Electronic Supplementary Information

Experimental section

Materials: GO, ammonium chloride (NH₄Cl), hydrazine hydrate (N₂H₄·H₂O), sodium hypochlorite (NaClO), sodium hydroxide (NaOH), sodium salicylate (C₇H₅O₃Na), sodium sulfate (Na₂SO₄), hydrochloric acid (HCl), ethanol (CH₃CH₂OH), and carbon paper were bought from Beijing Chemical Corporation. Cerium (III) chloride heptahydrate (CeCl₃·7H₂O, 99%) were obtained from Macklin Chemical Reagent Co, Ltd. Para-(dimethylamino) benzaldehyde (C₉H₁₁NO), sodium nitroferricyanide (III) dihydrate (Na₂Fe(CN)₅NO·2H₂O), and Nafion were purchased from Aladdin Ltd. (Shanghai, China). The water used throughout all experiments was purified through a Millipore system.

*Preparation of CeO*₂-*rGO*: 10 mL of GO solution (5 mg/mL) was ultrasonically dispersed in 30 mL of 2 M NaOH for 0.5 h. Then 0.5 mmol CeCl₃·7H₂O were dissolved in 10 mL water. And the mixture of two solutions was stirred vigorously for 15 min and sealed in a 100 mL Teflon-lined autoclave and maintained at 160 °C for 24 h. The obtained black precipitate was separated by centrifuging, and further washing was done with Millipore water until the supernatant become neutral. Finally, the nanocomposite sample was freeze-dried for 24 h.

*Preparation of CeO*₂: The synthesis procedures were identical to the above, except that no GO solution was inserted.

Preparation of rGO: The synthesis procedures were identical to the above, except that no CeCl₃·7H₂O was inserted.

*Preparation of CeO*₂+*rGO*: The CeO₂ and rGO were mixed and grinded for 0.5h. *Preparation of CeO*₂-*rGO/CP, CeO*₂/*CP, rGO/CP and CeO*₂+*rGO/CP electrode*: 10

mg CeO₂-rGO powders (CeO₂, rGO, CeO₂+rGO) and 40 μ L of Nafion solution (5 wt%) were dispersed in 960 μ L mixed solution contain 700 μ L ethanol and 260 μ L H₂O by 1 h sonication to form a homogeneous ink. Then, 10 μ L CeO₂-rGO was loaded on a CP with area of 1.0 x 1.0 cm² and dried under ambient condition.

Characterizations: XRD patterns were obtained from a Shimazu XRD-6100

diffractometer with Cu K α radiation (40 kV, 30 mA) of wavelength 0.154 nm (Japan). SEM images were collected from the tungsten lamp-equipped SU3500 scanning electron microscope at an accelerating voltage of 20 kV (HITACHI, Japan). TEM images were obtained from a Zeiss Libra 200FE transmission electron microscope operated at 200 kV. XPS measurements were performed on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source. The photoluminescence (PL) spectroscopy were recorded on a Shimadzu RF-6000 spectrofluorophotometer. Raman spectroscopy was collected on a Renishaw inVia confocal Raman system. The absorbance data of spectrophotometer were measured on SHIMADZU UV-1800 ultraviolet-visible (UV-Vis) spectrophotometer. The ion chromatography data were collected on Thermofisher ICS 5000 plus using the dual temperature heater, injection valve, conductivity detector, AERS 500 Anions suppressor. (Calibration curve: y=0.152x+0.0042).

Electrochemical measurements: Electrochemical measurements were performed with a CHI 660E electrochemical analyzer (CH Instruments, Inc., Shanghai) using a standard three-electrode system using CeO₂-rGO/CP as the working electrode, graphite rod as the counter electrode, and saturated Ag/AgCl electrode as the reference electrode. In all measurements, saturated Ag/AgCl electrode was calibrated with respect to reversible hydrogen electrode as following: in 0.1 M Na₂SO₄ aqueous solution, $E(RHE) = E(Ag/AgCl) + 0.059 \times pH + 0.197$ V. All experiments were carried out at room temperature. For N₂ reduction experiments, the 0.1 M Na₂SO₄ electrolyte was purged with N₂ for 30 min before the measurement. Potentiostatic test was conducted in N₂-saturated 0.1 M Na₂SO₄ solution in a two-compartment cell, which was separated by Nafion 117 membrane.

Determination of NH₃: The produced NH₃ was detected with indophenol blue by ultraviolet spectroscopy.¹ In detail, 4 mL electrolyte was obtained from the cathodic chamber and mixed with 50 μ L oxidizing solution containing NaClO (ρ Cl = 4 ~ 4.9) and NaOH (0.75 M), 500 μ L coloring solution containing 0.4 M C₇H₅O₃Na and 0.32 M NaOH, and 50 μ L catalyst solution (1 wt% Na₂[Fe(CN)₅NO]) for 2 h. Absorbance measurements were performed at λ = 660 nm. The concentration-absorbance curve

was calibrated using standard NH_4^+ solution with a serious of concentrations. The fitting curve (y = 0.475x + 0.014, $R^2 = 0.999$) shows good linear relation of absorbance value with NH_4^+ concentration.

Determination of N_2H_4 : The N₂H₄ present in the electrolyte was determined by the method of Watt and Chrisp.² The mixture of C₉H₁₁NO (5.99 g), HCl (30 mL), and C₂H₅OH (300 mL) was used as a color reagent. In detail, 5 mL electrolyte was removed from the electrochemical reaction vessel, and added into 5 mL above prepared color reagent and stirring 10 min at room temperature. Moreover, the absorbance of the resulting solution was measured at a wavelength of 455 nm. The concentration absorbance curves were calibrated using standard N₂H₄ solution with a series of concentrations. The fitting curve (y = 0.7101x + 0.0431, R² = 0.999) shows good linear relation of absorbance value with N₂H₄ concentration.

Calculations of NH₃ yield rate and FE: NH₃ formation rate was calculated using the following equation:

NH₃ yield rate = $[NH_4^+] \times V/(m_{cat.} \times t)$

FE was calculated according to following equation:

$$FE = 3 \times F \times [NH_4^+] \times V/(18 \times Q)$$

Where $[NH_4^+]$ is the measured NH_4^+ concentration; V is the volume of the cathodic reaction electrolyte; t is the potential applied time; $m_{cat.}$ is the loaded quality of catalyst; F is the Faraday constant; and Q is the quantity of applied electricity

Calculation details : Density functional theory (DFT) + U calculations were performed by using the plane wave-based Vienna ab initio simulation package (VASP).³⁻⁵ The generalized gradient approximation method with Perdew - Burke -Ernzerhof (PBE) functional was used to describe the exchange-correlation interaction among electrons. As suggested by Nolan^{6,7} and Gong⁸, the Hubbard U value for Ce 4f was set to 5.0 eV. The energy cutoff for the plane wave-basis expansion was set to 400 eV and the atomic relaxation was continued until the forces acting on atoms were smaller than 0.03 eV Å⁻¹. The CeO₂ (111) surface was modeled with a 3 × 3 slab in the lateral plane separated by 15 Å of vacuum in between to avoid the interaction between the slab and its period images. The Brillouin zone was sampled with 3 × 3 × 1 Gamma-center k-point mesh. The free energies of the reaction intermediates were obtained by $\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S$, where ΔE is the electronic energy difference between the free standing and adsorption states of reaction intermediates, ΔE_{ZPE} is the zero point energy and ΔS is the entropy at 298 K, and the entropies of molecules in the gas phase are obtained from the literature.⁹

Fig. S1. The TEM image of the rGO.

Fig. S2. The SEM (a) and TEM ((b) and (c)) images of the CeO₂.

Fig. S3. (a) XPS survey spectra of CeO₂-GO and CeO₂. (b) O 1s XPS spectra of CeO₂-GO and CeO₂

Fig. S4. The linear sweep voltammetric curves using CeO₂-rGO as the working electrode in 0.1 M Na₂SO₄ aqueous solution.

Fig. S5. (a) UV-Vis absorption spectra of indophenol assays with NH_4^+ concentrations after incubated for 2 h at room temperature. (b) Calibration curve used for calculation of NH_4^+ concentrations.

Fig. S6. (a) Ion chromatogram data for the electrolytes at a series of potentials after electrolysis for 2 h. (d) NH_3 yields and FEs for CeO₂-rGO/CP at corresponding potentials.

Fig. S7. (a) UV-Vis absorption spectra of various N_2H_4 concentrations after incubated for 10 min at room temperature. (b) Calibration curve used for calculation of N_2H_4 concentrations.

Fig. S8. UV-Vis absorption spectra of the electrolytes after NRR electrolysis at a series of potentials after incubated for 10 min at room temperature.

Fig. S9. (a) Time-dependent current density curves of CeO₂ at a series of potentials. (b) UV-Vis absorption spectra of the electrolytes stained with an NH₃ color agent after charging at different potentials for 2 h.

Fig. S10. UV-Vis absorption spectra of the 0.1 M Na_2SO_4 electrolyte stained with indophenol indicator after continuously supplying N_2 or Ar with no applied voltage

Fig. S11. The UV-Vis absorption spectra (left) and yield of NH₃ (right) at -0.7 V for 2 h under different electrochemical conditions.

Fig. S12. (a) Nyquist plots of CeO_2 -rGO/CP and CeO_2 /CP

Fig. S13. Time-dependent current density curve for CeO₂-rGO/CP at the potential of -0.7 V for 24 h.

Fig. S14. TEM images of the CeO2-rGO after reaction.

Fig. S15. (a) Time-dependent current density curves of CeO_2 -rGO/CP at -0.7 V for continuous cycles. (b) UV-Vis absorption spectra of the electrolytes stained with an NH₃ color agent for continuous cycles.

Fig. S16. The optimized adsorption configurations and its corresponding adsorption energy to N_2 of (a) CeO₂ (111) and (b) CeO₂ (111) with oxygen vacancy (V₀). [Legend: light yellow, Ce; red, O; and blue, N.]

Table S1. Comparison of the electrocatalytic NRR performance of CeO_2 -rGO with other aqueous-based NRR electrocatalysts under neutral condition at room temperature.

Catalyst	Electrolyte	Potential	NH ₃ yield	FE	Ref.
CeO2-rGO	0.1 M Na2SO4	- 0.7 V	16.98 μg h ⁻¹ mg ⁻¹ cat.	4.78%	This work
Cr _{0.1} CeO ₂	0.1 M Na ₂ SO ₄	-0.7 V	$16.8 \ \mu g \ h^{-1} \ mg^{-1}_{cat.}$	3.87%	10
MoS ₂ /CC	0.1 M Na ₂ SO ₄	-0.5 V	4.94 μ g h ⁻¹ cm ⁻²	1.17%	11
TiO ₂	0.1 M Na ₂ SO ₄	-0.7 V	$9.16 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$	2.5%	12
PEBCD/C	0.5 M Li ₂ SO ₄	-0.5 V	$2.58 \times 10^{-11} \text{ mol s}^{-1} \\ \text{cm}^{-2}$	2.85%	13
Mn ₃ O ₄ nanocube	0.1 M Na ₂ SO ₄	-0.8 V	11.6 $\mu g h^{-1} m g^{-1}{}_{cat.}$	3.0%	14
Fe ₂ O ₃ nanorods	0.1 M Na ₂ SO ₄	-0.8 V	$15.9 \ \mu g \ h^{-1} \ mg^{-1}_{cat.}$	0.94%	15
Fe ₃ O ₄ /Ti	0.1 M Na ₂ SO ₄	-0.4 V	$5.6 \times 10^{-11} \text{mol s}^{-1} \text{cm}^{-2}$	2.6%	16
TiO ₂ -rGO	0.1 M Na ₂ SO ₄	-0.9 V	$15.13 \ \mu g \ h^{-1} \ mg^{-1}_{cat.}$	3.3%	17
SnO ₂	0.1 M Na ₂ SO ₄	-0.7 V	$\frac{1.47\times 10^{-10}\ mol\ s^{-1}}{cm^{-2}}$	2.17%	18
C-TiO2	0.1 M Na ₂ SO ₄	-0.7 V	$16.22 \ \mu g \ h^{-1} \ mg^{-1}{}_{cat}.$	1.84%	19
B-TiO2	0.1 M Na ₂ SO ₄	-0.8 V	14.4 $\mu g h^{-1} m g^{-1}_{cat}$.	3.4%	20
MnO	0.1 M Na ₂ SO ₄	-0.39 V	$1.11 \times 10^{-10} \text{ mol s}^{-1} \text{ cm}^{-2}$	8.02%	21
AuHNCs	0.5 M LiClO ₄	-0.5 V	$3.98 \ \mu g \ h^{-1} \ cm^{-2}$	14.8%	22
Nb ₂ O ₅ nanowires array/CC	0.1 M Na2SO4	-0.6 V	$1.58 imes 10^{-10} ext{ mol s}^{-1} ext{ cm}^{-2}$	2.26%	23
porous bromide-derived Ag film	0.1 M Na ₂ SO ₄	-	$2.07 \times 10^{-11} \text{ mol s}^{-1} \\ \text{cm}^{-2} (-0.6 \text{ V})$	7.36% (-0.5 V)	24
S-doped carbon nanospheres	0.1 M Na ₂ SO ₄	-0.7 V	$19.07 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	7.47%	25

r-CeO2	0.1 M Na ₂ SO ₄	-	16.4 μ g h ⁻¹ mg ⁻¹ _{cat.} (-0.5 V)	3.7% (-0.4 V)	26
--------	---------------------------------------	---	---	------------------	----

Reference

- 1 D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, *Nat. Mater.*, 2013, **12**, 836–841.
- 2 G. W. Watt and J. D. Chrisp, Anal. Chem., 1952, 24, 2006–2008.
- 3 G. Kresse and J. Hafner, *Phys. Rev. B*, 1993, 17, 13115–13118.
- 4 G. Kresse and J. Hafner, *Phys. Rev. B*, 1994, **49**, 14251.
- 5 G. Kresse and J. Furthmüller, Comp. Mater. Sci., 1996, 6, 15–50.
- 6 M. Nolan, S. C. Parker and G. W. Watson, Surf. Sci., 2005, 595, 223–232.
- 7 M. Nolan, J. Mater. Chem., 2011, 21, 9160.
- 8 J. Wang and X. Q. Gong, Appl. Surf. Sci., 2018, 428, 377–384.
- 9 http://ccbdb.nist.gov/.
- 10 H. Xie, H. Wang, Q. Geng, Z. Xing, W. Wang, J. Chen, L. Ji, L. Chang, Z. Wang and J. Mao, *Inorg. Chem.*, 2019, 58, 5423-5427.
- 11 L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang and X. Sun, *Adv. Mater.*, 2018, **30**, 1800191.
- 12 R. Zhang, X. Ren, X. Shi, F. Xie, B. Zheng, X. Guo and X. Sun, ACS Appl. Mater. Interfaces, 2018, 10, 28251–28255.
- 13 G. Chen, X. Cao, S. Wu, X. Zeng, L. Ding, M. Zhu and H. Wang, J. Am. Chem. Soc., 2017, 139, 9771–9774.
- 14 X. Wu, L. Xia, Y. Wang, W. Lu, Q. Liu, X. Shi and X. Sun, *Small*, 2018, 14, 1803111.
- 15 X. Xiang, Z. Wang, X. Shi, M. Fan and X. Sun, *ChemCatChem*, 2018, 20, 4530–4535.
- 16 Q. Liu, X. Zhang, B. Zhang, Y. Luo, G. Cui, F. Xie and X. Sun, *Nanoscale*, 2018, 10, 14386–14389.

- 17 X. Zhang, Q. Liu, X. Shi, A. M. Asiri, Y. Luo, X. Sun and T. Li, J. Mater. Chem. A, 2018, 6, 17303–17306.
- 18 L. Zhang, X. Ren, Y. Luo, X. Shi, A. M. Asiri, T. Li and X. Sun, *Chem. Commun.* 2018, **54**, 12966–12969.
- 19 K. Jia, Y. Wang, Q. Pan, B. Zhong, Y. Luo, G. Cui, X. Guo and X. Sun, *Nanoscale Adv.*, 2019, 1, 961-964.
- 20 Y. Wang, K. Jia, Q. Pan, Y. Xu, Q. Liu, G. Cui, X. Guo and X. Sun, ACS Sustainable Chem. Eng., 2019, 7, 117–122.
- Z. Wang, F. Gong, L. Zhang, R. Wang, L. Ji, Q. Liu, Y. Luo, H. Guo, Y. Li, P. Gao,
 X. Shi, B. Li, B. Tang and X. Sun, *Adv. Sci.*, 2018, 5, 1801182.
- M. Nazemi, S. R. Panikkanvalappil and M. A. El-Sayed, *Nano Energy*, 2018, 49, 316–323.
- 23 W. Kong, Z. Liu, J. Han, L. Xia, Y. Wang, Q. Liu, X. Shi, Y. Wu, Y. Xu and X. Sun, *Inorg. Chem. Front.*, 2019, 6, 423–427.
- 24 L. Ji, X. Shi, A. M. Asiri, B. Zheng and X. Sun, *Inorg. Chem.*, 2018, 57, 14692–14697.
- 25 L. Xia, X. Wu, Y. Wang, Z. Niu, Q. Liu, T. Li, X. Shi, A. M. Asiri and X. Sun, *Small Methods*, 2019, **3**, 1800251.
- 26 B. Xu, L. Xia, F. Zhou, R. Zhao, H. Chen, T. Wang, Q. Zhou, Q. Liu, G. Cui, X. Xiong, F. Gong and X. Sun, ACS Sustainable Chem. Eng. 2019, 7, 2889–2893.