Supporting Information

Photoredox Asymmetric Catalytic Enantioconvergent Substitution of 3-Chlorooxindoles

Guangkuo Zeng,^a Yunqiang Li,^a Baokun Qiao,^a Xiaowei Zhao,^{*,a} and Zhiyong Jiang^{*,a,b}

^aKey Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan, China 475004

^bHenan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China 453007

Table of Contents

1.	General information	S3-S4
2.	Optimization of reaction conditions	
		S5-S12
3.	General experimental procedures	~ - ~ ~ -
		S13-S17
4.	Procedures for the synthesis of 3u-v and the modification	
-		S18-S19
э.	Mechanism studies	520 524
6.	Determination of the absolute configurations	520-524
		S25-39
7	Characterization of adducts	
		S40-S87
8	Copies of NMR spectra	
		S88-S160

1. General information

General procedures and methods

Experiments involving moisture and/or air sensitive components were performed under a positive pressure of argon in oven-dried glassware equipped with a rubber septum inlet. Dried solvents and liquid reagents were transferred by oven-dried syringes or hypodermic syringe cooled to ambient temperature in a desiccator. Moisture in non-volatile reagents/compounds was removed in high *vacuo* by means of an oil pump and subsequent purging with nitrogen. Solvents were removed *in vacuo* under ~30 mmHg and heated with a water bath at 30–35 °C using rotary evaporator with aspirator. All experiments were monitored by analytical thin layer chromatography (TLC). TLC was performed on pre-coated plates, 60 F₂₅₄. After elution, plate was visualized under UV illumination at 254 nm for UV active material. Further visualization was achieved by staining Ce(SO₄)₂ and phosphomolybdic acid solution. For those using the aqueous stains, the TLC plates were heated on a hot plate.

Columns for flash chromatography (FC) contained *silica gel* 200–300 mesh. Columns were packed as slurry of *silica gel* in petroleum ether and equilibrated solution using the appropriate solvent system. The elution was assisted by applying pressure of about 2 atm with an air pump.

Instrumentations

Proton nuclear magnetic resonance (¹H NMR) and carbon NMR (¹³C NMR) were recorded in CDCl₃ otherwise stated. Chemical shifts are reported in parts per million (ppm), using the residual solvent signal as an internal standard: CDCl₃ (¹H NMR: δ 7.26, singlet; ¹³C NMR: δ 77.0, triplet). Multiplicities were given as: *s* (singlet), *d* (doublet), *t* (triplet), *q* (quartet), *quintet*, *m* (multiplets), *dd* (doublet of doublets), *dt* (doublet of triplets), and *br* (broad). Coupling constants (*J*) were recorded in hertz (Hz). The number of proton atoms (*n*) for a given resonance was indicated by *n*H. The number of carbon atoms (*n*) for a given resonance was indicated by *n*C. HRMS (Analyzer: TOF) was reported in units of mass of charge ratio (m/z). Mass samples were dissolved in CH₃CN (HPLC Grade) unless otherwise stated. Optical rotations were recorded on a polarimeter with a sodium lamp of wavelength 589 nm and reported as follows; $[\alpha]_{\lambda}^{T^{\circ}C}$ (*c* = g/100 mL, solvent). Melting points were determined

on a melting point apparatus.

Enantiomeric excesses were determined by chiral High Performance Liquid Chromatography (HPLC) analysis. UV detection was monitored at 254 nm and 210 nm at the same time. HPLC samples were dissolved in HPLC grade isopropanol (IPA) unless otherwise stated.

Materials

All commercial reagents were purchased with the highest purity grade. They were used without further purification unless specified. All solvents used, mainly petroleum ether (PE) and ethyl acetate (EtOAc) were distilled. Anhydrous dichloromethane (DCM), CH₃CN were freshly distilled from CaH₂ and stored under N₂ atmosphere. THF, Et₂O, MTBE, 1,2-dimethoxyethane, *t*BuPh, mesitylene, CPME, and toluene were freshly distilled from sodium/benzophenone before use. All compounds synthesized were stored in a -20 °C freezer and light-sensitive compounds were protected with aluminium foil.

2. Optimization of reaction conditions

Table S1. Optimization of the Reaction Conditions of 1a with 2a.^a

7	DPZ (0.5)	C2 (10)	Br	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	25	>95	47
8	DPZ (0.5)	C3 (10)	Br	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	25	>95	9
9	DPZ (0.5)	C4 (10)	Br	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	25	>95	44
10	DPZ (0.5)	C5 (10)	Br	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	25	>95	11
11	DPZ (0.5)	C6 (10)	Br	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	25	>95	11
12	DPZ (0.5)	C7 (10)	Br	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	25	>95	51
13	DPZ (0.5)	C8 (10)	Br	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	25	>95	54
14	DPZ (0.5)	C9 (10)	Br	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	25	>95	36
15	DPZ (0.5)	C10 (10)	Br	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	25	>95	9
16	DPZ (0.5)	C11 (10)	Br	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	25	>95	21
17	DPZ (0.5)	C12 (10)	Br	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	25	>95	17
18	DPZ (0.5)	C13 (10)	Br	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	25	>95	42
19	DPZ (0.5)	C14 (10)	Br	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	25	>95	15
20	DPZ (0.5)	C15 (10)	Br	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	25	>95	19
21	DPZ (0.5)	C16 (10)	Br	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	25	>95	11
22	DPZ (0.5)	C17 (10)	Br	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	25	>95	23
23	DPZ (0.5)	C1 (10)	Br	Ts	NaHCO ₃ (3.0)	THF (1.0)	25	>95	45

24	DPZ (0.5)	C1 (10)	Br	Ts	NaHCO ₃ (3.0)	$Et_2O(1.0)$	25	0	
25	DPZ (0.5)	C1 (10)	Br	Ts	NaHCO ₃ (3.0)	CH ₃ CN (1.0)	25	>95	5
26	DPZ (0.5)	C1 (10)	Br	Ts	NaHCO ₃ (3.0)	Tol (1.0)	25	>95	38
27	DPZ (0.5)	C1 (10)	Br	Ts	NaHCO ₃ (3.0)	DCM (1.0)	25	>95	37
28	DPZ (0.5)	C1 (10)	Br	Ts	NaHCO ₃ (3.0)	CPME (1.0)	25	>95	27
29	DPZ (0.5)	C1 (10)	Br	Ts	NaHCO ₃ (3.0)	mesitylene (1.0)	25	>95	33
30	DPZ (0.5)	C1 (10)	Br	Ts	NaHCO ₃ (3.0)	PhCl (1.0)	25	>95	35
31	DPZ (0.5)	C1 (10)	Br	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	10	>95	78
32	DPZ (0.5)	C1 (10)	Br	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	-25	20	82
33	DPZ (0.5)	C1 (10)	Br	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	-35	15	84
34 ⁱ	DPZ (0.5)	C1 (10)	Cl	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	25	>95	
35	DPZ (0.5)	C1 (10)	Cl	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	10	>95	76
36	DPZ (0.5)	C1 (10)	Cl	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	0	80	77
37	DPZ (0.5)	C1 (10)	Cl	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	-15	60	82
38	DPZ (0.5)	C1 (10)	Cl	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	-25	50	83
39	DPZ (0.5)	C1 (10)	Cl	Ts	NaHCO ₃ (3.0)	MTBE (1.0)	-30	40	85
40	DPZ (0.5)	C1 (10)	Cl	Boc	NaHCO ₃ (3.0)	MTBE (1.0)	-30	40	72

41	DPZ (0.5)	C1 (10)	Cl	Ms	$NaHCO_3(3.0)$	MTBE (1.0)	-30	40	82
42	DPZ (0.5)	C1 (10)	Cl	4-ClPhSO ₂	NaHCO ₃ (3.0)	MTBE (1.0)	-30	40	88
43	DPZ (0.5)	C1 (10)	Cl	4-BrPhSO ₂	NaHCO ₃ (3.0)	MTBE (1.0)	-30	40	81
44	DPZ (0.5)	C1 (10)	Cl	4- <i>i</i> PrPhSO ₂	NaHCO ₃ (3.0)	MTBE (1.0)	-30	40	75
45	DPZ (0.5)	C1 (10)	Cl	4-CF ₃ PhSO ₂	NaHCO ₃ (3.0)	MTBE (1.0)	-30	40	83
46	DPZ (0.5)	C1 (10)	Cl	4-FPhSO ₂	NaHCO ₃ (3.0)	MTBE (1.0)	-30	40	89
47	DPZ (0.5)	C1 (10)	Cl	2-MePhSO ₂	NaHCO ₃ (3.0)	MTBE (1.0)	-30	40	56
48	DPZ (0.5)	C1 (10)	Cl	4-FPhSO ₂	Na ₂ CO ₃ (3.0)	MTBE (1.0)	-30	<10	88
49	DPZ (0.5)	C1 (10)	Cl	4-FPhSO ₂	K ₂ CO ₃ (3.0)	MTBE (1.0)	-30	0	
50	DPZ (0.5)	C1 (10)	Cl	4-FPhSO ₂	K ₃ PO ₄ (3.0)	MTBE (1.0)	-30	0	
51	DPZ (0.5)	C1 (10)	Cl	4-FPhSO ₂	K ₂ HPO ₄ (3.0)	MTBE (1.0)	-30	30	88
52	DPZ (0.5)	C1 (10)	Cl	4-FPhSO ₂	NaOAc (3.0)	MTBE (1.0)	-30	60	25
53	DPZ (0.5)	C1 (10)	Cl	4-FPhSO ₂	KH ₂ PO ₄ (3.0)	MTBE (1.0)	-30	20	83
54	DPZ (0.5)	C1 (10)	Cl	4-FPhSO ₂	NaF (3.0)	MTBE (1.0)	-30	0	
55	DPZ (0.5)	C1 (10)	Cl	4-FPhSO ₂	KF (3.0)	MTBE (1.0)	-30	30	75
56	DPZ (0.5)	C1 (10)	Cl	4-FPhSO ₂	NaH ₂ PO ₄ (3.0)	MTBE (1.0)	-30	20	80
57	DPZ (0.5)	C1 (10)	Cl	4-FPhSO ₂	Na ₂ HPO ₄ (3.0)	MTBE (1.0)	-30	20	86

58	DPZ (0.5)	C1 (10)	Cl	4-FPhSO ₂	LiOAc (3.0)	MTBE (1.0)	-30	30	40
59	DPZ (0.2)	C1 (10)	Cl	4-FPhSO ₂	NaHCO ₃ (3.0)	MTBE (1.0)	-30	20	88
60	DPZ (1.0)	C1 (10)	Cl	4-FPhSO ₂	NaHCO ₃ (3.0)	MTBE (1.0)	-30	40	88
61	DPZ (1.0)	C1 (10)	Cl	4-FPhSO ₂	NaHCO ₃ (3.0)	MTBE (1.5)	-30	30	89
62	DPZ (1.0)	C1 (10)	Cl	4-FPhSO ₂	NaHCO ₃ (3.0)	MTBE (2.0)	-30	30	88
63	DPZ (1.0)	C1 (10)	Cl	4-FPhSO ₂	NaHCO ₃ (3.0)	MTBE (3.0)	-30	30	88
64	DPZ (1.0)	C1 (10)	Cl	4-FPhSO ₂	NaHCO ₃ (3.0)	MTBE/THF = 1:1 (1.5)	-40	80	81
65	DPZ (1.0)	C1 (10)	Cl	4-FPhSO ₂	NaHCO ₃ (3.0)	MTBE/THF = 2:1 (1.5)	-40	80	81
66	DPZ (1.0)	C1 (10)	Cl	4-FPhSO ₂	NaHCO ₃ (3.0)	MTBE/THF = 3:1 (1.5)	-40	60	87
67	DPZ (1.0)	C1 (10)	Cl	4-FPhSO ₂	NaHCO ₃ (3.0)	MTBE/THF = 5:1 (1.5)	-30	80	88
68	DPZ (1.0)	C1 (10)	Cl	4-FPhSO ₂	NaHCO ₃ (3.0)	MTBE/THF = 5:1 (1.5)	-42	40	90
69 ^j	DPZ (1.0)	C1 (20)	Cl	4-FPhSO ₂	KHCO ₃ (3.0)	MTBE/THF = 5:1 (1.5)	-42	60	90

^{*a*} Reaction conditions: **1** (0.05 mmol) and **2a** (0.1 mmol) in 1.5 mL solvent. ^{*b*} Determined by TLC analysis. ^{*c*} Determined by HPLC analysis on a chiral stationary phase. ^{*d*} t = 48 h, yield = 51%. ^{*e*} t = 48 h, yield = 57%. ^{*f*} t = 48 h, yield = 65%. ^{*g*} t = 48 h, yield = 77%. ^{*h*} t = 48 h, yield = 17%. ^{*i*} t = 48 h, yield = 85%. ^{*j*} Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), t = 65 h, yield = 91%.

R Cl ₃ Ph N O + Ar N COO	DPZ (PC) chiral organocatalyst (Cat.) H <u>KHCO₃ (3 equiv)</u> 3 W blue LED 24 h	- Ph R
4 2 (1.5 equiv.)		5
C1: Ar C4: Ar C7: Ar C7: Ar C8: Ar C8: Ar C1: A C1: A	= 9-anthryl = 4-tBuPh = 4-(2-naphthyl)Ph = 4-PhPh $r = 2$ -PhPh $r = 2$ -OMePh $r = 2$ -naphthyl C23: Ar $r = 2$ -OMe5-CIPh $r = 3,5$ -tBu ₂ -4-MeOPh $r = 2,4,6$ -Me ₃ Ph $r = 4$ -TMSPh	$= -\frac{5}{2}$

Table S2. Optimization of the Reaction Conditions of 4 with 2.^a

entry	PC (mol%)	cat. (mol%)	Ar'	solvent (mL)	<i>T</i> (°C)	conv. (%) ^b	ee (%) ^c
1 ^d	DPZ (1.0)	C1 (20)	PMP	MTBE/THF = 1:1	-42	70	8
2	DPZ (0.5)	C1 (10)	PMP	MTBE/THF = 1:1	-30	20	62
3	DPZ (0.5)	C4 (10)	PMP	MTBE/THF = 1:1	-30	40	57
4	DPZ (0.5)	C7 (10)	PMP	MTBE/THF = 1:1	-30	60	23
5	DPZ (0.5)	C8 (10)	PMP	MTBE/THF = 1:1	-30	40	36
6	DPZ (0.5)	C10 (10)	PMP	MTBE/THF = 1:1	-30	50	35
7	DPZ (0.5)	C11 (10)	PMP	MTBE/THF = 1:1	-30	50	20

8	DPZ (0.5)	C12 (10)	PMP	MTBE/THF = 1:1	-30	50	31
9	DPZ (0.5)	C19 (10)	PMP	MTBE/THF = 1:1	-30	40	17
10	DPZ (0.5)	C20 (10)	PMP	MTBE/THF = 1:1	-30	50	53
11	DPZ (0.5)	C21 (10)	PMP	MTBE/THF = 1:1	-30	50	65
12	DPZ (0.5)	C22 (10)	PMP	MTBE/THF = 1:1	-30	20	50
13	DPZ (0.5)	C23 (10)	PMP	MTBE/THF = 1:1	-30	30	77
14	DPZ (0.5)	C23 (10)	PMP	THF	-40	60	81
15	DPZ (0.5)	C23 (10)	PMP	MTBE	-40	30	88
16	DPZ (0.5)	C23 (10)	PMP	MTBE/THF = 1:1	-40	80	91
17 ^e	DPZ (0.5)	C23 (10)	PMP	MTBE/THF = 2:1	-40	60	93
18	DPZ (0.5)	C23 (10)	PMP	MTBE/THF = 3:1	-40	50	88
19	DPZ (0.5)	C23 (10)	2-Br-4-OMePh	MTBE/THF = 2:1	-40	40	51
20	DPZ (0.5)	C23 (10)	3-CF ₃ -4-OMePh	MTBE/THF = 2:1	-40	60	89
21	DPZ (0.5)	C23 (10)	4-OEtPh	MTBE/THF = 2:1	-40	20	56
22	DPZ (1.0)	C23 (10)	3-CF ₃ -4-OMePh	MTBE/THF = 2:1	-40	80	89
23	DPZ (1.0)	C23 (20)	3-CF ₃ -4-OMePh	MTBE/THF = 2:1	-50	70	90
24 ^f	DPZ (1.0)	C23 (20)	3-CF ₃ -4-OMePh	MTBE/THF = 2:1	-55	60	90

^{*a*} Reaction conditions: **4** (0.05 mmol) and **2b** (0.075 mmol) in 1.5 mL solvent (R = Me). ^{*b*} Determined by TLC analysis. ^{*c*} Determined by HPLC analysis on a chiral stationary phase. ^{*d*} R = 4-fluorobenzenesulfonyl, 60 h. yield of product = 75%, ee of product = 8%. ^{*e*} ee values of other 3-aryl-3-chlorooxindoles were not satisfactory after screening substrate scope. ^{*f*} t = 60 h, yield = 96% (0.1 mmol scale).

3. General experimental procedures

(1) General procedure for enantioselective substitution of 1 with 2a.

70.0 μ L (0.001 mmol, 0.01 equiv.) of DPZ solution (1.0 mg of DPZ in 200 μ L of toluene) was added into a 10 mL Schlenk tube, and then solvent was removed in *vacuo*.

For **3a–3p**, **3s–3t**: **1** (0.10 mmol, 1.0 equiv.), **2a** (0.2 mmol, 2.0 equiv.), **C1** (0.02 mmol, 0.2 equiv.), KHCO₃ (0.30 mmol, 3.0 equiv.) and MTBE/THF = 5:1 (3.0 mL) were sequentially added, degassed three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at -42 °C.

For **3q**: **1** (0.10 mmol, 1.0 equiv.), **2a** (0.2 mmol, 2.0 equiv.), **C3** (0.02 mmol, 0.2 equiv.), KHCO₃ (0.30 mmol, 3.0 equiv.) and MTBE/THF = 5:1 (3.0 mL) were sequentially added, degassed three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at -42 °C.

For **3r**: **1** (0.10 mmol, 1.0 equiv.), **2a** (0.2 mmol, 2.0 equiv.), **C1** (0.02 mmol, 0.2 equiv.), KHCO₃ (0.30 mmol, 3.0 equiv.) and 4 Å MS (30 mg) and MTBE/THF = 5:1 (5.0 mL) were sequentially added, degassed three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at -42 °C.

Then irradiated by a 3 W blue LED ($\lambda = 450-455$ nm) for another 65 h. The reaction was monitored by TLC. After completion, the reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/ethyl acetate (50/1-5/1 ratio). Removing the solvent in *vacuo*, afforded products **3a**-**3t**.

(2) General procedure for enantioselective of 4 with 2b

For 5a-5d, 5f-5h, 5j-5s, 5u: 4 (0.10 mmol, 1.0 equiv.), 2a (0.15 mmol, 1.5 equiv.), C23 (0.02

mmol, 0.2 equiv.), KHCO₃ (0.30 mmol, 3.0 equiv.) and MTBE/THF = 2:1 (3.0 mL) were sequentially added, degassed three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at -55 °C.

For 5e, 5i, 5t: 4 (0.10 mmol, 1.0 equiv.), 2a (0.15 mmol, 1.5 equiv.), C23 (0.02 mmol, 0.2 equiv.), KHCO₃ (0.30 mmol, 3.0 equiv.) and MTBE/THF = 2:1 (3.0 mL) were sequentially added, degassed three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at -60 °C.

Then irradiated by a 3 W blue LED ($\lambda = 450-455$ nm) for another 60 h. The reaction was monitored by TLC. After completion of the reaction, the reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/ethyl acetate (50/1–5/1 ratio). Removing the solvent in *vacuo*, afforded products **5a–5u**.

(3) General Procedure for the Preparation of 1

Step 1: A mixture of **6** (10 mmol), ArCHO (10 mmol) and pyrrolidine (1.0 mmol, 0.1 equiv) in ethanol (30 mL) was heated to reflux for 2 hours and then quenched by water. A large amount of solids are precipitated, suction filtered, dried, afforded product 7 (e.g. **7a**, yellow solid, yield 94%).

Step 2: 7 (5.0 mmol), 4-FPhSO₂Cl (7.5 mmol, 1.5 equiv), *i*-Pr₂NEt (10 mmol, 2.0 equiv) and DMAP (0.5 mmol, 0.1 equiv) were added in dry DCM (15 mL). The mixture was stirred at room temperature for 6~12 h. TLC monitored until full conversion of **8**. After concentrated in *vacuo*, the residue was subjected to flash chromatograph (petroleum ether / ethyl acetate 4:1) on *silica gel* then removed the solvent in *vacuo*, afforded product **8** (e.g. **8a**, yellow solid, yield 89%).

Step 3: 8 (3.0 mmol), Pd/C (300 mg), H_2 were added in MeOH (10 mL). The mixture was stirred at room temperature for 3~12 h. TLC monitored until full conversion of 9. After

concentrated in *vacuo*, the residue was subjected to flash chromatograph (petroleum ether/ethyl acetate 10:1) on *silica gel* then removed the solvent in *vacuo*, afforded product **9** (e.g. **9a**, white solid, yield 89%).

Step 4: The product 9 (2.0 mmol) was dissolved in dichloromethane (10 mL), followed by NEt₃ (2.4 mmol, 1.2 equiv) was added under N_2 at 0 °C. After 30 minutes, the NCS (2.4 mmol, 1.2 equiv) was added by all. The reaction was then warmed to room temperature and stirred for 2 hours. After concentrated in *vacuo*, the residue was subjected to flash chromatograph (petroleum ether / ethyl acetate 10:1) on *silica gel* then removed the solvent in *vacuo*, afforded product 1 (e.g. 1a, white solid, yield 83%; ¹H NMR (300 MHz, CDCl₃) δ 7.98 – 7.94 (m, 2H), 7.76 (d, *J* = 8.2 Hz, 1H), 7.46 (d, *J* = 7.4 Hz, 1H), 7.39 (t, *J* = 7.8 Hz, 1H), 7.30 (d, *J* = 7.4 Hz, 1H), 7.17 (t, *J* = 8.5 Hz, 2H), 7.08 (t, *J* = 7.4 Hz, 1H), 6.94 (t, *J* = 7.6 Hz, 2H), 6.72 (d, *J* = 7.5 Hz, 2H), 3.56 (q, *J* = 13.3 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 171.4, 167.9, 164.5, 138.2, 133.5, 132.3, 131.0, 130.8, 130.1, 128.1, 127.6, 127.4, 125.4, 125.3, 116.7, 116.4, 113.7, 64.5, 45.5.).

(4) General Procedure for the Preparation of 1r-1v

Step 1: *n*-BuLi (10 mmol, 2.0 equiv) was added to a solution of **6** (5 mmol) and TMEDA (10 mmol, 2.0 equiv) in THF (20 mL) at -78 °C and the mixture was stirred for 1 hour. Alkyl bromide (RBr, 5.5 mmol, 1.1 equiv) was then added dropwise and the solution was slowly warmed up to room temperature and stirred for 6-12 h. The reaction was then quenched with aq. NH4Cl and extracted with ethyl ether for 3 times. The combined organic layers were washed with brine, dried over Na₂SO₄. After concentrated in *vacuo*, the residue was subjected to flash chromatograph (petroleum ether / ethyl acetate 5:1) on *silica gel* then removed the solvent in *vacuo*, afforded product **12** (e.g. **12a**, white solid, yield 74%).

Step 2: The product **12** (3.0 mmol) was dissolved in dichloromethane (20 mL), followed by NEt₃ (3.6 mmol, 1.2 equiv) was added under N_2 at 0 °C. After 30 minutes, the NCS (3.6 mmol,

1.2 equiv) was added by all. The reaction was then warmed to room temperature and stirred for 2 hours. After concentrated in *vacuo*, the residue was subjected to flash chromatograph (petroleum ether / ethyl acetate 5:1) on *silica gel* then removed the solvent in *vacuo*, afforded product **13** (e.g. **1a**, white solid, yield 71%).

Step 3: The product **13** (2.0 mmol), 4-FPhSO₂Cl (3.0 mmol, 1.5 equiv), *i*-Pr₂NEt (4.0 mmol, 2.0 equiv) and DMAP (0.2 mmol, 0.1 equiv) in dry DCM (10 mL). The mixture was stirred at room temperature for 6~12 h. TLC monitored until full conversion of **1r-1v**. After concentrated in *vacuo*, the residue was subjected to flash chromatograph (petroleum ether / ethyl acetate 20:1) on *silica gel* then removed the solvent in *vacuo*, afforded products **1r-1v** (e.g. **1r**, yellow solid, yield 89%: ¹H NMR (300 MHz, CDCl₃) δ 8.08 (dd, *J* = 8.8, 5.0 Hz, 2H), 7.90 (d, *J* = 8.1 Hz, 1H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.20 (dd, *J* = 16.1, 7.8 Hz, 3H), 5.23 – 5.09 (m, 1H), 4.84 (dd, *J* = 22.5, 13.5 Hz, 2H), 2.91 (d, *J* = 6.9 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 171.6, 168.1, 164.6, 138.1, 133.6, 131.2, 131.1, 131.0, 130.8, 128.9, 127.9, 125.7, 124.9, 121.7, 119.5, 116.7, 116.4, 114.0, 63.5, 43.6.).

(5) General Procedure for the Preparation of 4

Step 1: A solution of ArMgBr (10 mmol, 2.0 equiv) was added to a stirred cold ($-40 \, ^{\circ}C$) suspension of **10** (5 mmol) in THF (30 mL) under an atmosphere of argon. The mixture was allowed to warm to room temperature for 6-12 h. The reaction mixture was diluted with ether, cooled in an ice-bath, and then quenched with 1*N* HCl. The aqueous layer was extracted with ether, and the combined organic layers were washed with water and brine and then dried over Na2SO4. After concentrated in *vacuo*, the residue was subjected to flash chromatograph (petroleum ether/ethyl acetate 3:1) on *silica gel* then removed the solvent in *vacuo*, afforded product **11**(e.g. **11a**, white solid, yield 89%).

Step 2: A solution of **11** (3.0 mmol) in dry CH₃CN (8.0 mL) was added SOCl₂ (9.0 mmol, 3.0 equiv.) at 0 °C. Subsequently, the mixture was warmed up to room temperature, and stirred for $2\sim 6$ h. TLC monitored until full conversion of **4**. Then cooled to 0 °C again, saturated NaHCO₃ solutions were added until no gas produced. Then extracted with DCM (3 x 10 mL),

removed the solvent in *vacuo*. The residue was subjected to flash chromatograph (petroleum ether / ethyl acetate 10:1) on *silica gel* then removed the solvent in *vacuo*, afforded product **4** (e.g. **4a**, white solid, yield 93%; ¹H NMR (300 MHz, CDCl₃) δ 7.55 (dd, J = 6.6, 3.0 Hz, 2H), 7.44 – 7.34 (m, 5H), 7.17 (t, J = 7.2 Hz, 1H), 6.92 (d, J = 7.6 Hz, 1H), 3.25 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.3, 142.8, 136.6, 130.4, 130.3, 128.9, 128.5, 127.5, 126.0, 123.6, 108.9, 66.1, 26.8).

4. Procedures for the synthesis of 3u-v and the modification

(1) **1u** (0.10 mmol, 1.0 equiv.), **2a** (0.15 mmol, 2.0 equiv.), **C1** (0.02 mmol, 0.2 equiv.), KHCO₃ (0.30 mmol, 3.0 equiv.) and MTBE/THF = 5:1 (3.0 mL) were sequentially added, degassed three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at -42 °C. Then irradiated by a 3 W blue LED (λ = 450-455 nm) for another 65 h. The reaction was monitored by TLC. After completion of the reaction, the reaction mixture was directly removed the solvent in *vacuo*.

(2) Then the CHCl₃ was added and stirred the reaction mixture at 25 °C for 24 h. The reaction was monitored by TLC. After completion of the reaction, the reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/ethyl acetate (50/1–10/1 ratio). Removing the solvent in *vacuo*, afforded product **3u**.

To a solution of SmI2 (5.2 mL, 0.1 mol/L, 0.52 mmol) in THF was added **3u** (0.052 mmol) followed by pyrrolidine (90 μ L, 1.04 mmol) and water (28 μ L, 1.56 mmol) under a nitrogen atmosphere. The resulting mixture was diluted with dichloromethane (4 mL) and treated with dilute hydrochloric acid (5 mL, 0.5 M) after 2 hours. The aqueous phase was extracted with three portions of dichloromethane. The organic extract was combined, dried and loaded onto a short silica gel column, followed by gradient elution with petroleum ether/ethyl acetate (20/1–4/1 ratio). Removing the solvent in vacuo, afforded product

1v (0.10 mmol, 1.0 equiv.), **2a** (0.15 mmol, 1.5 equiv.), **C1** (0.02 mmol, 0.2 equiv.), KHCO₃ (0.30 mmol, 3.0 equiv.) and MTBE/THF = 5:1 (3.0 mL) were sequentially added, degassed three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at $-42 \,^{\circ}$ C. Then irradiated by a 3 W blue LED ($\lambda = 450-455 \,$ nm) for another 65 h. The reaction was monitored by TLC. After completion of the reaction, the reaction mixture was directly loaded onto a short *silica gel* column, followed by gradient elution with petroleum ether/ethyl acetate (50/1–10/1 ratio). Removing the solvent in *vacuo*, afforded product **3v**.

5. Mechanism studies

The Luminescence Quenching Experiments of DPZ

Emission intensities were recorded on a spectrofluorometer. DPZ solution was excited at 448 nm and the emission intensity at 544 nm was observed. A solution of DPZ $(5.0 \times 10^{-5} \text{ M})$ was added to the appropriate amount of quencher in 3.0 mL volumetric flask under N₂. The solution was transferred to a 3.0 mL quartz cell and the emission spectrum of the sample was collected.

Figure S1. Stern–Volmer quenching experiment of DPZ and PhNHCH₂COOH.

Figure S2. Stern–Volmer quenching experiment of DPZ and 4a. No quenching observed.

Cyclic voltammetry measurement

Electrochemical potentials were obtained with a standard set of conditions to main internal consistency. Cyclic voltammograms were collected with a potentiostat. Samples were prepared with 0.02 mmol of **1a**, **4a** and 0.02 mmol **2v** in 10 mL of 0.1 M tetrabutylammonium hexafluorophosphate in anhydrous acetonitrile. Measurements employed a radium glassy carbon working electrode, platinum wire counter electrode, saturated KCl silver-silver chloride reference electrode. The obtained value was referenced to Ag/AgCl.

Figure S3. Cyclic voltammogram of PhNHCH₂CO₂Na in MeCN.

Figure S4. Cyclic voltammogram of 1a in MeCN.

Figure S5. Cyclic voltammogram of 4a in MeCN.

Figure S6. Proposed mechanisms and control experiments.

Descriptions:

In regard to the mechanism of this substitution reaction, the structure of the product indicates that 3-chlorooxindoles 1/4 and *N*-aryl glycines 2 may undergo a SET dehalogenative reduction and SET oxidation-decarboxylation to generate α -amide radicals (V) and α -aminomethylene radicals (VI), respectively (Figure S6A). Our Stern-Volmer experiments further confirmed that the photoredox catalytic cycle is triggered by the reductive quenching of *DPZ by *N*-aryl glycine 2. Another crucial issue that must be clarified is the pathway for the formation of the new C-C bonds between two distinct radical species. According to the persistent radical effect, the coupling of nucleophilic and transient radical VI with electrophilic radical V is possible (see path A, Figure S6A). The improvement in the chemoselectivity achieved when using a chiral BA catalyst supports this mechanism since the H-bonding interaction between the OH of the CPA and the carbonyl of the oxindole (see VII) will stabilise and increase the electrophilicity of radical V (Note: CPA is stable in the presence of KHCO₃ which was determined by the analyses of ¹H NMR). A Mannich-type reaction (see VIII) between the enolates and imines generated from radicals V and VI through a secondary photoredox catalytic cycle or SET redox reaction between the radicals is also possible (see path B, Figure S6A). Accordingly, 3-phenyl 2-oxindole 14 and imine 15 were subjected to the standard reaction conditions (see Scheme 3 in the manuscript), and no reaction was observed with or without irradiation by a 3 W blue LED (Figure S6B). Subsequently, diethyl azodicarboxylate (DEAD) was tested as the reaction partner instead of imine 15, and amination product 16 was obtained in 81% yield with 0% ee. These results suggest the robust ability of 6 to generate the corresponding enolate in this reaction system. Accordingly, an ionic addition (path B) could be excluded, and a radical coupling (path A) to form the new C–C bond seems highly plausible.

Furthermore, **1a** could be readily reduced by Et_3N to generate 3-benzyl 2-oxindole through photoredox dehalogenative protonation (*Chem. Sci.* 2019, **10**, 6629) when under the standard reaction conditions (see Table 1). However, no carboxylation product was observed when in the presence of benzoic acid as the nucleophile (see *J. Org. Chem.* 2015, **80**, 12686). Accordingly, a transient quinone methide-type intermediate could be tentatively excluded.

6. Determination of the absolute configurations

Figure S7. Absolute configuration of **3q** (CCDC 1915398) Displacement ellipsoids are drawn at the 30% probability level. (sovlent: ethyl acetate:*n*hexane = 1:6)

Table S3 Crystal data and structure refinement for 201805262.

Identification code	201805262
Empirical formula	$C_{23}H_{21}FN_2O_4S$
Formula weight	440.48
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	6.17133(16)
b/Å	14.8909(5)
c/Å	22.8926(7)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2103.76(11)
Z	4
$\rho_{calc}g/cm^3$	1.391
μ/mm^{-1}	1.732
F(000)	920.0
Crystal size/mm ³	$0.15 \times 0.1 \times 0.03$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	7.082 to 141.916
Index ranges	-4 \leq h \leq 7, -18 \leq k \leq 17, -27 \leq l \leq 25
Reflections collected	7878

Independent reflections	$3984 \; [R_{int} = 0.0326, R_{sigma} = 0.0560]$
Data/restraints/parameters	3984/34/296
Goodness-of-fit on F ²	1.061
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0480, wR_2 = 0.1044$
Final R indexes [all data]	$R_1 = 0.0657, wR_2 = 0.1137$
Largest diff. peak/hole / e Å ⁻³	0.22/-0.20
Flack parameter	0.009(15)

Table S4 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 201805262. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ}tensor.

Atom	x	У	Z	U(eq)
C1	-603(8)	4713(3)	2132(2)	59.1(12)
C2	-1989(8)	5381(4)	1935(2)	68.7(15)
C3	-1889(8)	6228(4)	2168(2)	65.6(14)
C4	-369(8)	6455(3)	2585(2)	56.4(12)
C5	1047(6)	5793(3)	2766.0(18)	43.8(10)
C6	908(6)	4920(3)	2549.6(17)	45.2(10)
C7	2508(7)	4322(3)	2849.6(18)	44.1(9)
C8	3801(7)	4983(3)	3216.6(18)	47.9(10)
С9	1353(8)	3694(3)	3285.1(19)	52.3(11)
C10	3948(8)	3768(3)	2443(2)	63.5(13)
C11	2540(50)	6430(30)	4280(11)	53.9(14)
C12	4000(40)	6010(30)	4648(14)	71(3)
C13	3390(30)	5799(19)	5217(10)	81(4)
C14	1380(30)	6039(11)	5383(6)	76(3)
C14A	550(40)	6186(17)	5314(9)	76(3)
C13A	2620(50)	5840(30)	5221(16)	81(4)
C12A	3650(60)	5980(50)	4690(20)	71(3)
C11A	2620(80)	6470(40)	4251(16)	53.9(14)
C16A	550(70)	6810(30)	4344(10)	65(3)
C15A	-480(40)	6669(17)	4875(11)	79(4)
C15	-90(30)	6441(12)	5040(8)	79(4)
C16	490(40)	6643(16)	4466(7)	65(3)
C17	273(7)	3933(3)	4320.8(18)	43.3(9)
C18	2097(7)	3555(3)	4570.6(19)	52.8(11)
C19	2130(7)	3337(3)	5161.1(19)	51.8(11)
C20	376(7)	3513(3)	5510.8(18)	49.4(10)
C21	-1436(7)	3894(3)	5264(2)	55.0(12)
C22	-1492(7)	4107(3)	4679.6(19)	49.4(10)
C23	2133(9)	3049(5)	6378(2)	92(2)

F1	730(30)	5841(13)	5951(6)	127(5)
F1A	-360(50)	6030(20)	5813(10)	127(5)
N1	2864(6)	5839(2)	3155.9(16)	48.0(9)
N2	197(7)	4189(3)	3729.1(17)	53.4(10)
01	5322(5)	4812(2)	3530.6(15)	66.0(9)
02	5845(5)	6738(3)	3604.2(17)	82.6(12)
O3	2393(7)	7468(2)	3356.2(18)	85.4(13)
O4	242(6)	3305(3)	6096.4(13)	70.3(10)
S1	3570(2)	6718.5(8)	3576.7(6)	57.8(3)

Table S5 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 201805262. The Anisotropic displacement factor exponent takes the form:

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	65(3)	59(3)	54(3)	7(2)	-11(2)	-16(2)
C2	62(3)	79(4)	64(3)	20(3)	-22(3)	-18(3)
C3	50(3)	75(4)	71(3)	27(3)	-16(3)	1(2)
C4	51(3)	55(3)	64(3)	11(2)	-2(2)	3(2)
C5	39(2)	51(2)	41(2)	9.5(19)	-1.1(18)	-4.2(19)
C6	45(2)	50(2)	40(2)	8.5(18)	2.7(19)	-7.3(18)
C7	42(2)	47(2)	43(2)	1.2(19)	4(2)	-1.3(18)
C8	35(2)	61(3)	47(2)	4(2)	3(2)	4(2)
С9	59(3)	48(2)	50(2)	8(2)	4(2)	5(2)
C10	68(3)	65(3)	57(3)	-1(2)	12(3)	-1(3)
C11	52(3)	48(4)	62(3)	-13(3)	2(3)	-7(3)
C12	81(7)	67(4)	64(5)	-8(4)	4(5)	13(7)
C13	101(13)	74(5)	69(4)	-5(3)	3(9)	8(10)
C14	83(8)	76(5)	68(5)	-17(4)	18(6)	-10(6)
C14A	83(8)	76(5)	68(5)	-17(4)	18(6)	-10(6)
C13A	101(13)	74(5)	69(4)	-5(3)	3(9)	8(10)
C12A	81(7)	67(4)	64(5)	-8(4)	4(5)	13(7)
C11A	52(3)	48(4)	62(3)	-13(3)	2(3)	-7(3)
C16A	58(3)	66(9)	70(7)	-9(5)	0(6)	-7(5)
C15A	74(6)	87(8)	75(9)	-19(6)	17(6)	-6(5)
C15	74(6)	87(8)	75(9)	-19(6)	17(6)	-6(5)
C16	58(3)	66(9)	70(7)	-9(5)	0(6)	-7(5)
C17	42(2)	40(2)	48(2)	5.4(18)	3(2)	1.9(17)
C18	39(2)	65(3)	54(3)	7(2)	13(2)	9(2)
C19	37(2)	65(3)	53(2)	3(2)	-5(2)	12(2)
C20	50(2)	57(3)	41(2)	-2.0(19)	0(2)	3(2)
C21	44(2)	72(3)	49(2)	-8(2)	9(2)	9(2)

S27

C22	38(2)	58(3)	52(2)	0(2)	0(2)	13(2)
C23	74(4)	152(6)	50(3)	18(4)	-13(3)	18(4)
F1	175(13)	142(8)	64(6)	-15(5)	37(7)	-33(10)
F1A	175(13)	142(8)	64(6)	-15(5)	37(7)	-33(10)
N1	46(2)	51(2)	47.3(19)	0.2(17)	-2.8(17)	-0.5(16)
N2	50(2)	61(2)	49(2)	14.7(17)	6.7(19)	15(2)
01	47.9(18)	82(2)	68(2)	-2.5(19)	-15.2(19)	13.4(17)
02	60(2)	107(3)	81(2)	-20(2)	2(2)	-31(2)
03	114(3)	45.1(19)	97(3)	5(2)	-25(3)	-4(2)
04	60(2)	110(3)	40.8(16)	6.6(19)	0.6(16)	14(2)
S1	57.3(7)	54.2(6)	61.7(7)	-2.7(6)	-3.3(6)	-13.0(6)

Table S6 Bond Lengths for 201805262.

Atom	n Atom	Length/Å	Atom	Atom	Length/Å
C1	C2	1.387(7)	C14A	C13A	1.3900
C1	C6	1.369(6)	C14A	C15A	1.3900
C2	C3	1.371(7)	C14A	F1A	1.29(3)
C3	C4	1.380(7)	C13A	C12A	1.3900
C4	C5	1.381(6)	C12A	C11A	1.3900
C5	C6	1.394(6)	C11A	C16A	1.3900
C5	N1	1.434(5)	C11A	S1	1.69(2)
C6	C7	1.496(6)	C16A	C15A	1.3900
C7	C8	1.520(6)	C15	C16	1.396(14)
C7	C9	1.542(6)	C17	C18	1.382(6)
C7	C10	1.528(6)	C17	C22	1.389(6)
C8	N1	1.406(5)	C17	N2	1.408(5)
C8	01	1.209(5)	C18	C19	1.390(6)
C9	N2	1.444(6)	C19	C20	1.372(6)
C11	C12	1.382(12)	C20	C21	1.375(6)
C11	C16	1.371(12)	C20	O4	1.378(5)
C11	S 1	1.785(14)	C21	C22	1.375(6)
C12	C13	1.393(15)	C23	O4	1.387(6)
C13	C14	1.344(17)	N1	S1	1.684(4)
C14	C15	1.342(15)	02	S 1	1.405(3)
C14	F1	1.393(18)	03	S1	1.424(4)

Table S7 Bond Angles for 201805262.

Aton	n Aton	n Atom	Angle/°	Atom Atom Atom	Angle/°
C6	C1	C2	119.1(5)	C11AC12AC13A	120.0
C3	C2	C1	120.3(5)	C12A C11A S1	128(3)

C2	C3	C4	121.6(5)	C16A	C11A	C12A	120.0
C3	C4	C5	117.6(5)	C16A	C11A	.S1	112(3)
C4	C5	C6	121.3(4)	C15A	C16A	.C11A	120.0
C4	C5	N1	130.4(4)	C16A	C15A	C14A	120.0
C6	C5	N1	108.3(4)	C14	C15	C16	118.3(10)
C1	C6	C5	119.9(4)	C11	C16	C15	118.5(10)
C1	C6	C7	129.5(4)	C18	C17	C22	118.0(4)
C5	C6	C7	110.5(4)	C18	C17	N2	122.4(4)
C6	C7	C8	102.4(3)	C22	C17	N2	119.5(4)
C6	C7	C9	110.6(3)	C17	C18	C19	120.6(4)
C6	C7	C10	115.2(4)	C20	C19	C18	120.7(4)
C8	C7	С9	106.1(3)	C19	C20	C21	118.7(4)
C8	C7	C10	112.4(4)	C19	C20	O4	124.9(4)
C10	C7	С9	109.5(4)	C21	C20	O4	116.3(4)
N1	C8	C7	108.4(3)	C20	C21	C22	121.0(4)
01	C8	C7	126.8(4)	C21	C22	C17	120.8(4)
01	C8	N1	124.7(4)	C5	N1	S1	126.6(3)
N2	C9	C7	111.9(3)	C8	N1	C5	109.9(3)
C12	C11	S1	115.2(17)	C8	N1	S1	122.8(3)
C16	C11	C12	121.2(8)	C17	N2	С9	121.5(4)
C16	C11	S1	123.5(17)	C20	O4	C23	117.6(4)
C11	C12	C13	119.7(10)	N1	S 1	C11	103.7(15)
C14	C13	C12	116.9(11)	N1	S 1	C11A	105(2)
C13	C14	F1	118.3(13)	02	S 1	C11	108.7(11)
C15	C14	C13	125.3(11)	O2	S 1	C11A	108.0(18)
C15	C14	F1	116.4(12)	02	S 1	N1	107.5(2)
C13A	C14A	AC15A	120.0	02	S 1	O3	120.7(3)
F1A	C14A	AC13A	118(2)	O3	S 1	C11	109.1(10)
F1A	C14A	C15A	122(2)	O3	S 1	C11A	108.7(17)
C14A	C13A	C12A	120.0	03	S 1	N1	105.9(2)

Table S8 Hydrogen Bonds for 201805262.

D	Η	A	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
C4 H	4	03	0.93	2.28	2.881(6)	122.1
N2H	2A	.O1 ¹	0.84(2)	2.35(3)	3.181(5)	168(4)

¹-1+X,+Y,+Z

Table S9 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 201805262.

Atom	x	У	Z	U(eq)
H1	-698	4134	1984	71
H2	-2991	5253	1643	82
Н3	-2869	6661	2041	79
H4	-301	7032	2738	68
H9A	342	3315	3074	63
H9B	2417	3308	3470	63
H10A	4629	4157	2164	95
H10B	3079	3332	2242	95
H10C	5039	3466	2669	95
H12	5384	5870	4515	85
H13	4328	5504	5471	97
H13A	3310	5521	5515	97
H12A	5036	5755	4628	85
H16A	-137	7132	4050	78
H15A	-1863	6898	4937	94
H15	-1462	6581	5182	94
H16	-493	6916	4214	78
H18	3313	3446	4342	63
H19	3355	3068	5321	62
H21	-2642	4009	5496	66
H22	-2728	4371	4523	59
H23A	1836	2948	6784	138
H23B	3196	3516	6340	138
H23C	2676	2507	6205	138
H2A	-1020(50)	4380(30)	3628(19)	46(13)

Table S10 Atomic Occupancy for 201805262.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
C11	0.61(2)	C12	0.61(2)	H12	0.61(2)
C13	0.61(2)	H13	0.61(2)	C14	0.61(2)
C14A	0.39(2)	C13A	0.39(2)	H13A	0.39(2)
C12A	0.39(2)	H12A	0.39(2)	C11A	0.39(2)
C16A	0.39(2)	H16A	0.39(2)	C15A	0.39(2)
H15A	0.39(2)	C15	0.61(2)	H15	0.61(2)
C16	0.61(2)	H16	0.61(2)	F1	0.61(2)
F1A	0.39(2)				

Experimental

The crystal was kept at 293(2) K during data collection. Using Olex2,¹ the structure was solved with the ShelXS² structure solution program using Direct Methods and refined with the ShelXL³ refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. *Appl. Cryst.* **2009**, *42*, 339-341.
- 2. Sheldrick, G. M. Acta Cryst. A 2008, 64, 112-122.
- 3. Sheldrick, G.M. Acta Cryst. C 2015, 71, 3-8.

Crystal structure determination

Crystal Data for C₂₃H₂₁FN₂O₄S (M=440.48 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), a = 6.17133(16) Å, b = 14.8909(5) Å, c = 22.8926(7) Å, V = 2103.76(11) Å³, Z = 4, T = 293(2) K, μ (CuK α) = 1.732 mm⁻¹, *Dcalc* = 1.391 g/cm³, 7878 reflections measured ($7.082^{\circ} \le 2\Theta \le 141.916^{\circ}$), 3984 unique ($R_{int} = 0.0326$, $R_{sigma} = 0.0560$) which were used in all calculations. The final R_1 was 0.0480 (I > 2 σ (I)) and wR_2 was 0.1137 (all data).

Refinement model description

Number of restraints - 34, number of constraints - unknown.

Details:

```
1. Fixed Uiso
 At 1.2 times of:
  All C(H) groups, All C(H,H) groups
 At 1.5 times of:
  All C(H,H,H) groups
2. Restrained distances
 C12A-C11A
 1.38 with sigma of 0.02
 C13A-C12A
 1.38 with sigma of 0.02
 C11-S1
 1.6 with sigma of 0.02
 N2-H2A
 0.87 with sigma of 0.02
3. Uiso/Uaniso restraints and constraints
Uanis(F1) \approx Ueq, Uanis(C15) \approx Ueq, Uanis(C16) \approx Ueq: with sigma of
0.01 and sigma for terminal atoms of 0.02
Uanis(C14) \approx Ueq, Uanis(C14A) \approx Ueq: with sigma of 0.01 and sigma for
terminal atoms of 0.02
Uanis(C12) = Uanis(C12A)
Uanis(C13) = Uanis(C13A)
Uanis(C14) = Uanis(C14A)
Uanis(C15) = Uanis(C15A)
Uanis(C16) = Uanis(C16A)
```

Uanis(F1) = Uanis(F1A)

Uanis(C11) = Uanis(C11A)

4. Others

```
\begin{aligned} & \operatorname{Sof}(C14A) = \operatorname{Sof}(C13A) = \operatorname{Sof}(H13A) = \operatorname{Sof}(C12A) = \operatorname{Sof}(H12A) = \operatorname{Sof}(C11A) = \operatorname{Sof}(C16A) = \\ & \operatorname{Sof}(H16A) = \operatorname{Sof}(C15A) = \operatorname{Sof}(H15A) = \operatorname{Sof}(F1A) = 1 - FVAR(1) \end{aligned}
```

```
Sof(C11) = Sof(C12) = Sof(H12) = Sof(C13) = Sof(H13) = Sof(C14) = Sof(C15) = Sof(H15) = Sof(H15)
```

Sof(C16)=Sof(H16)=Sof(F1)=FVAR(1)

5.a Secondary CH2 refined with riding coordinates:

C9(H9A,H9B)

5.b Aromatic/amide H refined with riding coordinates: C1(H1), C2(H2), C3(H3), C4(H4), C12(H12), C13(H13), C13A(H13A), C12A(H12A), C16A(H16A), C15A(H15A), C15(H15), C16(H16), C18(H18), C19(H19), C21(H21),

C22(H22)

5.c Fitted hexagon refined as free rotating group:

C14A(C13A,C12A,C11A,C16A,C15A)

5.d Idealised Me refined as rotating group: C10(H10A,H10B,H10C), C23(H23A,H23B,H23C)

Figure S8. Absolute configuration of 5h (CCDC 1915399)

Displacement ellipsoids are drawn at the 30% probability level.

(sovlent: ethyl acetate:*n*hexane = 1:3)

Table S11 Crystal data and structure refinement for zgk22075a.

Identification code	zgk22075a
Empirical formula	$C_{48}H_{42}Br_2F_6N_4O_5$
Formula weight	1028.67
Temperature/K	293(2)
Crystal system	monoclinic
Space group	C2
a/Å	26.455(2)
b/Å	6.3246(2)

c/Å	14.0068(9)
α/°	90
β/°	109.467(9)
γ/°	90
Volume/Å ³	2209.6(3)
Z	2
$\rho_{calc}g/cm^3$	1.546
μ/mm^{-1}	3.000
F(000)	1044.0
Crystal size/mm ³	$0.14 \times 0.05 \times 0.04$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/^	6.694 to 141.528
Index ranges	$-31 \le h \le 32, -4 \le k \le 7, -16 \le l \le 17$
Reflections collected	5109
Independent reflections	$3058 \; [R_{int} = 0.0252, R_{sigma} = 0.0412]$
Data/restraints/parameters	3058/2/303
Goodness-of-fit on F ²	1.067
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0422, wR_2 = 0.1070$
Final R indexes [all data]	$R_1 = 0.0481, wR_2 = 0.1114$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.33/-0.33
Flack parameter	-0.001(19)

Table S12 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement
Parameters ($Å^2 \times 10^3$) for zgk22075a. U _{eq} is defined as 1/3 of of the trace of the
orthogonalised U _{IJ} tensor.

Atom	x	у	Z	U(eq)
Br1	3650.4(3)	3846.3(10)	5554.8(5)	62.3(2)
C1	3990(2)	8100(9)	2256(4)	40.8(12)
C2	3761(2)	9663(8)	2857(4)	37.4(11)
C3	3467(2)	11208(9)	2037(4)	40.0(11)
C4	3532(2)	10605(10)	1130(4)	41.9(12)
C5	3311(3)	11741(11)	251(5)	53.2(15)
C6	3021(3)	13526(12)	300(5)	62.1(18)
C7	2954(2)	14175(12)	1196(5)	63.4(18)
C8	3184(2)	13017(9)	2076(5)	49.5(13)
С9	3328(2)	5950(10)	4568(4)	47.6(13)
C10	3646(2)	7014(9)	4113(4)	40.8(12)
C11	3417(2)	8471(9)	3363(4)	39.4(13)
C12	2864(2)	8793(16)	3064(4)	55.9(14)
C13	2558(2)	7737(14)	3554(6)	69(2)
C14	2790(2)	6304(12)	4307(5)	58.1(17)
		S33		

C15	4239(2)	10771(9)	3689(4)	41.6(12)
C16	4973(2)	11435(9)	2972(4)	41.7(12)
C17	5271(2)	9591(10)	3350(5)	49.4(14)
C18	5698(2)	9050(14)	3040(5)	55.6(14)
C19	5844(2)	10257(12)	2360(5)	53.7(15)
C20	5550(2)	12084(10)	1977(4)	46.7(13)
C21	5114(2)	12642(9)	2280(4)	41.7(12)
C22	5691(3)	13433(12)	1221(5)	61.0(19)
C23	6652(3)	8376(14)	2587(7)	83(3)
C24	4020(3)	7733(13)	521(5)	68(2)
F1	5601.1(18)	12466(8)	333(3)	75.5(12)
F2	6216.7(15)	13948(11)	1536(3)	83.8(12)
F3	5425(2)	15247(7)	1038(4)	79.1(13)
N1	3845.5(17)	8779(10)	1278(3)	45.1(9)
N2	4565.4(19)	12151(8)	3318(4)	44.2(11)
01	4257.9(18)	6524(7)	2597(3)	51.8(10)
02	6260(2)	9800(10)	2017(4)	77.5(16)
O3	5000	5642(12)	5000	62.0(17)

Table S13 Anisotropic Displacement Parameters (Å²×10³) for zgk22075a. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...].$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Br1	73.6(4)	59.6(4)	62.6(3)	16.9(4)	35.0(3)	5.2(4)
C1	47(3)	31(3)	50(3)	1(2)	25(2)	-2(2)
C2	45(3)	30(2)	41(2)	2(2)	19(2)	4(2)
C3	44(3)	31(3)	45(3)	3(2)	16(2)	-1(2)
C4	46(3)	35(3)	45(3)	1(2)	17(2)	-5(2)
C5	60(4)	54(4)	43(3)	3(3)	14(3)	-10(3)
C6	61(3)	53(5)	58(3)	18(3)	1(3)	-5(3)
C7	58(3)	44(4)	77(4)	8(4)	8(3)	9(3)
C8	54(3)	34(3)	57(3)	-2(3)	16(3)	6(3)
C9	52(3)	49(4)	44(3)	-3(3)	18(2)	-4(3)
C10	43(3)	39(3)	45(3)	-1(2)	21(2)	-1(3)
C11	46(2)	35(3)	41(2)	-5(2)	20(2)	-1(2)
C12	47(3)	68(4)	54(3)	5(4)	19(2)	2(4)
C13	38(3)	95(6)	81(5)	15(4)	30(3)	6(4)
C14	49(3)	67(4)	69(4)	12(4)	33(3)	-7(3)
C15	48(3)	37(3)	44(3)	-2(2)	21(2)	-2(3)
C16	41(3)	36(3)	44(3)	-2(2)	9(2)	0(2)
C17	52(3)	43(3)	55(3)	11(3)	19(3)	3(3)
			20 4			

S34

C18	52(3)	49(4)	65(3)	10(4)	18(2)	10(4)
C19	46(3)	59(4)	54(3)	-6(3)	14(3)	5(3)
C20	48(3)	45(3)	46(3)	-2(3)	15(2)	-6(3)
C21	44(3)	32(3)	46(3)	1(2)	11(2)	2(2)
C22	74(4)	59(5)	60(3)	1(3)	36(3)	-3(4)
C23	54(4)	74(7)	122(7)	-10(5)	31(4)	13(4)
C24	104(6)	59(4)	59(4)	-6(3)	48(4)	6(4)
F1	90(3)	91(3)	52(2)	-2(2)	31(2)	2(3)
F2	74(2)	97(3)	90(3)	-4(4)	40(2)	-28(3)
F3	114(4)	56(3)	87(3)	17(2)	60(3)	7(3)
N1	59(2)	38(2)	46(2)	-5(3)	27.1(18)	2(3)
N2	47(3)	31(2)	56(3)	7(2)	18(2)	3(2)
01	65(3)	33(2)	68(3)	4.5(19)	36(2)	12(2)
02	69(3)	88(4)	88(4)	8(3)	43(3)	17(3)
03	69(4)	55(4)	58(4)	0	14(3)	0

Table S14 Bond Lengths for zgk22075a.

Atom Atom		Length/Å	Atom	n Atom	Length/Å		
Br1	C9	1.903(6)	C12	C13	1.394(9)		
C1	C2	1.547(7)	C13	C14	1.371(10)		
C1	N1	1.362(7)	C15	N2	1.441(7)		
C1	01	1.224(7)	C16	C17	1.408(8)		
C2	C3	1.511(7)	C16	C21	1.379(8)		
C2	C11	1.528(7)	C16	N2	1.398(7)		
C2	C15	1.569(7)	C17	C18	1.382(8)		
C3	C4	1.391(8)	C18	C19	1.372(9)		
C3	C8	1.379(8)	C19	C20	1.396(9)		
C4	C5	1.376(8)	C19	02	1.371(7)		
C4	N1	1.397(8)	C20	C21	1.400(8)		
C5	C6	1.380(11)	C20	C22	1.499(9)		
C6	C7	1.386(10)	C22	F1	1.335(8)		
C7	C8	1.388(9)	C22	F2	1.352(8)		
C9	C10	1.387(8)	C22	F3	1.325(9)		
C9	C14	1.366(8)	C23	02	1.404(9)		
C10	C11	1.377(8)	C24	N1	1.450(7)		
C11	C12	1.394(7)					

Table S15 Bond Angles for zgk22075a.

Atom	Atom	Atom	Angle/°	Atom	n Aton	n Atom	Angle/°
N1	C1	C2	108.4(5)	C14	C13	C12	120.7(6)

01	C1	C2	126.0(5) C9	C14	C13	118.3(6)
01	C1	N1	125.6(5) N2	C15	C2	115.7(4)
C1	C2	C15	109.0(4) C2	l C16	C17	118.4(5)
C3	C2	C1	101.3(4) C2	l C16	N2	119.0(5)
C3	C2	C11	115.9(4) N2	C16	C17	122.5(5)
C3	C2	C15	111.0(4) C18	8 C17	C16	120.0(6)
C11	C2	C1	109.9(4) C19	9 C18	C17	121.9(7)
C11	C2	C15	109.4(4) C18	8 C19	C20	118.6(6)
C4	C3	C2	109.2(5) O2	C19	C18	124.7(7)
C8	C3	C2	131.0(5) O2	C19	C20	116.7(6)
C8	C3	C4	119.8(5) C19	9 C20	C21	120.1(6)
C3	C4	N1	109.8(5) C19	e C20	C22	120.4(6)
C5	C4	C3	122.0(6) C2	l C20	C22	119.5(6)
C5	C4	N1	128.2(5) C10	5 C21	C20	121.1(5)
C4	C5	C6	117.3(6) F1	C22	C20	112.8(6)
C5	C6	C7	121.9(6) F1	C22	F2	104.9(5)
C6	C7	C8	119.8(7) F2	C22	C20	112.2(6)
C3	C8	C7	119.1(6) F3	C22	C20	112.9(5)
C10	C9	Br1	118.7(4) F3	C22	F1	107.3(6)
C14	С9	Br1	118.9(5) F3	C22	F2	106.1(6)
C14	C9	C10	122.3(6) C1	N1	C4	111.4(5)
C11	C10	С9	119.7(5) C1	N1	C24	122.7(6)
C10	C11	C2	120.3(4) C4	N1	C24	125.9(5)
C10	C11	C12	118.6(5) C10	5 N2	C15	123.6(5)
C12	C11	C2	121.1(5) C19) O2	C23	117.6(6)
C13	C12	C11	120.3(7)			

Table S16 Hydrogen Bonds for zgk22075a.

DHA	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
N2 H2 O1 ¹	0.86(2)	2.17(3)	2.964(7)	155(4)
$O3H3N2^2$	0.85	2.33	3.153(8)	164.5

¹+X,1+Y,+Z; ²1-X,-1+Y,1-Z

Table S17 Torsion Angles for zgk22075a.

A	B	С	D	Angle/°	А	В	С	D	Angle/°
Br1	C9	C10	C11	177.0(4)	C14	С9	C10	C11	-0.6(9)
Br1	C9	C14	C13	-176.3(6)	C15	C2	C3	C4	114.9(5)
C1	C2	C3	C4	-0.7(6)	C15	C2	C3	C8	-62.9(7)
C1	C2	C3	C8	-178.5(6)	C15	C2	C11	C10	-54.2(6)
C1 C2 C11C10	65.5(6) C15 C2 C11 C12	127.3(6)							
-----------------	--------------------------	-----------							
C1 C2 C11C12	-113.0(6) C16C17C18C19	-0.5(10)							
C1 C2 C15N2	66.4(6) C17 C16 C21 C20	-1.5(8)							
C2 C1 N1 C4	-1.5(6) C17C16N2 C15	-30.1(8)							
C2 C1 N1 C24	176.5(6) C17 C18 C19 C20	0.2(10)							
C2 C3 C4 C5	-179.2(5) C17C18C19O2	-179.5(6)							
C2 C3 C4 N1	-0.1(6) C18C19C20C21	-0.5(9)							
C2 C3 C8 C7	179.3(6) C18 C19 C20 C22	-179.2(6)							
C2 C11C12C13	-178.1(7) C18C19O2 C23	-18.5(10)							
C2 C15N2 C16	-80.8(7) C19C20C21C16	1.2(9)							
C3 C2 C11C10	179.4(5) C19C20C22F1	66.8(8)							
C3 C2 C11C12	1.0(8) C19 C20 C22 F2	-51.5(8)							
C3 C2 C15N2	-44.3(6) C19 C20 C22 F3	-171.3(6)							
C3 C4 C5 C6	0.0(9) C20 C19 O2 C23	161.9(6)							
C3 C4 N1 C1	1.0(6) C21 C16 C17 C18	1.2(9)							
C3 C4 N1 C24	-176.9(6) C21 C16 N2 C15	154.0(5)							
C4 C3 C8 C7	1.8(9) C21 C20 C22 F1	-111.9(7)							
C4 C5 C6 C7	0.5(10) C21 C20 C22 F2	129.8(6)							
C5 C4 N1 C1	-179.9(6) C21 C20 C22 F3	10.0(9)							
C5 C4 N1 C24	2.2(10) C22 C20 C21 C16	179.9(5)							
C5 C6 C7 C8	0.1(10) N1 C1 C2 C3	1.3(6)							
C6 C7 C8 C3	-1.2(10) N1 C1 C2 C11	124.3(5)							
C8 C3 C4 C5	-1.2(9) N1 C1 C2 C15	-115.8(5)							
C8 C3 C4 N1	178.0(5) N1 C4 C5 C6	-179.0(6)							
C9 C10C11C2	179.8(5) N2 C16C17C18	-174.7(6)							
C9 C10C11C12	-1.7(8) N2 C16C21C20	174.5(5)							
C10C9 C14C13	1.3(11) O1 C1 C2 C3	-178.9(5)							
C10C11C12C13	3.3(10) O1 C1 C2 C11	-55.9(7)							
C11C2 C3 C4	-119.6(5) O1 C1 C2 C15	64.0(7)							
C11C2 C3 C8	62.7(8) O1 C1 N1 C4	178.8(5)							
C11C2 C15N2	-173.4(5) O1 C1 N1 C24	-3.2(9)							
C11 C12 C13 C14	-2.8(13) O2 C19C20C21	179.2(6)							
C12C13C14C9	0.4(12) O2 C19C20C22	0.5(9)							

Table S18 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for zgk22075a.

Atom	x	У	Z.	U(eq)
Н5	3356	11323	-352	64
H6	2865	14316	-284	75
H7	2756	15384	1207	76

H8	3147	13455	2683	59
H10	4012	6745	4313	49
H12	2699	9715	2535	67
H13	2193	8009	3368	83
H14	2586	5592	4632	70
H15A	4093	11587	4124	50
H15B	4467	9685	4103	50
H17	5180	8736	3808	59
H18	5893	7833	3300	67
H21	4917	13847	2010	50
H23A	6945	8347	2328	125
H23B	6498	6989	2541	125
H23C	6780	8820	3282	125
H24A	4215	8716	254	103
H24B	3713	7227	-17	103
H24C	4248	6563	825	103
H2	4396(16)	13200(50)	2970(30)	21(12)
H3	5080	4830	5512	93

Experimental

The crystal was kept at 293(2) K during data collection. Using Olex2,¹ the structure was solved with the ShelXS² structure solution program using Direct Methods and refined with the ShelXL³ refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. *Appl. Cryst.* **2009**, *42*, 339-341.
- 2. Sheldrick, G. M. Acta Cryst. A 2008, 64, 112-122.
- 3. Sheldrick, G.M. Acta Cryst. C 2015, 71, 3-8.

Crystal structure determination

Crystal Data for C₄₈H₄₂Br₂F₆N₄O₅ (M=1028.67 g/mol): monoclinic, space group C2 (no. 5), a = 26.455(2) Å, b = 6.3246(2) Å, c = 14.0068(9) Å, $\beta = 109.467(9)^{\circ}$, V = 2209.6(3) Å³, Z = 2, T = 293(2) K, μ (CuK α) = 3.000 mm⁻¹, Dcalc = 1.546 g/cm³, 5109 reflections measured ($6.694^{\circ} \le 2\Theta \le 141.528^{\circ}$), 3058 unique ($R_{int} = 0.0252$, $R_{sigma} = 0.0412$) which were used in all calculations. The final R_1 was 0.0422 (I > 2 σ (I)) and wR_2 was 0.1114 (all data).

Refinement model description

Number of restraints - 2, number of constraints - unknown.

Details: 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of:

All C(H,H,H) groups, All O(H) groups

2. Restrained distances

N2-H2

0.87 with sigma of 0.02

3.a Free rotating group:

O3(H3)

3.b Secondary CH2 refined with riding coordinates:

C15(H15A,H15B)

3.c Aromatic/amide H refined with riding coordinates:

C5(H5), C6(H6), C7(H7), C8(H8), C10(H10), C12(H12), C13(H13), C14(H14),

C17(H17), C18(H18), C21(H21)

3.d Idealised Me refined as rotating group: C23(H23A,H23B,H23C), C24(H24A,H24B,H24C)

7. Characterization of adducts

(*R*)-3-benzyl-1-((4-fluorophenyl)sulfonyl)-3-(((4-methoxyphenyl)amin o)methyl)indolin-2-one (3a): yellow soild; Mp 44.0 – 45.7 °C; 46.8 mg, 91% yield; 90% ee; $[\alpha]_D^{22}$ + 2.4 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.85 (dd, *J* = 8.6, 5.0 Hz, 2H), 7.76 (d, *J* = 8.1 Hz, 1H), 7.37 – 7.28 (m, 1H), 7.24 (d, *J* = 3.2 Hz, 2H), 7.04 (t, *J* = 7.2 Hz, 1H), 6.95 (t, *J* = 7.8 Hz, 4H), 6.79 – 6.60 (m, 4H), 6.38 (d, *J* = 8.8 Hz, 2H), 3.70 (d, *J* =

16.1 Hz, 4H), 3.42 (d, J = 12.6 Hz, 1H), 3.22 (d, J = 13.3 Hz, 1H), 3.07 (d, J = 13.2 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 177.3, 167.5, 164.1, 152.7, 141.3, 139.5, 134.2, 133.7, 133.7, 130.6, 130.4, 129.6, 129.2, 128.7, 127.9, 126.8, 124.8, 123.9, 116.3, 115.9, 115.1, 114.5, 113.5, 55.8, 55.6, 52.8, 40.8. ¹⁹F NMR (565 MHz, CDCl₃) δ – 102.2. HRMS (ESI) m/z 517.1597 (M+H⁺), calc. for C₂₉H₂₆FN₂O₄S 517.1592.

The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 20.3 min (major) and 24.1 min (minor).

(*R*)-3-(4-fluorobenzyl)-1-((4-fluorophenyl)sulfonyl)-3-(((4-methoxy phenyl)amino)methyl)indolin-2-one (3b): yellow soild; Mp 43.4 – 44.9 °C; 43.4 mg, 81% yield; 90% ee; $[\alpha]_D^{22} - 5.7$ (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.85 (dd, *J* = 8.8, 5.0 Hz, 2H), 7.76 (d, *J* = 8.1 Hz, 1H), 7.35 – 7.29 (m, 1H), 7.23 (d, *J* = 4.2 Hz, 2H), 7.04 (t, *J* = 7.3 Hz, 1H), 6.95 (dd, *J* = 11.7, 5.5 Hz, 4H), 6.73 – 6.66 (m, 4H), 6.38

(d, J = 8.9 Hz, 2H), 3.72 (d, J = 4.2 Hz, 3H), 3.69 (d, J = 12.8 Hz, 1H), 3.42 (d, J = 12.7 Hz, 1H), 3.22 (d, J = 13.3 Hz, 1H), 3.07 (d, J = 13.3 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 177.3, 167.6, 164.2, 152.8, 141.3, 139.6, 134.3, 133.9, 133.8, 130.6, 130.5 129.7 129.2 128.7, 127.9, 126.8, 124.8, 123.9, 116.3, 116.0, 115.2, 114.6, 113.6, 55.9, 55.7, 52.9, 40.9. ¹⁹F NMR (565 MHz, CDCl₃) δ – 101.9, – 115.3. HRMS (ESI) m/z 535.1503 (M+H⁺), calc. for C₂₉H₂₅F₂N₂O₄S 535.1498.

The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 20.7 min (major) and 25.5 min (minor).

(*R*)-3-(3-fluorobenzyl)-1-((4-fluorophenyl)sulfonyl)-3-(((4-methoxyph enyl)amino)methyl)indolin-2-one (3c): yellow oil; 42.6 mg, 80% yield; 90% ee; $[\alpha]_D^{22}$ + 4.2 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.85 (dd, *J* = 8.6, 5.0 Hz, 2H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.37 – 7.26 (m, 3H), 6.97 (t, *J* = 8.5 Hz, 2H), 6.88 (dd, *J* = 14.2, 7.5 Hz, 1H), 6.70 (t, *J* = 8.0

Hz, 3H), 6.47 - 6.34 (m, 4H), 3.73 (m, 4H), 3.44 (d, J = 12.5 Hz, 1H), 3.22 (d, J = 13.3 Hz, 1H), 3.05 (d, J = 13.3 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 176.9, 167.7, 164.2, 163.5, 160.3, 153.1, 140.5, 139.5, 136.7, 136.6, 133.64, 133.6, 130.5, 130.4, 129.5, 129.4, 129.3, 128.2, 125.3, 125.3, 125.0, 123.9, 116.7, 116.4, 116.4, 116.1, 115.7, 115.6, 115.5, 114.6, 113.9, 113.7, 113.6, 55.7, 53.0, 40.5. ¹⁹F NMR (565 MHz, CDCl₃) δ – 102.0, – 112.7. HRMS (ESI) m/z 535.1503 (M+H⁺), calc. for C₂₉H₂₅F₂N₂O₄S 535.1498.

The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 26.1 min (major) and 31.6 min (minor).

NU 350 350 200 200 500 60 0			991 00	
Entry	Retention	Area	Height	%Area
1	25.401	22391.3	385.8	49.957
2	30.136	22429.9	300.5	50.043
Entry	Retention	Area	Height	× mi
1	26.068	4821.5	89.2	95.025
2	31.581	252.4	4.4	4.975

(*R*)-3-(2-fluorobenzyl)-1-((4-fluorophenyl)sulfonyl)-3-(((4-methoxyph enyl)amino)methyl)indolin-2-one (3d): yellow soild; Mp 62.9 – 64.0 °C; 48.6 mg, 91% yield; 88% ee; $[\alpha]_{D}^{22}$ + 4.6 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.98 – 7.86 (m, 2H), 7.77 (d, *J* = 8.1 Hz, 1H), 7.34 – 7.27 (m, 1H), 7.26 – 7.14 (m, 2H), 7.06 – 6.92 (m, 1H), 6.95 (t, *J* = 8.6 Hz,

PMP = 4-OMePh 2H), 6.86 - 6.71 (m, 3H), 6.66 (d, J = 8.9 Hz, 2H), 6.35 (d, J = 8.8 Hz, 2H), 3.71 (d, J = 10.1 Hz, 4H), 3.44 (d, J = 12.8 Hz, 1H), 3.24 (d, J = 10.1 Hz, 1H), 3.16 (d, J = 13.7 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 177.4, 167.6, 164.2, 162.2, 158.9, 153.1, 140.6, 139.4, 133.8, 133.8, 131.4, 131.4, 130.7, 130.6, 129.3, 128.9, 128.8, 128.2, 124.8, 124.3, 123.8, 123.8, 121.9, 121.7, 116.3, 116.0, 115.6, 115.3, 115.0, 114.6, 114.1, 113.3, 55.7, 55.3, 53.1, 33.0. ¹⁹F NMR (565 MHz, CDCl₃) δ - 102.0, - 115.3. HRMS (ESI) m/z 535.1497 (M+H⁺), calc. for C₂₉H₂₅F₂N₂O₄S 535.1498.

The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 17.0 min (major) and 21.7 min (minor).

(R)-3-(4-chlorobenzyl)-1-((4-fluorophenyl)sulfonyl)-3-(((4-methox yphenyl)amino)methyl)indolin-2-one (3e): yellow soild; Mp 50.3 -52.1 °C; 38.1 mg, 69% yield; 90% ee; $[\alpha]_{D}^{22}$ - 2.2 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.85 – 7.77 (m, 3H), 7.34 – 7.26 (m, 3H), 7.01 (t, J = 8.5 Hz, 2H), 6.84 (d, J = 8.2 Hz, 2H), 6.69 (d, J = 8.8 Hz, 2H), 6.57 (d, *J* = 8.2 Hz, 2H), 6.42 (d, *J* = 8.8 Hz, 2H), 3.73 (s, 3H), 3.69 (d, J = 13.1 Hz, 1H), 3.43 (d, J = 12.7 Hz, 1H), 3.20 (d, J = 13.3 Hz, 1H), 3.02 (d, J = 13.3 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 176.9, 167.7, 164.2, 153.0, 140.8, 139.6, 133.7,

133.6, 132.7, 132.7, 130.9, 130.6, 130.5, 129.6, 129.5, 128.3, 128.0, 126.8, 125.0, 123.8, 116.3, 116.0, 115.4, 114.6, 113.7, 55.7, 52.8, 40.1. ¹⁹F NMR (565 MHz, CDCl₃) δ – 101.5. HRMS (ESI) m/z 551.1208 (M+H⁺), calc. for C₂₉H₂₅ClFN₂O₄S 551.1202.

The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 24.0 min (major) and 36.4 min (minor).

(*R*)-3-(3-chlorobenzyl)-1-((4-fluorophenyl)sulfonyl)-3-(((4-methoxyp henyl)amino)methyl)indolin-2-one (3f): yellow soild; Mp 45.4 – 46.7 °C; 47.4 mg, 86% yield; 90% ee; $[\alpha]_{D}^{22}$ – 4.0 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.87 – 7.78 (m, 1H), 7.38 – 7.33 (m, 1H), 7.28 (s, 1H), 6.79 – 6.88 (m, 3H), 6.85 (t, *J* = 7.8 Hz, 1H), 6.68 (d, *J* = 8.4 Hz,

PMP = 4-OMePh 3H), 6.57 (d, J = 7.7 Hz, 2H), 6.41 (d, J = 7.9 Hz, 2H), 3.73 (s, 3H), 3.69 (d, J = 20.5 Hz, 2H), 3.42 (d, J = 12.6 Hz, 2H), 3.19 (d, J = 13.4 Hz, 2H), 3.04 (d, J = 13.4 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 176.9, 167.6, 164.2, 152.9, 140.9, 139.5= 136.3, 133.7, 133.6, 133.6, 130.6, 130.5, 130.3, 129.8, 129.65, 129.5, 129.2, 128.3, 127.9, 127.7, 127.1, 125.0, 123.8, 116.4, 116.1, 115.3, 114.6, 113.7, 55.7, 55.5, 52.8, 40.3. ¹⁹F NMR (565 MHz, CDCl₃) δ – 101.8. HRMS (ESI) m/z 551.1208 (M+H⁺), calc. for C₂₉H₂₅ClFN₂O₄S 551.1202. The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 37.8 min (major) and 42.3 min (minor).

mAU 140 120 100 60 60 60 60 60 60 60 60 60 60 60 60 6	33,967	40 42	4	- <u>4</u> m
Entry	Retention	Area	Height	%Area
1	37.687	11902.6	149.5	51.048
2	41.414	11413.8	125	48.952
			10	
Entry	Retention	Area	Height	%Area
1	37.787	6557.4	88	94.764
2	42.367	365.2	5.3	5.236

(R)-3-(4-bromobenzyl)-1-((4-fluorophenyl)sulfonyl)-3-(((4-methoxy phenyl)amino)methyl)indolin-2-one (3g): yellow soild; Mp 63.1 -64.5 °C; 48.1 mg, 81% yield; 92% ee; $[\alpha]_{D}^{22}$ – 3.3 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.87 – 7.83 (m, 2H), 7.76 (d, J = 8.1 Hz, 1H), 7.35 – 7.29 (m, 1H), 7.24 – 7.23 (m, 2H), 7.04 (t, *J* = 7.3 Hz, 1H), 6.98 – 6.92 (m, 4H), 6.69 (t, J = 8.4 Hz, 4H), 6.39 (d, J = 8.8 Hz, 2H), 3.70 (d, J = 15.2 Hz, 4H), 3.42 (d, J = 12.7 Hz, 1H), 3.22 (d, J = 13.3 Hz, 1H), 3.07 (d, J = 13.3 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 177.3, 167.6, 164.2, 152.9, 141.1, 139.6, 134.2, 133.9, 133.8, 130.6, 130.5, 129.7, 129.2, 128.7, 127.9, 126.8, 124.8, 124.0, 116.3, 116.0, 115.3, 114.6, 113.6, 55.8, 55.7, 52.9, 40.9. $^{19}\mathrm{F}$ NMR (565 MHz, CDCl3) δ – 102.2. HRMS

(ESI) m/z 597.0692 (M+H⁺), calc. for. C₂₉H₂₅BrFN₂O₄S 595.0697.

The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 22.2 min (major) and 26.6 min (minor).

(*R*)-3-(3-bromobenzyl)-1-((4-fluorophenyl)sulfonyl)-3-(((4-methoxyp henyl)amino)methyl)indolin-2-one (3h): yellow oil; 54.6 mg, 91% yield; 90% ee; $[\alpha]_D^{22} - 6.7$ (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta 7.88 - 7.83$ (m, 2H), 7.76 (d, *J* = 8.1 Hz, 1H), 7.35 - 7.29 (m, 1H), 7.24 (d, *J* = 3.2 Hz, 2H), 7.04 (t, *J* = 7.3 Hz, 1H), 6.95 (dd, *J* = 11.5, 5.7 Hz,

PMP = 4-OMePh 4H), 6.73 – 6.66 (m, 4H), 6.39 (d, J = 8.8 Hz, 2H), 3.73 (s, 3H), 3.70 (d, J = 16.1 Hz, 3H), 3.42 (d, J = 12.7 Hz, 1H), 3.22 (d, J = 13.3 Hz, 1H), 3.07 (d, J = 13.3 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 177.3, 167.6 164.1, 152.8, 141.2, 139.6 134.2, 133.8, 133.8, 130.6, 130.5, 129.7, 129.2, 128.7, 127.9, 126.8, 124.8, 123.9, 116.3, 116.0, 115.2, 114.6, 113.5, 55.8, 55.7, 52.9, 40.9. ¹⁹F NMR (565 MHz, CDCl₃) δ – 102.2. HRMS (ESI) m/z 595.0692 (M+H⁺), calc. for C₂₉H₂₅BrFN₂O₄S 595.0697.

The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 19.7 min (major) and 24.7 min (minor).

(*R*)-3-(2-bromobenzyl)-1-((4-fluorophenyl)sulfonyl)-3-(((4-methoxyph enyl)amino)methyl)indolin-2-one (3i): yellow oil; 37.8 mg, 63% yield; 89% ee; $[\alpha]_{D}^{22} - 3.2$ (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.85 (dd, J = 8.9, 5.0 Hz, 2H), 7.76 (d, J = 8.1 Hz, 1H), 7.39 – 7.27 (m, 1H), 7.24 (d, J = 3.6 Hz, 2H), 7.04 (t, J = 7.3 Hz, 1H), 6.98 – 6.90 (m, 4H),

PMP = 4-OMePh 6.70 (dd, J = 10.4, 8.2 Hz, 4H), 6.38 (d, J = 8.9 Hz, 2H), 3.73 (s, 3H), 3.70 (d, J = 16.2 Hz, 1H), 3.42 (d, J = 12.7 Hz, 1H), 3.22 (d, J = 13.3 Hz, 1H), 3.07 (d, J = 13.3 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 177.3, 167.6, 164.1, 152.8, 141.3, 139.6, 134.3, 133.8, 133.8, 130.6, 130.5, 129.7, 129.2, 128.7, 127.9, 126.8, 124.8, 123.9, 116.3, 116.0, 115.2, 114.6, 113.6, 55.9, 55.7, 52.9, 40.9. ¹⁹F NMR (565 MHz, CDCl₃) δ – 102.2. HRMS (ESI) m/z 595.0692 (M+H⁺), calc. for C₂₉H₂₅BrFN₂O₄S 595.0697.

The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 19.7 min (major) and 24.7 min (minor).

(*R*)-1-((4-fluorophenyl)sulfonyl)-3-(((4-methoxyphenyl)amino)me thyl)-3-(4-methylbenzyl)indolin-2-one (3j): yellow soild; Mp 50.0 – 41.7 °C; 40.6 mg, 77% yield; 93% ee; $[\alpha]_D^{22}$ – 3.7 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.85 (dd, *J* = 8.8, 5.0 Hz, 2H), 7.76 (d, *J* = 8.1 Hz, 2H), 7.37 – 7.28 (m, 1H), 7.27 – 7.19 (m, 2H), 6.96 (t, *J* = 8.6 Hz, 2H), 6.75 – 6.63 (m, 4H), 6.56 (d, *J* = 7.9 Hz, 2H), 6.40 (d,

J = 8.8 Hz, 2H), 3.73 (s, 3H), 3.71 (d, J = 14.3 Hz, 1H), 3.43 (d, J = 12.7 Hz, 1H), 3.16 (d, J = 13.3 Hz, 1H), 3.02 (d, J = 13.4 Hz, 1H), 2.18 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 177.3, 167.6, 164.2, 152.9, 141.0, 139.6, 136.2, 133.9, 133.9, 131.1, 130.6, 130.5, 129.6, 129.2, 128.8, 128.6, 124.8, 124.0, 116.2, 115.9, 115.4, 114.6, 113.6, 55.8, 55.7, 52.9, 40.5, 20.9. ¹⁹F NMR (565 MHz, CDCl₃) δ – 102.2. RMS (ESI) m/z 5310.1754 (M+H⁺), calc. for C₃₀H₂₈FN₂O₄S 531.1748.

The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 18.2 min (major) and 24.4 min (minor).

(*R*)-1-((4-fluorophenyl)sulfonyl)-3-(((4-methoxyphenyl)amino)meth yl)-3-(3-methylbenzyl)indolin-2-one (3k): yellow soild; Mp 98.2 – 99.7 °C; 50.4 mg, 95% yield; 90% ee; $[\alpha]_D^{22} - 4.2$ (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.85 (dd, *J* = 8.9, 5.0 Hz, 2H), 7.77 (d, *J* = 8.1 Hz, 1H), 7.36 – 7.27 (m, 1H), 7.24 – 7.21 (m, 2H), 6.93 (t, *J* = 8.6 Hz, 2H), 6.89 – 6.80 (m, 2H), 6.67 (d, *J* = 8.9 Hz, 2H), 6.58 (s, 1H),

6.49 (d, J = 6.5 Hz, 1H), 6.37 (d, J = 8.8 Hz, 2H), 3.73 (s, 3H), 3.69 (d, J = 12.7 Hz, 1H), 3.40 (d, J = 12.7 Hz, 1H), 3.16 (d, J = 13.3 Hz, 1H), 3.04 (d, J = 13.3 Hz, 1H), 2.12 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 177.4, 167.5, 164.1, 152.7, 141.3, 139.6, 137.5, 134.1, 133.9, 133.8, 130.6, 130.5, 130.4, 129.1, 128.9, 127.8, 127.6, 126.6, 124.7, 124.0, 116.3, 115.9, 115.1, 114.6, 113.5, 55.8, 55.69, 52.8, 40.9, 21.1. ¹⁹F NMR (565 MHz, CDCl₃) δ –102.2. HRMS (ESI) m/z 531.1754 (M+H⁺), calc. for C₃₀H₂₈FN₂O₄S 531.1748.

The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 18.4 min (major) and 22.8 min (minor).

Entry	Retention	Area	Height	%Area
1	17.974	10327	291	49.794
2	21.769	10412.4	232.5	50.206
Entry	Retention	Area	Height	%Area
1	18.456	4390	125.4	95.293
2	22.767	216.9	6.1	4.707

(*R*)-1-((4-fluorophenyl)sulfonyl)-3-(4-methoxybenzyl)-3-(((4-me thoxyphenyl)amino)methyl)indolin-2-one (3l): yellow soild; Mp 48.2 – 49.6 °C; 51.6 mg, 94% yield; 90% ee; $[\alpha]_D^{22}$ – 5.8 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.90 – 7.81 (m, 2H), 7.77 (d, J = 8.1 Hz, 1H), 7.37 – 7.27 (m, 1H), 7.24 (d, J = 4.3 Hz, 2H), 6.96 (t, J = 8.6 Hz, 2H), 6.68 (d, J = 8.9 Hz, 2H), 6.61 (d, J = 8.6 Hz,

2H), 6.46 (d, J = 8.6 Hz, 2H), 6.39 (d, J = 8.9 Hz, 2H), 3.73 (s, 3H), 3.69 (s, 3H), 3.67 (d, J = 10.9 Hz, 1H), 3.39 (d, J = 12.6 Hz, 1H), 3.15 (d, J = 13.5 Hz, 1H), 3.02 (d, J = 13.5 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 177.3, 167.5, 164.1, 158.3, 152.7, 141.3, 139.6, 133.9, 133.8, 130.7, 130.6, 130.5, 129.2, 128.9, 126.2, 124.8, 123.9, 116.2, 115.9, 115.1, 114.8, 114.6, 113.6, 113.3, 56.0, 55.7, 54.9, 52.7, 40.1. ¹⁹F NMR (565 MHz, CDCl₃) δ – 102.1. HRMS (ESI) m/z 547.1703 (M+H⁺), calc. for C₃₀H₂₈FN₂O₅S 547.1697.

The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 25.1 min (major) and 33.6 min (minor).

(*R*)-1-((4-fluorophenyl)sulfonyl)-3-(3-methoxybenzyl)-3-(((4-metho xyphenyl)amino)methyl)indolin-2-one (3m): yellow soild; Mp 48.2 – 49.6 °C; 42.6 mg, 78% yield; 89% ee; $[\alpha]_D^{22}$ + 6.7 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.86 – 7.73 (m, 3H), 7.37 – 7.28 (m, 1H), 7.28 – 7.22 (m, 2H), 6.94 (t, *J* = 8.6 Hz, 2H), 6.84 (t, *J* = 7.9 Hz, 1H), 6.68 (d, *J* = 8.9 Hz, 2H), 6.58 (dd, *J* = 8.3, 1.9 Hz, 1H), 6.39 (d, *J* = 8.8

Hz, 2H), 6.32 - 6.22 (m, 2H), 3.73 (s, 3H), 3.70 (d, J = 17.8 Hz, 1H), 3.57 (s, 3H), 3.42 (d, J = 12.9 Hz, 1H), 3.20 (d, J = 13.3 Hz, 1H), 3.05 (d, J = 13.3 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 177.3, 167.6, 164.2, 158.9, 152.8, 141.3, 139.7, 135.8, 133.8, 133.8, 130.5, 130.4, 129.2, 128.9, 124.8, 123.9, 122.0, 116.3, 116.0, 115.2, 114.6, 114.6, 113.6, 113.1, 55.8, 55.7, 54.9, 52.9, 40.9. ¹⁹F NMR (565 MHz, CDCl₃) δ – 102.2. HRMS (ESI) m/z 547.1703 (M+H⁺), calc. for C₃₀H₂₈FN₂O₅S 547.1697.

The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 28.7 min (minor) and 31.2 min (major).

(*R*)-1-((4-fluorophenyl)sulfonyl)-3-(2-methoxybenzyl)-3-(((4-methoxy phenyl)amino)methyl)indolin-2-one (3n): yellow oil; 44.6 mg, 82% yield; 80% ee; $[\alpha]_{D}^{22}$ + 6.4 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.94 - 7.90 (m, 2H), 7.78 (d, *J* = 8.2 Hz, 1H), 7.28 - 7.22 (m, 1H), 7.13 - 7.06 (m, 3H), 6.93 - 6.84 (m, 3H), 6.68 - 6.61 (m, 4H), 6.28 (d, *J* = 8.8

PMP = 4-OMePh Hz, 2H), 3.70 (d, J = 15.4 Hz, 4H), 3.59 (s, 3H), 3.39 (d, J = 12.7 Hz, 1H), 3.23 (d, J = 13.6 Hz, 1H), 3.16 (d, J = 13.6 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 177.9, 167.5, 164.1, 157.3, 152.8, 141.2, 139.4, 134.0, 133.9, 131.3, 130.6, 130.6, 129.1, 128.7, 128.3, 124.5, 124.2, 123.3, 120.0, 116.2, 115.9, 115.2, 114.5, 113.1, 110.0, 55.7, 55.2, 54.6, 53.3, 34.4. ¹⁹F NMR (565 MHz, CDCl₃) δ – 102.3. HRMS (ESI) m/z 547.1712 (M+H⁺), calc. for C₃₀H₂₈FN₂O₅S 547.1697.

The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 15.7 min (major) and 21.4 min (minor).

(*R*)-1-((4-fluorophenyl)sulfonyl)-3-(((4-methoxyphenyl)amino)me thyl)-3-(naphthalen-2-ylmethyl)indolin-2-one (3o): light yellow soild; Mp 49.0 – 50.4 °C; 50.2 mg, 89% yield; 88% ee; $[\alpha]_D^{22}$ + 285.7 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.74 (d, *J* = 7.9 Hz, 1H), 7.67 – 7.62 (m, 3H), 7.51 – 7.48 (m, 1H), 7.44 – 7.27 (m, 6H), 7.18 (s, 1H), 6.72 (d, *J* = 8.7 Hz, 3H), 6.64 (t, *J* = 8.5 Hz, 2H), 6.46 (d,

J = 8.8 Hz, 2H), 3.76 (d, J = 13.7 Hz, 4H), 3.48 (d, J = 12.6 Hz, 1H), 3.39 (d, J = 13.3 Hz, 1H), 3.26 (d, J = 13.3 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 177.0, 167.3, 163.9, 152.8, 141.3, 139.6, 133.5, 133.5, 132.8, 132.1, 131.9, 130.2, 130.1, 129.3, 128.8, 128.7, 127.6, 127.5, 127.3, 127.3, 125.9, 125.7, 124.9, 124.0, 116.0, 115.7, 115.2, 114.6, 113.6, 55.8, 55.7, 52.8, 40.9. ¹⁹F NMR (565 MHz, CDCl₃) δ – 101.4. HRMS (ESI) m/z 567.1754 (M+H⁺), calc. for C₃₃H₂₈FN₂O₄S 567.1748.

The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 33.5 min (minor) and 37.2 min (major).

(*R*)-1-((4-fluorophenyl)sulfonyl)-3-(((4-methoxyphenyl)amino)methyl)-3-(thiophen-2-ylmethyl)indolin-2-one (3p): yellow soild; Mp 72.2 – 73.8 °C; 48.6 mg, 93% yield; 90% ee; $[\alpha]_{D}^{22}$ + 4.1 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.89 – 7.82 (m, 3H), 7.40 – 7.35 (m, 1H), 7.31 – 7.24 (m, 2H), 6.98 (t, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 4.8 Hz, 1H), 6.69 (d, *J* = 8.8 Hz,

2H), 6.59 – 6.56 (m, 1H), 6.40 (dd, J = 15.8, 5.7 Hz, 3H), 3.73 (s, 3H), 3.67 (d, J = 12.7 Hz, 1H), 3.51 (d, J = 14.5 Hz, 1H), 3.42 (d, J = 12.7 Hz, 1H), 3.25 (d, J = 14.4 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 176.9, 167.6, 164.2, 152.9, 141.0, 139.9, 135.9, 133.8, 133.7, 130.7, 130.6, 129.5, 128.6, 127.1, 126.4, 125.1, 124.6, 123.8, 116.3, 116.0, 115.3, 114.7, 113.7, 55.7, 55.6, 52.7, 35.0. ¹⁹F NMR (565 MHz, CDCl₃) δ – 102.2. HRMS (ESI) m/z 523.1162 (M+H⁺), calc. for C₂₇H₂₄FN₂O₄S₂ 523.1156.

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 17.9 min (minor) and 29.2 min (major).

(R)-1-((4-fluorophenyl)sulfonyl)-3-(((4-methoxyphenyl)amino)methyl)-3methylindolin-2-one (3q): white soild; Mp 124.9 - 125.4 °C; 39.2 mg, 89% yield; 90% ee; $[\alpha]_{D}^{22}$ + 5.9 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.99 - 7.93 (m, 3H), 7.41 - 7.35 (m, 1H), 7.24 (d, J = 4.4 Hz, 2H), 6.92 (t, J = 8.6 Hz, 2H), 6.63 (d, J = 8.9 Hz, 2H), 6.27 (d, J = 8.8 Hz, 2H), 3.72 (s, 3H), 3.55

PMP = 4-OMePh

(d, J = 12.8 Hz, 1H), 3.29 (d, J = 12.8 Hz, 1H), 1.38 (s, 3H). ¹³C NMR (75) MHz, CDCl₃) & 178.5, 167.7, 164.2, 153.0, 140.8, 139.1, 133.8, 133.8, 131.2, 130.7, 130.5, 129.1, 125.3, 123.0, 116.3, 116.0, 115.3, 114.5, 113.9, 55.7, 54.1, 50.1, 20.9. ¹⁹F NMR (565 MHz, CDCl₃) δ - 101.8. HRMS (ESI) m/z 441.1284 (M+H⁺), calc. for C₂₃H₂₂FN₂O₄S 441.1279.

The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 20.5 min (minor) and 25.3 min (major).

(*R*)-3-allyl-1-((4-fluorophenyl)sulfonyl)-3-(((4-methoxyphenyl)amino)m ethyl)indolin-2-one (3r): yellow oil; 32.2 mg, 69% yield; 86% ee; $[\alpha]_{D}^{22}$ – 2.4 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.16 – 7.71 (m, 3H), 7.38 (td, *J* = 8.7, 4.0 Hz, 1H), 7.30 – 7.21 (m, 2H), 7.06 – 6.80 (m, 2H), 6.63 (t, *J* = 11.6 Hz, 2H), 6.32 (d, *J* = 8.7 Hz, 2H), 5.37 – 5.03 (m, 1H), 4.87 (d, *J* =

16.9 Hz, 1H), 4.76 (d, J = 10.1 Hz, 1H), 3.72 (s, 3H), 3.58 (d, J = 12.7 Hz, 1H), 3.33 (d, J = 12.7 Hz, 1H), 2.65 – 2.47 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 177.5, 167.7, 164.3, 152.9, 141.1, 139.6, 133.9, 133.9, 130.8, 130.6, 130.4, 129.2, 129.1, 125.2, 123.4, 119.8, 116.2, 115.9, 115.3, 114.5, 113.8, 55.7, 54.5, 52.7, 39.5. ¹⁹F NMR (565 MHz, CDCl₃) δ – 102.0. HRMS (ESI) m/z 467.1441 (M+H⁺), calc. for C₂₅H₂₄FN₂O₄S 467.1435. The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 13.8 min (major) and 19.3 min (minor).

(R)-3-((1,3-dioxolan-2-yl)methyl)-1-((4-fluorophenyl)sulfonyl)-3-(((4-m ethoxyphenyl)amino)methyl)indolin-2-one (3s): yellow oil; 44.2 mg, 86% yield; 88% ee; $[\alpha]_{D}^{22}$ + 28.9 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.04 (dd, J = 8.8, 5.0 Hz, 2H), 7.95 (d, J = 8.2 Hz, 1H), 7.37 (t, J = 7.7 Hz, 1H), 7.27 (d, J = 8.8 Hz, 1H), 7.22 (t, J = 7.3 Hz, 1H), 7.01 (t, J = 8.6 Hz,

PMP = 4-OMePh

2H), 6.64 (d, *J* = 8.9 Hz, 2H), 6.32 (d, *J* = 8.9 Hz, 2H), 4.60 (dd, *J* = 7.0, 2.6 Hz, 1H), 3.72 (s, 3H), 3.62 – 3.46 (m, 3H), 3.36 – 3.20 (m, 3H), 2.39 – 2.21 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 177.4, 167.6, 164.2, 152.7, 141.2, 139.6, 134.1, 134.0, 131.0, 130.8, 129.1, 128.7, 124.7, 123.9, 116.1, 115.8, 115.1, 114.5, 113.5, 101.0, 64.9, 64.1, 55.7, 54.1, 51.4, 37.9. ¹⁹F NMR (565 MHz, CDCl₃) δ – 102.4. HRMS (ESI) m/z 535.1311 (M+Na⁺), calc. for $C_{26}H_{26}FN_2O_6SNa$ 535.1310.

The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 21.7 min (minor) and 24.0 min (major).

(*R*)-3-(4-bromobutyl)-1-((4-fluorophenyl)sulfonyl)-3-(((4-methoxyph enyl)amino)methyl)indolin-2-one (3t): yellow oil; 48.8 mg, 87% yield; 91% ee; $[\alpha]_{D}^{22}$ + 39.2 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.00 – 7.96 (m, 3H), 7.40 (t, J = 7.4 Hz, 1H), 7.28 (d, J = 7.5 Hz, 1H), 7.22 (t, J = 6.6 Hz, 1H), 6.95 (t, J = 8.5 Hz, 2H), 6.64 (d, J = 8.8 Hz, 2H), 6.27 (d,

PMP = 4-OMePh

J = 8.8 Hz, 2H), 3.72 (s, 3H), 3.53 (d, *J* = 12.7 Hz, 1H), 3.28 (d, *J* = 12.7 Hz, 1H), 3.23 – 3.13 (m, 2H), 2.85 (s, 1H), 2.01 – 1.91 (m, 1H), 1.79 – 1.58 (m, 3H), 1.00 – 0.88 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 178.0, 167.7, 164.3, 152.8, 141.2, 139.7, 133.7, 133.7, 130.7, 130.5, 129.3, 125.4, 123.1, 116.3, 116.0, 115.1, 114.5, 113.9, 55.7, 54.7, 53.7, 34.1, 32.6, 32.3, 22.5. ¹⁹F NMR (565 MHz, CDCl₃) δ – 101.8. HRMS (ESI) m/z 561.0854 $(M+H^+)$, calc. for C₂₆H₂₇BrFN₂O₄S 561.0853.

The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 21.7 min (major) and 24.0 min (minor).

(*R*)-1-((4-fluorophenyl)sulfonyl)-1'-(4-methoxyphenyl)spiro[indoline-3,3 '-piperidin]-2-one (3u): light yellow soild; Mp 45.1 – 45.7 °C; 25.6 mg, 55% yield; 87% ee; $[\alpha]_{D}^{22}$ – 24.0 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.13 (dd, *J* = 8.9, 5.0 Hz, 2H), 7.97 (d, *J* = 8.2 Hz, 1H), 7.87 (d, *J* = 7.3 Hz, 1H), 7.37 (t, *J* = 7.9 Hz, 1H), 7.23 – 7.15 (m, 3H), 6.77 (s, 4H), 3.74 (s, 3H),

PMP = 4-OMPPn 3.48 (d, J = 11.3 Hz, 1H), 3.12 – 3.03 (m, 2H), 2.96 – 2.84 (m, 1H), 2.09 – 1.98 (m, 1H), 1.94 – 1.84 (m, 2H), 1.63 – 1.58 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 176.8, 167.8, 164.4, 154.4, 145.9, 137.6, 134.1, 134.0, 132.3, 130.9, 130.8, 128.4, 126.0, 124.7, 119.9, 116.6, 116.3, 114.3, 113.3, 58.1, 55.5, 51.2, 48.0, 32.2, 21.1. ¹⁹F NMR (565 MHz, CDCl₃) δ – 101.7. HRMS (ESI) m/z 467.1428 (M+H⁺), calc. for C₂₅H₂₃FN₂O₄S 467.1435. The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 11.2 min (minor) and 14.7 min (major).

-31J 9.83 11.00	12.00 13.00	14.00 15.00	16.00 17.00	18.00 19.00 19.39
Entry	Retention	Area	Height	%Area
1	11.175	4.0615	6.99	0.78
2	14.608	513.9811	658.67	99.22

(R)-1'-(4-methoxyphenyl)spiro[indoline-3,3'-piperidin]-2-one: light yellow oil; 11.1 mg, 69% yield; 94% ee; $[\alpha]_{D}^{22}$ – 19.0 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.46 (s, 1H), 7.85 (d, J = 7.4 Hz, 1H), 7.23 (d, J = 7.6 Hz, 1H), 7.02 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 7.7 Hz, 1H), 6.88 (d, J = 8.9 Hz, 2H), 6.79 (d, J = 9.0 Hz, 2H), 3.75 (s, 3H), 3.61 (d, J = 12.0 Hz, 1H), 3.27 (d, J = 11.5 Hz, 1H), 3.16 (d, J = 11.6 Hz, 1H), 2.92 (t, J = 10.5 Hz, 1H), 2.24 – 2.15 (m, 1H), 2.06 – 1.90 (m, 2H), 1.73 (d, J = 12.5 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 180.9, 154.3, 139.8, 134.1, 127.7, 126.1, 122.2, 119.9, 114.4, 109.6, 58.0, 55.6, 51.5, 48.6, 31.4, 21.7. HRMS (ESI) m/z

 $309.1598 (M+H^+)$, calc. for $C_{19}H_{21}N_2O_2 309.1603$.

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.9 min (minor) and 32.6 min (major).

(*R*)-1-((4-fluorophenyl)sulfonyl)-1'-(4-methoxyphenyl)spiro[indoline-3,3 '-pyrrolidin]-2-one (3v): yellow soild; Mp 59.7 – 60.1 °C; 24.0 mg, 53% yield; 80% ee; $[\alpha]_{D}^{22}$ + 15.2 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.23 (dd, *J* = 8.7, 5.0 Hz, 2H), 8.02 (d, *J* = 8.2 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.34 – 7.28 (m, 4H), 6.93 (d, *J* = 8.8 Hz, 2H), 6.61 (d, *J* = 8.7 Hz, 2H),

PMP = 4-OMePh 3.84 (s, 3H), 2.80 – 2.02 (m, 3H), 3.53 (d, J = 9.2 Hz, 1H), 2.60 – 2.51 (m, 1H), 2.29 – 2.21 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 176.9, 167.9, 164.5, 151.7, 141.8, 137.8, 133.9, 133.9, 132.1, 131.0, 130.9, 129.9, 128.9, 125.6, 123.3, 116.8, 116.5, 114.9, 113.5, 113.3, 57.9, 55.8, 53.2, 47.8, 37.4. ¹⁹F NMR (565 MHz, CDCl₃) δ – 101.5. HRMS (ESI) m/z 453.1262 (M+H⁺), calc. for C₂₄H₂₁FN₂O₄S 453.1279.

The ee was determined by HPLC analysis: CHIRALPAK IF (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 22.4 min (minor) and 28.5 min (major).

(*R*)-3-(((4-methoxy-3-(trifluoromethyl)phenyl)amino)methyl)-1-meth yl-3-phenylindolin-2-one (5a): yellow soild; Mp 108.6 – 109.7 °C; 40.8 mg, 96% yield; 90% ee; $[\alpha]_D^{22}$ + 272.8 (*c* 1.0, CHCl₃); ¹H NMR (300 Ar' = 3-CF₃-4-MeOPh MHz, CDCl₃) δ 7.43 (t, *J* = 6.7 Hz, 2H), 7.38 – 7.29 (m, 4H), 7.15 (t, *J* = 7.5 Hz, 1H), 6.93 (d, *J* = 7.7 Hz, 1H), 6.82 (d, *J* = 8.8 Hz, 1H), 6.73 (d, *J* = 12.5 Hz, 2H), 4.11 (d, *J* = 12.2 Hz, 1H), 3.79 (s, 2H), 3.72 (d, *J* = 12.3 Hz, 1H), 3.19 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 177.4, 150.1, 144.0, 141.0, 137.5, 130.3, 128.9, 128.8 127.8, 127.1 125.4 124.9, 122.9, 121.8, 119.4, 119.0, 118.6, 118.1, 113.9, 113.0, 113.0, 112.9, 112.8, 108.7, 56.8, 56.7, 51.6, 26.5. ¹⁹F NMR (565 MHz, CDCl₃) δ – 62.2. HRMS (ESI) m/z 449.1448 (M+Na⁺), calc. for C₂₄H₂₁F₃N₂O₂Na 449.1447.

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.2 min (minor) and 12.2 min (major).

Ar'HN Ar'HN Me $Ar' = 3 \cdot CF_3 \cdot (R) \cdot 3 \cdot (((4-methoxy-3 \cdot (trifluoromethyl)phenyl)amino)methyl) - 1-meth$ $<math>yl-3 \cdot (4 \cdot (trifluoromethyl)phenyl)indolin-2-one (5b): yellow soild; Mp$ $101.1 - 101.9 \, ^{\circ}C; 41.4 \, \text{mg}, 84\% \, \text{yield}; 90\% \, \text{ee}; [\alpha]_D^{22} + 87.6 \, (c \, 1.0, Me \, CHCl_3); ^{1}H \, \text{NMR} (300 \, \text{MHz}, \text{CDCl}_3) \delta 7.58 \, (s, 4H), 7.41 \, (t, J = 7.7 \, \text{Hz}, 1H), 7.34 \, (d, J = 7.3 \, \text{Hz}, 1H), 7.18 \, (t, J = 7.5 \, \text{Hz}, 1H), 6.95 \, (d, J = 7.8 \, \text{Hz}, 1H), 6.82 \, (d, J = 8.8 \, \text{Hz}, 1H), 6.76 - 6.70 \, (m, 2H), 4.12 \, (d, J = 12.4 \, \text{Hz}, 1H), 3.80 \, (s, 3H), 3.71 \, (d, J = 12.4 \, \text{Hz}, 1H), 3.20 \, (s, 3H). \, ^{13}C \, \text{NMR} \, (75 \, \text{MHz}, \text{CDCl}_3) \delta 176.8, 150.2, 144.0, 141.6, 140.9, 130.2, 129.8, 129.6, 129.3, 128.8, 127.6, 125.8, 125.7, 125.7, 125.7, 125.6, 125.4, 124.8, 123.1, 122.1, 121.7, 119.4, 119.0, 118.2, 113.9, 113.0, 113.0, 112.9, 112.8, 109.0, 56.8, 56.9, 51.7, 26.6. \, ^{19}F \, \text{NMR} \, (565 \, \text{MHz}, \text{CDCl}_3) \, \delta - 62.3, - 62.7. \, \text{HRMS} \, (\text{ESI}) \, \text{m/z} \, 517.1318 \, (\text{M+Na}^+), \text{calc. for } C_{25}H_20F_6N_2O_2Na \, 517.1321.$

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 8.0 min (minor) and 11.0 min (major).

(*R*)-3-(4-fluorophenyl)-3-(((4-methoxy-3-(trifluoromethyl)phenyl)a mino)methyl)-1-methylindolin-2-one (5c): yellow soild; Mp 128.3 –

129.4 °C; 39.6 mg, 89% yield; 90% ee; $[\alpha]_D^{22}$ + 25.3 (*c* 1.0, CHCl₃);¹H Me Ar' = 3-CF₃-4-MeOPh NMR (300 MHz, CDCl₃) δ 7.45 – 7.39 (m, 3H), 7.34 (d, *J* = 7.4 Hz, 1H), 7.16 (t, *J* = 7.4 Hz, 1H), 7.02 (t, *J* = 8.7 Hz, 2H), 6.93 (d, *J* = 7.8 Hz, 1H), 6.82 (d, *J* = 8.7 Hz, 1H), 6.75 – 6.70 (m, 2H), 4.06 (d, *J* = 12.3 Hz, 1H), 3.79 (s, 3H), 3.68 (d, *J* = 12.3 Hz, 1H), 3.19 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 177.3, 163.9, 160.6, 150.2, 144.0, 140.9, 133.2, 133.2, 130.0, 129.1, 129.0, 128.8, 125.4, 124.9, 123.0, 121.7, 119.8, 119.4, 119.0, 118.6, 118.2, 115.8, 115.5, 113.8, 113.1, 113.0, 112.9, 112.9, 108.8, 56.6, 56.2, 51.8, 26.5. ¹⁹F NMR (565 MHz, CDCl₃) δ – 62.2, – 114.5. HRMS (ESI) m/z 467.1349 (M+Na⁺), calc. for C₂₄H₂₀F₄N₂O₂Na 467.1353.

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 8.9 min (minor) and 11.9 min (major).

(*R*)-3-(3-fluorophenyl)-3-(((4-methoxy-3-(trifluoromethyl)phenyl)am ino)methyl)-1-methylindolin-2-one (5d): yellow soild; Mp 97.8 – 99.1 °C; 41.2 mg, 93% yield; 92% ee; $[\alpha]_D^{22}$ + 39.7 (*c* 1.0, CHCl₃);¹H NMR Ar' = 3-CF₃-4-MeOPh (300 MHz, CDCl₃) δ 7.44 – 7.28 (m, 4H), 7.20 – 7.16 (m, 2H), 7.03 – 6.95 (m, 2H), 6.84 (d, *J* = 8.8 Hz, 1H), 6.79 – 6.68 (m, 2H), 4.10 (d, *J* = 12.4 Hz, 1H), 3.82 (s, 3H), 3.72 (d, *J* = 12.3 Hz, 1H), 3.21 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 176.9, 164.5, 161.3, 150.2, 144.0, 140.9, 140.0, 140.0, 130.3, 130.2, 129.7, 129.2, 125.4, 124.9, 123.0, 122.8, 122.8, 121.7, 119.8, 119.4, 119.0, 118.6, 118.2, 114.9, 114.6, 114.3, 113.8, 113.1, 113.0, 112.9, 112.9, 108.8, 56.7, 51.7, 26.5. ¹⁹F NMR (565 MHz, CDCl₃) δ – 62.2, – 111.9. HRMS (ESI) m/z 467.1353 (M+Na⁺), calc. for C₂₄H₂₀F₄N₂O₂Na 467.1352.

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 8.7 min (minor) and 10.9 min (major).

Ar'HN Ar'HN Ne Ar' = 3-CF₃-4-MeOPh (300 MHz, CDCl₃) δ 7.42 – 7.28 (m, 6H), 7.16 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 7.8 Hz, 1H), 6.82 (d, J = 8.7 Hz, 1H), 6.74 – 6.70 (m, 2H), 4.06 (d, J = 12.3 Hz, 1H), 3.80 (s, 3H), 3.67 (d, J = 12.3 Hz, 1H), 3.19 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 177.1, 150.2, 144.0, 140.8, 136.0, 133.8, 129.8, 129.2, 128.9, 128.6, 125.3, 124.8, 123.0, 121.7, 119.4, 119.0, 118.2, 113.8, 113.0, 113.0, 112.9, 112.8, 108.8, 56.6, 56.3, 51.7, 26.5. ¹⁹F NMR (565 MHz, CDCl₃) δ – 62.3. HRMS (ESI) m/z 483.1058 (M+Na⁺), calc. for C₂₄H₂₀ClF₃N₂O₂Na 483.1057.

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 10.6 min (minor) and 14.7 min (major).

(*R*)-3-(3-chlorophenyl)-3-(((4-methoxy-3-(trifluoromethyl)phenyl)a mino)methyl)-1-methylindolin-2-one (3f): yellow soild; Mp 116.2 – 127.8 °C; 44.1 mg, 96% yield; 92% ee; $[\alpha]_D^{22}$ + 167.1 (*c* 1.0, CHCl₃); ¹H Ar' = 3-CF₃-4-MeOPh NMR (300 MHz, CDCl₃) δ 7.44 – 7.31 (m, 4H), 7.27 (s, 1H), 7.16 (t, *J* = 7.0 Hz, 1H), 6.93 (d, *J* = 7.5 Hz, 1H), 6.81 (d, *J* = 8.4 Hz, 1H), 6.77 – 6.66 (m, 2H), 4.07 (d, *J* = 12.2 Hz, 1H), 3.79 (s, 3H), 3.68 (d, *J* = 12.1 Hz, 1H), 3.19 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 176.9, 150.2, 144.0, 140.9, 139.6, 134.7, 130.0, 129.6, 129.2, 128.0, 127.4, 125.4, 124.9, 123.1, 121.7, 119.4, 119.0, 118.6, 118.2, 113.8, 113.1, 113.0, 112.9, 112.9, 108.9, 56.6, 56.6, 51.7, 26.5. ¹⁹F NMR (565 MHz, CDCl₃) δ – 62.2. HRMS (ESI) m/z 483.1058 (M+Na⁺), calc. for C₂₄H₂₀ClF₃N₂O₂Na 483.1056.

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.7 min (minor) and 13.1 min (major).

Ar'HN Ar'HN Me Ar' = 3-CF₃-4-MeOPh (300 MHz, CDCl₃) δ 7.47 – 7.30 (m, 6H), 7.16 (t, J = 7.4 Hz, 1H), 6.93 (d, J = 7.6 Hz, 1H), 6.82 (d, J = 8.5 Hz, 1H), 6.75 – 6.70 (m, 2H), 4.06 (d, J = 12.4 Hz, 1H), 3.80 (s, 3H), 3.67 (d, J = 12.3 Hz, 1H), 3.18 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 177.0, 150.1, 144.0, 141.0, 136.6, 131.9, 131.8, 130.1, 129.8, 129.2, 128.9, 125.4, 124.8, 123.0, 122.0, 121.7, 119.4, 119.0, 118.6, 118.1, 113.8, 113.0, 112.9, 112.8, 112.7, 108.8, 56.6, 56.4, 51.6, 26.5. ¹⁹F NMR (565 MHz, CDCl₃) δ – 62.3. HRMS (ESI) m/z 527.0552 (M+Na⁺), calc. for C₂₄H₂₀BrF₃N₂O₂Na 527.0551.

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.7 min (minor) and 13.2 min (major).

(*R*)-3-(3-bromophenyl)-3-(((4-methoxy-3-(trifluoromethyl)phenyl)a mino)methyl)-1-methylindolin-2-one (5h): yellow soild; Mp 102.1 – 103.5 °C; 48.8 mg, 97% yield; 90% ee; $[\alpha]_D^{22}$ + 11.7 (*c* 1.0, CHCl₃);¹H Ar' = 3-CF₃-4-MeOPh NMR (300 MHz, CDCl₃) δ 7.67 (s, 1H), 7.58 – 7.42 (m, 4H), 7.39 – 7.27 (m, 2H), 7.05 (d, *J* = 7.8 Hz, 1H), 6.94 (d, *J* = 8.8 Hz, 1H), 6.87 – 6.82 (m, 2H), 4.19 (d, *J* = 12.3 Hz, 1H), 3.91 (s, 3H), 3.80 (d, *J* = 12.4 Hz, 1H), 3.31 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 176.8, 150.2, 144.0, 140.9, 139.8, 131.0, 130.3, 130.2, 129.6, 129.2, 128.9, 128.8, 127.8, 127.1, 125.8, 125.4, 124.9, 124.9, 123.1, 122.9, 122.9, 121.7, 119.8, 119.4, 119.0, 118.6, 118.2, 113.9, 113.1, 113.0, 113.0, 112.9, 108.9, 56.6, 56.5, 51.8, 26.5. ¹⁹F NMR (565 MHz, CDCl₃) δ – 62.2. HRMS (ESI) m/z 527.0552 (M+Na⁺), calc. for C₂₄H₂₀BrF₃N₂O₂Na 527.0551.

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.8 min (minor) and 13.2 min (major).

(R)-3-(((4-methoxy-3-(trifluoromethyl)phenyl)amino)methyl)-1-met hyl-3-(p-tolyl)indolin-2-one (5i): yellow soild; Mp 135.2 - 136.7 °C; 38.1 mg, 86% yield; 91% ee; $[\alpha]_{D}^{22}$ + 15.0 (*c* 1.0, CHCl₃); ¹H NMR (300 Ar' = 3-CF₃-4-MeOPh MHz, CDCl₃) δ 7.42 – 7.28 (m, 3H), 7.19 – 7.10 (m, 3H), 6.92 (d, J = 7.7 Hz, 1H), 6.82 (d, J = 8.6 Hz, 1H), 6.73 (d, J = 11.3 Hz, 2H), 4.10 (t, J = 12.7 Hz, 1H), 3.79 (s, 3H), 3.70 (d, J = 12.2 Hz, 1H), 3.22 (d, J = 18.1 Hz, 3H), 2.41 – 2.26 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) & 177.6, 150.0, 144.0, 141.1, 137.6, 134.4, 130.5, 129.5, 129.0, 128.8, 126.9, 125.4, 124.9, 122.8, 121.8, 119.8, 119.4, 119.0, 118.6, 118.2, 118.0, 113.9, 113.0, 112.9, 112.8, 112.7, 108.6, 56.7, 56.4, 51.5, 26.4, 21.0. 19 F NMR (565 MHz, CDCl₃) δ – 62.2. HRMS (ESI) m/z 463.1604 (M+Na⁺), calc. for C₂₅H₂₃F₃N₂O₂Na 463.1602.

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 10.4 min (minor) and 12.9 min (major).

Entry	Retention	Area	Height	%Area
1	10.350	36.9581	99.11	5.71
2	12.765	609.7776	1094.57	94.29

The synthesis of **5i** in a 1.0 mmol scale

The ee value was obtained after a single recrystallization (PE : EA = 1 : 4).

Me Ar'HN Ar'HN Ar'=3-CF₃-4-MeOPh (*R*)-3-(((4-methoxy-3-(trifluoromethyl)phenyl)amino)methyl)-1-meth mg, 95% yield; 90% ee; $[α]_D^{22}$ + 10.9 (*c* 1.0, CHCl₃);¹H NMR (300 MHz, Me Ar'=3-CF₃-4-MeOPh CDCl₃) δ7.40 - 7.34 (m, 7.5 Hz, 2H), 7.22 (d, *J* = 5.3 Hz, 3H), 7.19 -7.06 (m, 2H), 6.93 (d, *J* = 7.8 Hz, 1H), 6.82 (d, *J* = 8.7 Hz, 1H), 6.73 (d, *J* = 12.6 Hz, 2H), 4.09 (d, *J* = 12.2 Hz, 1H), 3.80 (s, 3H), 3.71 (d, *J* = 12.2 Hz, 1H), 3.20 (s, 3H), 2.33 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 177.5, 150.0, 144.0, 141.2, 138.5, 137.4, 130.5, 129.0, 128.8, 128.6, 128.6, 127.7, 125.4, 124.9, 124.1, 122.8, 121.8, 119.8, 119.7, 119.0, 118.6, 118.2, 118.1, 113.9, 113.0, 112.9, 112.8, 112.7, 108.6, 56.7, 56.7, 51.5, 26.5, 21.6. ¹⁹F NMR (565 MHz, CDCl₃) δ - 62.2. HRMS (ESI) m/z 463.1604 (M+Na⁺), calc. for C₂₅H₂₃F₃N₂O₂Na 463.1601.

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 7.5 min (minor) and 10.3 min (major).

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 7.6 min (minor) and 10.5 min (major).

Ar'HN Ar'HN Ne Ar' = 3-CF₃-4-MeOPh HI, 3.79 (s, 3H), 3.72 (d, J = 12.2 Hz, 1H), 3.19 (s, 3H), 1.29 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 177.6, 150.7, 150.0, 144.1, 141.1, 134.3, 130.4, 128.8, 126.7, 125.7, 125.4, 108.6, 56.7, 56.5, 51.6, 34.4, 31.2, 26.5. ¹⁹F NMR (565 MHz, CDCl₃) $\delta - 62.2$. HRMS (ESI) m/z 505.2073 (M+Na⁺), calc. for C₂₈H₂₉F₃N₂O₂Na 505.2072.

The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 7.9 min (minor) and 14.6 min (major).

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 17.3 min (minor) and 24.1 min (major).

(*R*)-3-(((4-methoxy-3-(trifluoromethyl)phenyl)amino)methyl)-1-me thyl-3-(naphthalen-2-yl)indolin-2-one (5n): yellow soild; Mp 136.2 – 137.9 °C; 44.4 mg, 93% yield; 90% ee; $[\alpha]_{D}^{22}$ + 16.2 (*c* 1.0, CHCl₃); ¹H

NMR (300 MHz, CDCl₃) δ 7.89 – 7.74 (m, 4H), 7.63 – 7.55 (m, 1H), 7.52 – 7.35 (m, 4H), 7.18 (t, *J* = 7.5 Hz, 1H), 6.97 (d, *J* = 8.0 Hz, 1H), 6.83 (d, *J* = 9.0 Hz, 1H), 6.76 (d, *J* = 7.7 Hz, 2H), 4.21 (d, *J* = 12.2 Hz, 1H), 3.82 (d, *J* = 13.8 Hz, 4H), 3.80 (s, 3H), 3.24 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 177.4, 150.0, 144.0, 141.2, 134.8, 133.2, 132.7, 130.5, 129.0, 128.6, 128.1, 127.5, 126.3, 126.3, 126.2, 125.4, 125.0, 124.7, 123.0, 121.8, 119.8, 119.4, 119.0, 118.6, 118.0, 113.9, 112.9, 112.8, 112.7, 112.7, 108.7, 56.9, 56.7, 51.4, 26.5. ¹⁹F NMR (565 MHz, CDCl₃) δ – 62.2. HRMS (ESI) m/z 499.1604 (M+Na⁺), calc. for C₂₈H₂₃F₃N₂O₂Na 499.1603.

The ee was determined by HPLC analysis: CHIRALPAK IB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 10.1 min (major) and 12.4 min (minor).

Ar'HN Ar'HN Ar'HN Ar'=3-CF₃-4-MeOPh $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.36 (d, J = 4.1 \text{ Hz}, 2\text{H}), 7.20 - 7.10 (m, 1\text{H}), 6.93 (d, J = 6.5 \text{ Hz}, 1\text{H}), 6.77 (dd, J = 26.4, 9.0 \text{ Hz}, 3\text{H}), 4.10 (d, J = 11.5 \text{ Hz}, 1\text{H}), 3.79 (s, 3\text{H}), 3.72 (d, J = 11.7 \text{ Hz}, 1\text{H}), 3.20 (s, 3\text{H}). ¹³C NMR (75 MHz, CDCl₃) <math>\delta$ 177.4, 150.0, 144.0, 141.1, 137.3, 130.3, 128.9, 128.3, 128.0, 127.0, 126.7, 126.3, 125.4, 124.9, 122.9, 121.8, 119.7, 119.3, 118.9, 118.0, 113.8, 112.9, 112.8, 112.8, 112.7, 108.7, 56.7, 56.7, 51.6, 26.5. ¹⁹F NMR (565 MHz, CDCl₃) δ - 62.2. HRMS (ESI) m/z 454.1765 (M+Na⁺), calc. for C₂₄H₁₆D₃F₃N₂O₂Na 454.1761.

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 10.0 min (minor) and 13.8 min (major).

(R)-4-chloro-3-(((4-methoxy-3-(trifluoromethyl)phenyl)amino)methy I)-1-methyl-3-phenylindolin-2-one (5p): yellow soild; Mp 96.1 – 97.5 °C; 43.6 mg, 95% yield; 92% ee; $[\alpha]_{D}^{22}$ + 50.3 (c 1.0, CHCl₃); ¹H NMR Ar' = 3-CF₃-4-MeOPh $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.7.26 - 7.16 \text{ (m, 2H)}, 7.00 \text{ (d, } J = 8.2 \text{ Hz}, 0\text{H}),$ 6.74 – 6.65 (m, 1H), 6.58 (s, 0H), 4.36 (d, J = 12.9 Hz, 0H), 4.06 (d, J = 12.8 Hz, 0H), 3.69 (s, 1H), 2.98 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 177.6, 159.8, 150.1, 144.0, 141.1, 139.0, 130.2, 129.8, 129.0, 128.9, 125.4, 124.9, 122.9, 121.8, 119.4, 119.0, 118.6, 118.1, 113.9, 113.7, 113.0, 112.9, 112.8, 112.7, 112.5, 108.7, 56.7, 56.6, 55.2, 51.6, 26.5. ¹⁹F NMR (565 MHz, CDCl₃) $\delta - 62.2$. HRMS (ESI) m/z 483.1058 (M+Na⁺), calc. for C₂₄H₂₀ClF₃N₂O₂Na 483.1057.

The ee was determined by HPLC analysis: CHIRALPAK IB-INB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 21.4 min (major) and 23.7 min (minor).

(*R*)-4-bromo-3-(((4-methoxy-3-(trifluoromethyl)phenyl)amino)methy l)-1-methyl-3-phenylindolin-2-one (5q): yellow soild; Mp 108.4 – 109.7 °C; 40.4 mg, 80% yield; 93% ee; $[\alpha]_{D}^{22}$ + 54.2 (*c* 1.0, CHCl₃); ¹H

 $\begin{aligned} &Ar = 3 - CF_{3} - 4 - MeOPh \\ &NMR (300 \text{ MHz, CDCl}_{3}) \delta 7.32 (d, J = 7.0 \text{ Hz}, 3\text{H}), 7.28 - 7.22 (m, 4\text{H}), \\ &6.88 - 6.79 (m, 3\text{H}), 6.70 (d, J = 2.2 \text{ Hz}, 1\text{H}), 4.46 (d, J = 12.8 \text{ Hz}, 1\text{H}), 4.24 (d, J = 12.8 \text{ Hz}, \\ &1\text{H}), 3.80 (s, 3\text{H}), 3.06 (s, 3\text{H}). {}^{13}\text{C} \text{ NMR} (75 \text{ MHz, CDCl}_{3}) \delta 177.2, 150.2, 146.9, 140.7, \\ &135.9, 130.6, 128.9, 128.8, 128.7, 128.3, 127.9, 126.9, 126.9, 125.3, 121.7, 120.1, 119.6, \\ &119.2, 118.8, 118.4, 118.1, 113.9, 113.8, 113.7, 113.7, 107.5, 59.5, 56.6, 48.8, 26.5. {}^{19}\text{F} \text{ NMR} \\ &(565 \text{ MHz, CDCl}_{3}) \delta - 62.2. \text{ HRMS} (ESI) m/z 527.0552 (M+Na^+), calc. for \\ &C_{24}H_{20}BrF_{3}N_{2}O_{2}Na 527.0553. \end{aligned}$

The ee was determined by HPLC analysis: CHIRALPAK IB-INB (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 24.4 min (major) and 27.9 min (minor).

(*R*)-3-(((4-methoxy-3-(trifluoromethyl)phenyl)amino)methyl)-1-met hyl-5-nitro-3-phenylindolin-2-one (5r): yellow soild; Mp 62.2 – 62.9 °C; 30.0 mg, 64% yield; 88% ee; $[\alpha]_D^{22}$ + 2.1 (*c* 1.0, CHCl₃); ¹H NMR Ar' = 3-CF₃-4-MeOPh (300 MHz, CD₂Cl₂) δ 8.33 (d, *J* = 8.7 Hz, 1H), 8.26 (s, 1H), 7.40 – 7.35 (m, 5H), 6.99 (d, *J* = 8.6 Hz, 1H), 6.78 (dd, *J* = 22.8, 10.1 Hz, 3H), 4.11 (d, *J* = 12.8 Hz, 1H), 3.87 (d, *J* = 12.7 Hz, 1H), 3.79 (s, 3H), 3.27 (s, 3H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 177.6, 150.4, 149.7, 143.5, 140.6, 135.8, 131.5, 129.9, 129.2, 129.1, 128.5, 128.3, 126.9, 126.1, 125.3, 121.6, 120.9, 119.5, 119.1, 118.4, 113.8, 113.3, 113.2, 113.1, 113.1, 108.2, 57.2, 56.6, 52.0, 26.9. ¹⁹F NMR (565 MHz, CDCl₃) δ – 62.3. HRMS (ESI) m/z 494.1307 (M+Na⁺), calc. for C₂₄H₂₀F₃N₃NaO₄ 494.1304.

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 18.3 min (major) and 22.7 min (minor).

(R)-5-fluoro-3-(((4-methoxy-3-(trifluoromethyl)phenyl)amino)methyl)-1-methyl-3-phenylindolin-2-one (5s): white soild; Mp 118.7 - 119.4 °C; 43.0 mg, 97% yield; 95% ee; $[\alpha]_{D}^{22}$ + 17.0 (*c* 1.0, CHCl₃); ¹H NMR Ar' = 3-CF₃-4-MeOPh (300 MHz, CDCl₃) δ 7.43 - 7.28 (m, 5H), 7.13 - 7.04 (m, 2H), 6.87 -6.81 (m, 2H), 6.74 (d, J = 7.8 Hz, 2H), 4.07 (d, J = 12.4 Hz, 1H), 3.80 (s, 3H), 3.74 (d, J = 12.4 Hz, 1H), 3.19 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 177.1, 160.7, 157.7, 150.1, 141.0, 134.0, 136.9, 132.2, 132.1, 128.9, 128.0, 127.0, 125.4, 121.7, 119.9, 119.5, 119.1, 118.1, 115.3, 115.0, 113.9, 113.3, 113.0, 112.9, 112.9, 112.8, 109.2, 109.1, 57.3, 56.7, 51.5, 26.6. ¹⁹F NMR (565 MHz, CDCl₃) δ – 62.3, – 112.0. HRMS (ESI) m/z 467.1350 (M+Na⁺), calc. for $C_{24}H_{20}F_4N_2NaO_2$ 467.1353.

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 10.6 min (major) and 13.8 min (minor).

(*R*)-5-chloro-3-(((4-methoxy-3-(trifluoromethyl)phenyl)amino)meth yl)-1-methyl-3-phenylindolin-2-one (5t): yellow oil; 44.2 mg, 96% yield; 90% ee; $[\alpha]_{D}^{22}$ + 6.2 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.45 – 7.28 (m, 7H), 6.85 – 6.74 (m, 4H), 4.09 (d, J = 12.5 Hz, 1H), 3.80 (s, 3H), 3.74 (d, J = 12.5 Hz, 1H), 3.18 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 177.0, 150.3, 142.6, 140.6, 136.7, 132.1, 129.0, 128.9, 128.3, 128.1, 126.9, 125.4, 125.3, 121.7,

119.4, 119.0, 118.5, 118.4, 118.4, 113.8, 113.2, 109.6, 57.1, 56.7, 51.6, 26.6. ¹⁹F NMR (565 MHz, CDCl₃) δ – 62.2. HRMS (ESI) m/z 483.1058 (M+Na⁺), calc. for C₂₄H₂₀ClF₃N₂O₂Na 483.1057.

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 10.9 min (minor) and 15.2 min (major).

(*R*)-3-(((4-methoxy-3-(trifluoromethyl)phenyl)amino)methyl)-1,5-di methyl-3-phenylindolin-2-one (5u): yellow soild; Mp 93.1 – 94.6 °C; 33.0 mg, 75% yield; 87% ee; $[\alpha]_{D}^{22}$ + 3.7 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.43 (d, *J* = 7.1 Hz, 2H), 7.39 – 7.28 (m, 3H), 7.20 –

7.11 (m, 2H), 6.82 (d, J = 7.6 Hz, 2H), 6.74 (d, J = 8.6 Hz, 2H), 4.11 (d, J = 12.2 Hz, 1H), 3.80 (s, 3H), 3.69 (d, J = 12.2 Hz, 1H), 3.19 (s, 3H), 2.37 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 177.4, 150.0, 141.6, 141.2, 137.7, 132.5, 130.5, 129.2, 128.8, 127.7, 127.1, 125.6, 125.4, 121.8, 119.7, 119.3, 118.9, 118.5, 118.2, 118.0, 113.9, 112.8, 112.7, 112.6, 112.5, 108.4, 56.8, 56.7, 51.4, 26.5, 21.2. ¹⁹F NMR (565 MHz, CDCl₃) δ – 62.2. HRMS (ESI) m/z 463.1604 (M+Na⁺), calc. for C₂₅H₂₃F₃N₂O₂Na 463.1604.

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 8.7 min (minor) and 14.4 min (major).

(*R*)-6-chloro-3-(((4-methoxy-3-(trifluoromethyl)phenyl)amino)methy))-1-methyl-3-phenylindolin-2-one (5v): yellow soild; Mp 117.5 – 118.9 °C; 42.0 mg, 91% yield; 90% ee; $[\alpha]_D^{22}$ + 104.0 (*c* 1.0, CHCl₃); ¹H Ar' = 3-CF₃-4-MeOPh NMR (300 MHz, CDCl₃) δ 7.41 (dd, *J* = 7.9, 1.4 Hz, 2H), 7.37 – 7.27 (m, 4H), 7.12 (dd, *J* = 7.9, 1.6 Hz, 1H), 6.92 (d, *J* = 1.5 Hz, 1H), 6.82 (d, *J* = 9.4 Hz, 1H), 6.74 (d, *J* = 7.2 Hz, 2H), 4.07 (d, *J* = 12.4 Hz, 1H), 3.80 (s, 3H), 3.75 (d, *J* = 12.4 Hz, 1H), 3.17 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 177.3, 150.2, 145.3, 141.0, 136.9, 134.8, 128.9, 128.7, 128.0, 127.0, 125.9, 125.3, 122.6, 121.7, 119.4, 119.0, 118.1, 113.9, 113.0, 113.0, 112.9, 112.8, 109.4, 56.7, 51.6, 26.6. ¹⁹F NMR (565 MHz, CDCl₃) δ – 62.3. HRMS (ESI) m/z 483.1058 (M+Na⁺), calc. for C₂₄H₂₀ClF₃N₂O₂Na 483.1057.

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.7 min (minor) and 15.0 min (major).

(R)-7-chloro-3-(((4-methoxy-3-(trifluoromethyl)phenyl)amino)methyl

)-1-methyl-3-phenylindolin-2-one (5w): yellow soild; Mp 69.9 – 71.1 °C; 43.8 mg, 95% yield; 88% ee; $[\alpha]_{D}^{22}$ + 25.8 (c 1.0, CHCl₃); ¹H NMR (300 Ar' = 3-CF₃-4-MeOPh MHz, CDCl₃) δ7.39 – 7.28 (m, 6H), 7.22 (d, *J* = 7.3 Hz, 1H), 7.04 (t, *J* = 7.8 Hz, 1H), 6.83 (d, J = 9.4 Hz, 1H), 6.74 (d, J = 7.0 Hz, 3H), 4.11 (d, J = 12.4 Hz, 1H), 3.80 (s, 3H), 3.72 (d, J = 12.4 Hz, 1H), 3.57 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 177.8, 150.2, 141.0, 140.0, 137.2, 133.3, 131.2, 128.9, 128.0, 127.0, 125.4, 123.6, 123.4, 121.7, 119.8, 119.4, 119.0, 118.6, 118.1, 116.1, 113.8, 113.0, 112.9, 112.8, 112.7, 56.7, 56.6, 51.7, 23.0. ¹⁹F NMR (565 MHz, CDCl₃) δ – 62.2. HRMS (ESI) m/z 483.1058 (M+Na⁺), calc. for C₂₄H₂₀ClF₃N₂O₂Na 483.1057.

The ee was determined by HPLC analysis: CHIRALPAK IA (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.1 min (minor) and 11.8 min (major).

8. Copies of NMR spectra

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

