)

The reaction was performed according to the general procedure using 2-aminobenzenethiol with CH_3CN as the solvent. The reaction was run for 48 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate to afford **4h** (24.0 mg, 75% yield) as a colorless oil. Colorless oil, 75% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.49 - 7.40 (m, 4H), 7.39 - 7.34 (m, 2H), 7.34 - 7.27 (m, 5H), 7.22 (td, J = 7.9, 1.5 Hz, 1H), 6.81- 6.70 (m, 2H), 4.15 (s, 2H).

¹³C NMR (101 MHz, CDCl₃): δ_C 150.6 (d, J = 305.7 Hz), 148.6, 138.5 (d, J = 4.1 Hz), 137.0, 136.5, 131.1, 130.6 (d, J = 2.6 Hz), 129.7 (d, J = 5.4 Hz), 128.48, 128.1, 127.7, 127.6, 127.4, 118.7, 115.5, 112.94.

¹⁹**F NMR (376 MHz, CDCl₃)**: *δ_F* -88.73 (s, 1F).

GC-MS (EI, QMS, m/z): 165.1, 196.1, 267.1, 301.1, 321.1.

HRMS (ESI): calcd for C₂₀H₁₇FNS⁺, (M+H)+, 322.1060, found, 322.1069.

(2-bromobenzyl)(1-fluoro-2,2-diphenylvinyl)sulfanemethyl (4i)

The reaction was performed according to the general procedure using 2-bromobenzylthiol with CH_3CN as the solvent. The reaction was run for 24 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate (100:1) to afford **4i** (31.8 mg, 80% yield) as a colorless oil. Colorless oil, 80% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.62 (dd, J = 7.9, 0.9 Hz, 1H), 7.37 - 7.29 (m, 5H), 7.28 - 7.23 (m, 5H), 7.19 (td, J = 7.7, 1.8 Hz, 1H), 6.87 (dd, J = 7.7, 1.4 Hz, 2H), 4.16 (s, 2H).

¹³C NMR (101 MHz, CDCl₃): δ_C 150.3 (d, J = 302.6 Hz), 137.5 (d, J = 4.3 Hz), 136.4 (d, J = 1.7 Hz), 135.8, 132.3, 130.2, 129.3, 128.8, 128.7, 128.6, 128.2, 127.2, 127.2, 126.6, 126.6, 123.8, 36.2.

¹⁹F NMR (376 MHz, CDCl₃): δ_F -89.40 (s,1F).

GC-MS (EI, QMS, m/z): 165.1, 196.1, 229.2, 398.1, 400.1.

HRMS (ESI): calcd for C₂₁H₁₇BrFS⁺, (M+H)⁺, 399.0213, found, 399.0211.

methyl 2-((1-fluoro-2,2-diphenylvinyl)thio)acetate (4j)

The reaction was performed according to the general procedure using methyl thioglycolate with CH_3CN as the solvent. The reaction was run for 24 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate to afford **4j** (30.0 mg, 86% yield) as a colorless oil. Colorless oil, 86% isolated yield.

¹H NMR (400 MHz, CDCl₃): δ_H 7.44 - 7.37 (m, 3H), 7.37 - 7.27 (m, 7H), 3.78 (s, 3H), 3.58 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ_C 169.5, 150.0 (d, J = 303.3 Hz), 138.1 (d, J = 4.4 Hz), 137.0, 130.5 (d, J = 2.5 Hz), 129.7 (d, J = 5.1 Hz), 128.40 128.21 128.1, 127.9, 127.8, 52.8, 33.4.

¹⁹**F NMR (376 MHz, CDCl₃)**: *δ_F* -93.31 (s,1F).

GC-MS (EI, QMS, m/z): 165.1, 196.1, 208.1, 229.1, 302.1.

HRMS (ESI): calcd for C₁₇H₁₆FO₂S⁺, (M+H)⁺, 303.0850, found, 303.0841.

ethyl 2-((1-fluoro-2,2-diphenylvinyl)thio)propanoate (4k)

The reaction was performed according to the general procedure using ethyl 2-mercaptopropionate with CH_3CN as the solvent. The reaction was run for 18 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate to afford **4k** (31.5 mg, 95% yield) as a colorless oil. Colorless oil, 95% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.42 - 7.35 (m, 4H), 7.35 - 7.30 (m, 4H), 7.27 - 7.23 (m, 2H), 4.22 (q, J = 7.1 Hz, 2H), 3.92 (q, J = 7.2 Hz, 1H), 1.54 (d, J = 7.2 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 171.8, 150.4 (d, *J* = 302.3 Hz), 138.3 (d, *J* = 4.0 Hz), 137.1, 130.5 (d, *J* = 2.4 Hz), 129.8 (d, *J* = 5.0 Hz), 129.7, 128.3, 128.2, 128.0, 127.8, 61.62 42.62 17.1, 14.2.

¹⁹F NMR (376 MHz, CDCl₃): δ_F -88.08 (s,1F).

GC-MS (EI, QMS, m/z):165.1, 196.1, 209.1, 228.6, 257.1, 330.1;

HRMS (ESI): calcd for C₁₈H₁₈FO₂S⁺, (M+H)⁺, 317.1006, found, 317.1004.

cyclohexyl(1-fluoro-2,2-diphenylvinyl)sulfaneethyl (41)

The reaction was performed according to the general procedure using cyclohexanethiol with CH_3CN as the solvent. The reaction was run for 36 h, and the desired product was purified by flash column chromatography with Petroleum ether/Ethyl acetate to afford **41** (26.5 mg, 85% yield) as a colorless oil. White solid, mp. 59-61 °C, 85% isolated yield.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.39 - 7.29 (m, 7H), 7.26 (ddd, J = 7.3, 3.0, 1.6 Hz, 3H), 3.28 - 3.18 (m, 1H), 2.03 (dd, J = 9.3, 4.1 Hz, 2H), 1.76 (dd, J = 9.0, 3.8 Hz, 2H), 1.62 (dd, J = 13.3, 5.2 Hz, 1H), 1.48 - 1.32 (m, 4H), 1.31 - 1.22 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ_C 152.2 (d, J = 301.7 Hz), 138.9 (d, J = 4.6 Hz), 137.6 (s), 130.7 (d, J = 3.2 Hz), 129.7 (d, J = 5.3 Hz), 128.2, 128.1, 127.6, 127.4, 45.2, 33.4, 26.1, 25.7.

¹⁹F NMR (376 MHz, CDCl₃): δ_F -87.21 (s, 1F).

GC-MS (EI, QMS, m/z): 55.1, 165.1, 196.1, 210.1, 231.1, 312.3.

HRMS (ESI): calcd for $C_{20}H_{22}FS^+$, (M+H)⁺, 313.1421, found, 313.1416.

6. Late-stage Monofluoroalkenylation of complex molecules

Dehydrocholic Acid (416 mg, 1.0 mmol), 1-hydroxybenzotriazole hydrate (HOBT) (135 mg, 1mmol) and 1,3-dicyclohexylcarbodiimide (DCC) (206 mg, 1.0 mmol) were added in DMF (10 mL) at 0-5 °C. After 1 h of stirring at the same temperature, 4,4'-Dithiodianilineaniline (124 mg, 0.5 mmol) was added,

and the resulting mixture was left stirring overnight at room temperature. DMF was distilled off, the crude was diluted with EA (20 mL), washed with 1 N HCl (2×10 mL), with a saturated solution of NaHCO₃ (2×10 mL), and with brine, dried over Na₂SO₄, and evaporated to give a crude product.

The residues without further purification and dissolved in 20 mL DMF/H2O (V/V = 1:1), and the resulting mixture was stirred for 12 hours at room temperature. DMF was removed and then extracted with EA (15 mL for three times). The solvent was concentrated and purification by chromatography on silica gel to afford the desired product.

¹**H** NMR (400 MHz, CDCl₃): δ_H 7.45 (d, J = 8.6 Hz, 2H), 7.29 (d, J = 8.6 Hz, 2H), 3.46 (s, 1H), 3.03 - 2.84 (m, 4H), 2.54 - 2.24 (m, 9H), 2.23 - 2.13 (m, 2 H), 2.12 - 2.05 (m, 3H), 2.04 - 1.96 (m, 2H), 1.89 (td, J = 11.4, 7.1 Hz, 1H), 1.73 - 1.62 (m, 3H), 1.45 (s, 4H), 1.41 (s, 1H), 1.30 (s, 1H), 1.12 (s, 3H), 0.92 (d, J = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ_C 212.1, 209.1, 208.8, 171.5, 136.2, 130.7, 125.0, 120.5, 56.9, 51.8, 49.0, 46.8, 45.5, 45.0, 42.8, 38.7, 36.5, 36.0, 35.4, 35.3, 34.4, 30.8, 28.1, 27.6, 25.1, 21.9, 18.8, 11.9.

Synthesis of **5a**: **1b** (0.2 mmol), Dehydrocholic Acid derivative (0.1 mmol), $Ir(dFCF_3ppy)_2dtbpyPF_6$ (2.0 mol %), K_2CO_3 (0.2 mmol), was combined in a 10 mL flask. 1mL solvent CH₃CN was added. The flask was caped and degassed oxygen with N₂ for three times at -78 °C. Then, the reaction flask was exposed to 15 W blue leds until full completely consumed of *gem*-difluoroalkenes (monitored by TLC). After the reaction finished, the solvent was removed with evaporator and then filtered through an inch of silica gel. The filtrate was concentrated and purification by chromatography on silica gel to afford the desired product **5a**.

¹**H NMR (400 MHz, CDCl₃)**: δ_H 7.61 - 7.52 (m, 3H), 7.44 - 7.37 (m, 5H), 7.31 (d, J = 6.0 Hz, 6H), 3.01 - 2.83 (m, 3H), 2.48 (ddd, J = 16.0, 11.1, 5.0 Hz, 2H), 2.42 - 2.31 (m, 4H), 2.30 - 2.13 (m, 4H), 2.13 - 1.95 (m, 6H), 1.88 (dd, J = 18.4, 11.2 Hz, 1H), 1.74 (s, 1H), 1.65 (td, J = 14.4, 3.8 Hz, 1H), 1.55 (dd, J = 8.8, 4.8 Hz, 1H), 1.42 (d, J = 10.6 Hz, 5H), 1.36 - 1.27 (m, 2H), 1.10 (s, 3H), 0.91 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ_C 212.2, 209.2, 209.0, 171.7, 150.3 (d, J = 304.7 Hz), 138.4 (d, J = 3.8 Hz), 137.9, 136.9 (d, J = 2.7 Hz), 131.5, 130.3 (d, J = 2.9 Hz), 129.7 (d, J = 5.3 Hz), 128.3, 128.1, 127.9 (s), 127.9, 120.4, 60.4, 56.9), 51.8, 49.0, 46.85, 45.5, 45.0, 42.8, 38.7, 36.5, 36.0, 35.3, 35.3, 34.4, 30.8, 27.7, 25.2, 21.9, 18.8, 14.2, 11.9.

¹⁹F NMR (376 MHz, CDCl₃): δ_F -88.79 (s, 1F).

HRMS (ESI): calcd for $C_{45}H_{51}FNO_4S^+$, (M+H)⁺, 720.3517, found, 720.3519.

In a 25 mL dried Schelenk flask, 4,4'-dithiobisbenzoic acid (306 mg, 1.0 mmol) was dissolved in 5 mL dry DCM, oxalyl chloride (280 mg, 2.2 equiv) slowly (one drop of DMF was added) was added in the reaction system. The reaction system was stirred at rt for 4 hours. The solvent was removed in vacuo to afford chloride. Then, Diosgenin (828 mg, 2.0 mmol), Et₃N (222 mg, 2.2 mmol) and DMAP (5 mol%)

was dissolved in 20 mL dry DCM, the chloride was added to the reaction system at room temperature. The resulting mixture was refluxed under N_2 for 12 hours. 10 mL water was added and extracted with DCM (10 mL* 3). The combined DCM phases were dried over MgSO₄ and the solvent was removed in vacuo.

The residues without further purification and dissolved in 20 mL DMF/H₂O (V/V = 1:1), and the resulting mixture was stirred for 12 hours at room temperature. DMF was removed and then extracted with EA for three times. The solvent was concentrated and purification by chromatography on silica gel to afford the desired product.

¹**H** NMR (600 MHz, CDCl₃): δ_H 7.77 (d, J = 7.9 Hz, 2H), 7.20 (d, J = 11.2 Hz, 2H), 5.19 (d, J = 51.4 Hz, 2H), 4.35 (dd, J = 14.3, 7.0 Hz, 1H), 3.52 (s, 1H), 3.41 (d, J = 9.7 Hz, 1H), 3.31 (t, J = 10.8 Hz, 1H), 2.51 (d, J = 14.9 Hz, 1H), 2.27 (d, J = 15.1 Hz, 1H), 1.96 - 1.89 (m, 2H), 1.82 (dt, J = 23.8, 15.9 Hz, 3H), 1.71 (dd, J = 20.7, 12.3 Hz, 2H), 1.66 - 1.47 (m, 9H), 1.45 - 1.35 (m, 3H), 1.22 (dt, J = 13.0, 9.8 Hz, 1H), 1.12 (dd, J = 28.1, 12.9 Hz, 2H), 1.00 (s, 3H), 0.91 (d, J = 6.6 Hz, 3H), 0.73 (d, J = 9.8 Hz, 6H);

¹³C NMR (151 MHz, CDCl₃): δ_C 164.6, 137.6, 137.1, 129.3, 127.2, 121.2, 108.5, 80.0, 70.3, 66.0, 61.2, 55.6, 49.4, 40.8, 39.4, 38.9, 36.4, 35.7, 33.1, 31.2, 31.0, 30.5, 29.4, 27.9, 25.5, 19.7, 18.1, 16.3, 15.5, 13.7.

Synthesis of **5b**: **1b** (0.2 mmol), diosgenin derivative (0.1 mmol), $Ir(dFCF_3ppy)_2dtbpyPF_6$ (2.0 mol%), K_2CO_3 (0.2 mmol), was combined in a 10 mL flask. 1mL solvent CH₃CN was added. The flask was caped and degassed oxygen with N₂ for three times at -78 °C. Then, the reaction flask was exposed to 15 W blue leds until full completely consumed of *gem*-difluoroalkenes (monitored by TLC). After the reaction finished, the solvent was removed with evaporator and then filtered through an inch of silica gel. The filtrate was concentrated and purification by chromatography on silica gel to afford the desired product **5b**.

¹**H NMR (600 MHz, CDCl₃)**: δ_H 7.94 (d, J = 7.9 Hz, 2H), 7.41 (d, J = 7.7 Hz, 2H), 7.37 - 7.30 (m, 8H), 7.25 (s, 2H), 5.28 (d, J = 45.4 Hz, 2H), 4.41 (d, J = 6.9 Hz, 1H), 3.47 (s, 1H), 3.38 (t, J = 10.7 Hz, 1H), 2.58 (d, J = 14.7 Hz, 1H), 2.34 (d, J = 15.1 Hz, 1H), 1.99 (d, J = 11.0 Hz, 2H), 1.95 - 1.82 (m, 3H), 1.77 (dd, J = 19.8, 10.8 Hz, 2H), 1.73 - 1.67 (m, 2H), 1.66 - 1.54 (m, 6H), 1.48 (dd, J = 27.4, 13.4 Hz, 3H), 1.28 (dd, J = 19.1, 7.0 Hz, 2H), 1.20 (dd, J = 25.3, 11.1 Hz, 2H), 1.13 (d, J = 14.2 Hz, 1H), 1.07 (s, 3H), 0.98 (d, J = 5.6 Hz, 3H), 0.79 (d, J = 10.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): δ_C 165.5, 148.5 (d, J = 303.5 Hz), 139.4 (d, J = 3.2 Hz), 138.6, 136.7 (d, J = 2.5 Hz), 130.4, 130.1 (d, J = 2.8 Hz), 129.9 (d, J = 5.3 Hz), 128.4, 128.4 (d, J = 4.1 Hz), 128.3 (d, J = 4.3 Hz), 127.6, 122.3, 109.4, 80.8, 71.2, 66.9, 62.1, 56.5, 50.2, 41.6, 40.3, 39.8, 37.3, 36.6, 33.9, 32.1, 31.8, 31.4, 30.3, 28.8, 26.3, 20.6, 19.0, 17.2, 16.3, 14.5.

¹⁹F NMR (376 MHz, CDCl₃): δ -89.35 (s, 1F).

HRMS (ESI): calcd for C₄₈H₅₆FO₄S⁺, (M+H)⁺, 747.3878, found, 747.3883.

7. Mechanistic studies

a) Radical intermediate trapping experiment

1b (0.1 mmol), **2** (0.15 mmol), phenylacrylate (0.2 mmol), $Ir(dFCF_3ppy)_2dtbpyPF_6$ (1.0 mol %), K₂CO₃ (0.2 mmol), was combined in a 10 mL flask. 1 mL solvent CH₃CN was added. The flask was caped and degassed oxygen with N₂ for three times at -78 °C. Then, the reaction flask was exposed to 15 W blue leds until full completely consumed of *gem*-difluoroalkenes (monitored by TLC). After the reaction finished, the solvent was removed with evaporator and then filtered through an inch of silica gel. The filtrate was concentrated and purification by chromatography on silica gel to afford the desired product **4a** and **6**. ¹H NMR (400 MHz, CDCl₃): δ_H 7.49 (d, *J* = 8.6 Hz, 2H), 7.43 (t, *J* = 7.8 Hz, 2H), 7.29 (dd, *J* = 13.0, 5.5 Hz, 1H), 7.13 (d, *J* = 7.7 Hz, 2H), 6.93 (d, *J* = 8.6 Hz, 2H), 3.86 (s, 3H), 3.21 (t, *J* = 7.3 Hz, 2H), 2.86 (t, *J* = 7.3 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃): δ_C 170.5, 159.6, 150.6, 134.6, 129.5, 126.0, 124.9, 121.6, 114.8, 55.4, 55.4, 34.8, 31.3.

b) Radical inhibition experiments

1b (0.1 mmol), thiophenol **2** (0.15 mmol), radical inhibitor (0.2 mmol), $Ir(dFCF_3ppy)_2dtbpyPF_6$ (1.0 mol %), K₂CO₃ (0.2 mmol), was combined in a 10 mL flask. 1 mL solvent CH₃CN was added. The flask was caped and degassed oxygen with N₂ for three times at -78 °C. Then, the reaction flask was exposed to 15 W blue leds until full completely consumed of *gem*-difluoroalkenes (monitored by TLC). After the reaction finished, the solvent was removed with evaporator and then filtered through an inch of silica gel. Subsequently, the reaction mixture was detected on GC-MS. The addition of radical inhibitor directly inhibited this transformation, which indicate the radical involved in the transformation through a single-electron transfer. The ¹H NMR (400 MHz, CDCl₃): δ_H 7.55 (d, *J* = 7.5 Hz, 4H), 7.35 (t, *J* = 7.5 Hz, 4H), 7.28 (dd, *J* = 13.3, 6.1 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃): δ_H 129.2, 127.6, 127.3.

c) Control experiment to rule out the radical addition/elimination pathway

1t (0.1 mmol), thiophenol **2** (0.15 mmol), (0.2 mmol), $Ir(dFCF_3ppy)_2dtbpyPF_6$ (1.0 mol %), K_2CO_3 (0.2 mmol), was combined in a 10 mL flask. 1 mL solvent CH₃CN was added. The flask was caped and degassed oxygen with N₂ for three times at -78 °C. Then, the reaction flask was exposed to 15 W blue leds until full completely consumed of *gem*-difluoroalkenes (monitored by TLC). After the reaction finished, the solvent was removed with evaporator and then filtered through an inch of silica gel. Subsequently, the reaction mixture was detected on GC-MS, which 3t' was the main product indicate the radical addition/elimination process.

d) Radical intermediate trapping experiment

8 (0.1 mmol), **2a** (0.15 mmol), $Ir(dFCF_3ppy)_2dtbpyPF_6$ (1.0 mol %), K_2CO_3 (0.2 mmol), was combined in a 10 mL flask. 1 mL solvent CH₃CN was added. The flask was caped and degassed oxygen with N₂ for three times at -78 °C. Then, the reaction flask was exposed to 15 W blue leds until full completely consumed of *gem*-difluoroalkenes (monitored by TLC). After the reaction finished, the solvent was

removed with evaporator and then filtered through an inch of silica gel. Subsequently, the reaction mixture was detected on GC-MS and there was no desired detected.

e) Radical intermediate trapping experiment

10 (0.1 mmol), **2a** (0.15 mmol), Ir(dFCF₃ppy)₂dtbpyPF₆ (1.0 mol %), K₂CO₃ (0.2 mmol), was combined in a 10 mL flask. 1 mL solvent CH₃CN was added. The flask was caped and degassed oxygen with N₂ for three times at -78 °C. Then, the reaction flask was exposed to 15 W blue leds until full completely consumed of *gem*-difluoroalkenes (monitored by TLC). After the reaction finished, the solvent was removed with evaporator and then filtered through an inch of silica gel. The filtrate was concentrated and purification by chromatography on silica gel to afford the desired product **3a** rather than the defluorination product **11** . ¹H NMR (400 MHz, CDCl₃): δ_H 7.48 - 7.39 (m, 5H), 7.37 - 7.26 (m, 7H), 6.97 - 6.88 (m, 2H), 3.86 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ_C 160.0, 151.4 (d, *J* = 304.7 Hz), 137.9 (dd, *J* = 149.4, 3.0 Hz), 133.6, 130.6 (d, *J* = 2.7 Hz), 129.8 (d, *J* = 5.3 Hz), 128.4, 128.2 (s), 128.0, 127.9, 127.7, 122.1, 115.0, 55.5.

8. Reference

1. A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, *Organometallics* **1996**, *15*, 1518.

2. Zheng, J.; Cai, J.; Lin, J.-H.; Guo, Y.; Xiao, J.-C. Chem. Commun. 2013, 49, 7513.

3. Hu, M.; He, Z.; Gao, B.; Li, L.; Ni, C.; Hu, J. J. Am. Chem. Soc. 2013, 135, 17302.

4. Li, Y.; Hu, J. J. Fluo. Chem. 2008, 129, 382.

9. Spectra for Substrates and Products Product Characterization

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 -1 fl (ppm)

12.5 11.5 10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -1.0 -2.0 fl (ppm)

20 10 0 90 80 70 60 50 30 40

66 . 68-----

