Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Benzothiazolines as Radical Transfer Reagents: Hydroalkylation and Hydroacylation of Alkenes by Radical Generation under Photoirradiation Conditions

Tatsuhiro Uchikura, Kaworuko Moriyama, Mitsuhiro Toda, Toshiki Mouri, Ignacio Ibáñez and Takahiko

Akiyama*

Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan

Contents	Page	
1. General Methods	S2	
2. Additional Data		
2-1. Screening of detail conditions of hydroalkylation and hydroacylation	S3	
2-2. Substrate scope of benzalmalononitrile derivatives	S5	
2-3. Generality of the alkyl and acyl group using benzalmalononitrile	S6	
2-4. The reaction of benzothiazoline 1-d, deuterated at benzyl position	S7	
2-5. Comparison with carboxylates	S 8	
2-6. Comparison with Hantzsch ester	S8	
2-7. Large scale experiments for isolation of product	S9	
3. Synthetic Procedures and Characterization of New Compounds		
3-1. Synthesis of the benzothiazolines 1, 1' and 1''	S10	
3-2. General procedure of hydroalkylation and hydroacylation	S18	
3-3. Other experimental methods	S38	
4. Mechanistic studies		
4-1. Cyclic Voltammetry	S40	
4-2. KIE study	S42	
4-3. Proposed mechanism	S44	
5. References	S 45	
6. Spectral data	S46	

1. General Methods

All operations were performed under air unless otherwise noted. NMR spectra for products data (¹H and ¹³C) were recorded on a Bruker AVANCE-III (400 MHz for ¹H, 125 MHz for ¹³C) spectrometer using CDCl₃ [tetramethylsilane (0 ppm) served as an internal standard in ¹H NMR and CDCl₃ (77.0 ppm) in ¹³C NMR, hexafluorobenzene (–163 ppm) served as an external standard in ¹⁹F NMR]. Chemical shifts are expressed in parts per million (ppm). IR spectra were recorded on an FT/IR-4200 (JASCO Co., Ltd.). UV-Vis spectra were recorded on a V-670 UV-VIS-NIR spectrophotometer (JASCO Co., Ltd.). ESI mass analyses were performed on Bruker micrOTOF mass spectrometer. GPC purification was performed on a LC-918R/U (Japan Analytical Industry Co., Ltd.). Cyclic Voltammetry was performed on VersaSTAT 4 (AMETEL Co., Ltd.).

All solvents were distilled according to the usual procedures and stored over molecular sieves unless otherwise noted. All of the substrates were purified by distillation (for liquid) or recrystallization (for solid). Benzalmalononitrile derivatives (2a, 2c-2l)^{S1}, malonate derivatives (2m, ^{S2} 2n, ^{S3} 2o, ^{S4} 2p ^{S5}), methyl α -phenylacrylate (2x)^{S6} and imines (4a-4j)^{S7} were synthesized according to the literature procedures. Other chemicals were purchased and used as received.

2. Additional Data

2-1. Screening of detail conditions of hydroalkylation and hydroacylation

Hydroalkylation of benzalmalononitrile 2a. •

Table S1. Screening of conditions of hydroalkylation of benzalmalononitrile

a) NMR Yield (Internal standard substance: 1,1,2-trichloroethane)
b) Using 11 W white LED.

c) No light irradiation condition.

1,2-Dichloroethane (DCE) gave the best result in combination with I as a photoredox catalyst (entries 1-3). The most suitable photoredox catalyst was Ru(bpy)₃Cl₂ (entries 4-6), and use of stronger light source decreased the yield of the products. The reaction was over in 5 h. But, it was difficult to follow the reaction by TLC because the spot was overlapped with the starting materials.

Hydroacylation of benzalmalononitrile 2a.

0 CN PC (2 mol%) DCE (0.05 M) ĊΝ ĊΝ Ph rt, 24 h 2a hv (White LED, 11 W) 3ab 1b (2.0 equiv) yield^{a)} entry PC I. 80% 1 2 II 48% Ш 3 > 95% 4 9% ш 5^{b)} 0%

Table S2. Screening of conditions of hydroacylation of benzalmalononitrile 2a.

a) NMR yield (Internal standard: 1,1,2-trichloroethane)b) No light irradiation conditions.

Hydroacylation of benzylidenemalonate 21.

•

CO ₂ Et	HO N Ph	additive (20 mol%) Eosin Y-2Na (5 mol%)	CO ₂ Et
CO ₂ Et 2	1b (2.0 equiv)	solvent (0.1 M) rt, 24 h white LED (5 W)	CO ₂ Et 3lb
entry	solvent	additive	yield ^{a)}
1	DCE	Yb(OTf) ₃	78% (67%)
2	DMF	Yb(OTf) ₃	10%
3	THF	Yb(OTf) ₃	25%
4	toluene	Yb(OTf) ₃	36%
5	DCE	La(OTf) ₃	58%
6	DCE	BF ₃ •OEt ₂	24%
7	DCE	AICI ₃	> 5%
8	DCE	TsOH	24%

Table S3. Screening of conditions of hydroacylation of benzylidenemalonate.

a) NMR Yield (Internal standard substance: 1,1,2-trichloroethane)

Ytterbium triflate was the most effective Lewis acid and **3lb** was obtained in 67% isolated yield.

2-2. Substrate scope of benzalmalononitrile derivatives

Table S4. Substrate scope of benzalmalononitrile derivatives.

Meta- and *ortho-*substituted benzalmalononitriles were also found to be suitable substrates. But, α -methyl benzalmalononitrile did not participate in this reaction due to its steric hindrance.

a) NMR yield (Isolated yield)

2-3. Generality of the alkyl and acyl group using benzalmalononitrile

Table S5. Generality of the alkyl and acyl group using benzalmalononitrile.

a) NMR yield

b) Reduction product was obtained in 51% yield.

Generality of the alkyl group was investigated for benzalmalononitrile (**1a**). Although substituted benzyl and *tert*butyl group were transferred efficiently, phenacyl and acetonyl group, which successfully reacted with barbituric acid derivative **1n**, were not transferred. Diethoxymethyl group adduct **3an** was obtained in a low yield and the reduction product **7** was obtained in 51% yield. The mechanism of formation of **7** has not been clarified.

2-4. The reaction of benzothiazoline 1-d, deuterated at benzyl position

Deuterated benzyl transfer reaction was performed by mixing 2a and 1a-d under the standard photoredox conditions (Scheme S1). The reaction proceeded similar to the non-deuterated one, however, the deuteration ratio of benzyl position was decreased in the product (3.6% lack from 1a-d). In addition, partial deuteration (6.9%) was observed at β -position of the product. It means that the exchange at benzyl position of benzothiazoline 1a or protonation of the resulting anion species from imine intermediate (Scheme S2) occurred under the reaction conditions.

Scheme S1. Deuterated benzyl transfer

Scheme S2. Proposed mechanism of the isomerization of 2-benzothiazolines

2-5. Comparison with carboxylates

Scheme S3. Hydroacylation of 2h by using carboxylate as an acyl radical precursor.

By use of benzothiazoline, high substituent tolerance was shown, and hydroformylation product of electron deficient alkene bearing formyl group **2h** was selectively obtained in 60% yield (Table 1). In contrast, by use of carboxylate under basic condition, desired hydroalkylation product was not obtained and polymerization proceeded under the basic conditions.

2-6. Comparison with Hantzsch ester

Use of Hantzsch ester furnished the addition product **3aa** in about 70% yields, which are lower than that using benzothiazoline **1a**.

2-7. Large scale experiments for isolation of product

Scheme S4. Hydroalkylation and hydroacylation of 2n in 1 mmol scale.

Although the longer reaction time was necessary, both hydrobenzylation and hydrobenzoylation products **3na** and **3nb** were obtained in good yields in 1 mmol scale.

3. Synthetic Procedures and Characterization of New Compounds

3-1. Synthesis of the benzothiazolines 1, 1' and 1"

Table S7. Synthesis of benzothiazolines

Method A (1a)

Corresponding ketones (10.2 mmol) and 2-aminothiophenol (2.2 mL, 20.7 mmol) were mixed in EtOH (10 mL) under N₂, and heated at 80 °C for 4 d. The mixture was cooled and the solvent was removed under vacuum. The crude product was purified by recrystallization from a mixture of dichloromethane and hexane followed by silica-gel column chromatography to give benzothiazolines **1**.

Method B (1b, 1"i, 1"j)

Corresponding ketones (24 mmol) and 2-aminothiophenol (3.8 mL, 36 mmol) were mixed in EtOH (20 mL) under N_2 . The mixture was stirred for 16 h and then the precipitate was filtered to give benzothiazolines **1b** and **1**" in pure form.

Method C (1c-1e)

Corresponding ketones (54.3 mmol) and 2-aminothiophenol (1.2 mL, 82 mmol) were mixed in benzene (11 mL) under N₂. Then TsOH•H₂O (25.5 mg, 0.136 mmol) was added to the reaction mixture, and refluxed for 30 hours. After the solvent was removed, the crude product was purified by silica gel column chromatography to give the products. If the crude mixture couldn't be purified, the mixture was dissolved in EtOH and 0.5 equiv of NaBH₄ was added at 0 °C, and stirred at room temperature. After the ketone was consumed, acetone was added and solvent was removed. The crude residue was dissolved in dichloromethane and extracted with dichloromethane for 3 times, then combined organic layers were washed with brine and dried by Na₂SO₄. After removed the solvent, the crude product was purified by silica gel column chromatography to give the desired product.

Method D (1f)

Isopropyl phenyl ketone (3 mL, 19.9 mmol) and 2-aminothiophenol (3.3 mL, 29.9 mmol) were mixed with alumina (30 g, 1000 wt%), and were heated at 80 °C for 48 h. The alumina was filtered out by Celite® and washed with chloroform, followed by purified by silica gel column chromatography. Then the mixture was dissolved in EtOH and 0.5 equiv of NaBH₄ was added at 0 °C, and stirred at room temperature. After the ketone was consumed, acetone was added and removed solvent. The residue was dissolved in dichloromethane and extracted with dichloromethane for 3 times, then combined organic phase was washed with brine and dried by Na₂SO₄. After removed the solvent, the crude product was purified by silica gel column chromatography to give the **1f** in 11% yield.

Method E (1'g, 1'h)

Corresponding ketone (15 mmol) and 2-aminothiophenol (2.1 mL, 19.5 mmol) were mixed (10 mL) under N_2 . The mixture was heated at 80 °C (**1'g**) or 50 °C (**1'h**) for 3 h and then the crude product was purified by recrystallization from a mixture of dichloromethane and hexane, followed by silica-gel column chromatography, and further recrystallized from a mixture of dichloromethane and hexane to give benzothiazolines **1'**.

Method F (1k)

1-Phenyl-1,2-propanedione (15 mmol) and 2-aminothiophenol (1.6 mL, 15 mmol) were mixed in EtOH 15 mL) under N_2 . After the reaction mixture was stirred at 50 °C for 51 h, generated precipitate was filtered, washed with hexane to give the **1k** (657 mg, 2.57 mmol) in 17% yield.

Method G (11)

3,3-Dimethyl-1-phenyl-1,2-butanedione (5.5 mmol) and 2-aminothiophenol (1.2 mL, 11 mmol) were mixed in benzene (3.7 mL) under N₂. Then TsOH•H₂O (52.2 mg, 0.274 mmol) was added to the reaction mixture, and stirred at room temperature for 48 h. The solvent was removed and the residue was purified by silica-gel column chromatography, followed by recrystallization from hexane to give product (1.13 g, 3.80 mmol, 69% yield).

Method H (1m)

 α, α -Diethoxy acetophenone (2.50 mL, 12.5 mmol) and 2-aminothiophenol (2.0 mL, 19 mmol) were mixed in benzene (25 mL) under N₂. Then TsOH•H₂O (59.3 mg, 0.312 mmol) was added to the reaction mixture, and stirred at room temperature for 26 h. After the solvent was removed, the crude product was purified by silica gel column chromatography and recrystallized with dichloromethane and hexane to give the products.

Data of benzothiazolines

2-Benzyl-2-phenylbenzothiazoline (1a)

¹H NMR (400 MHz, CDCl₃): δ 7.41-7.37 (m, 2H), 7.35-7.30 (m, 2H), 7.30-7.26 (m, 1H), 7.21-7.12 (m, 3H), 7.10-7.06 (m, 1H), 7.01-6.95 (m, 1H), 6.81-6.76 (m, 4H), 4.47 (brs, 1H), 3.65 (d, *J* = 13.2 Hz, 1H), 3.57 (d, *J* = 13.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 145.6, 143.2, 135.2, 120.4, 128.3, 128.2, 127.6, 127.1, 127.0, 126.0, 125.6, 122.2, 120.8, 111.1, 81.7, 49.6 ppm; IR (neat, cm⁻¹): 3352, 3060, 3027, 2922, 1579, 1495, 1471, 1460, 1390, 1256, 742, 699; LRMS (ESI): *m/z* = 304 [M+H]; HRMS (ESI): Calcd for C₂₀H₁₈NS: 304.1154. Found 304.1143. **2-Benzoyl-2-phenylbenzothiazoline (1b)**

¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H), 7.46 (t, J = 8.0 Hz, 1H), 7.44-

7.27 (m, 5H), 7.06 (d, *J* = 7.6 Hz, 1H), 6.98 (t, *J* = 7.6 Hz, 1H), 6.78 (t, *J* = 7.6 Hz, 2H), 5.68 (brs, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 194.6, 144.9, 140.8, 133.1, 132.9, 130.3, 129.2, 128.8, 128.3, 126.8, 126.2, 125.6, 121.24, 121.19, 111.8, 84.2 ppm.^{S8}

2-(p-Methoxybenzyl)-2-phenylbenzothiazoline (1c)

¹H NMR (400 MHz, CDCl₃): δ 7.42-7.37 (m, 2H), 7.36-7.30 (m,2H), 7.30-7.25 (m, 1H), 7.09-7.05 (m, 1H), 7.01-6.94 (m, 3H), 6.80-6.74 (m,2H), 6.67-6.63 (m,2H), 4.48 (brs, 1H), 3.61 (d, *J* = 13.6 Hz, 1H), 3.54 (d, *J* = 13.2Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 145.6, 143.4, 136.7, 132.1, 130.2, 128.9, 128.3, 127.5, 127.0, 126.0, 125.5, 122.2, 120.7, 111.0, 81.6, 49.1, 21.1 ppm; IR (neat, cm⁻¹): 3350, 3023, 2919, 1578, 1513, 1471, 1459, 1390, 741, 697; LRMS (ESI): *m/z* = 318 [M+H]; HRMS (ESI): Calcd for C₂₁H₂₀NS: 318.1311. Found 318.1300.

2-(p-Fluorobenzyl)-2-phenylbenzothiazoline (1d)

¹H NMR (400 MHz, CDCl₃): δ 7.39-7.26 (m, 5H), 7.10-7.06 (m, 1H), 7.01-6.95 (m, 1H), 6.87-6.71 (m, 6H), 4.41 (brs, 1H), 3.60 (d, *J* = 13.6 Hz, 1H), 3.52 (d, *J* = 13.6 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 162.0 (d, *J* = 244 Hz), 145.4, 143.0, 131.8 (d, *J* = 8.0 Hz), 131.0 (d, *J* = 3.1 Hz), 128.4, 127.7, 127.2, 126.0, 125.6, 122.2, 121.0, 115.0 (d, *J* = 20.9 Hz), 111.3, 81.7, 48.9 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ -116.92 - -117.00 (m, 1F) ppm; IR (neat, cm⁻¹): 3356, 3063, 2921, 2362, 1890, 1603, 1579, 1508,1472, 1460, 1222, 759, 742, 698; LRMS (ESI): *m/z* = 322 [M+H]; HRMS (ESI): Calcd for C₂₀H₁₇FNS: 322.1060. Found 322.1046.

2-tert-Butyl-2-phenylbenzothiazoline (1e)

¹H NMR (400 MHz, CDCl₃): δ 7.56-7.52 (m, 2H), 7.30-7.24 (m, 2H), 7.23-7.19 (m, 1H), 7.02-6.98 (m, 1H), 6.89-6.83 (m, 1H), 6.75-6.65 (m, 2H), 4.70 (brs, 1H), 1.08 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 146.3, 144.3, 128.2, 127.1, 126.9, 124.8, 121.1, 120.7, 111.0, 91.2, 40.2, 26.9 ppm; IR (neat, cm⁻¹): 3398, 3060, 3030, 2969, 2905, 2870, 2361, 1583, 1472, 1391, 741, 700; LRMS (ESI): *m/z* = 292 [M+Na]; HRMS (ESI): Calcd for C₁₇H₁₉NSNa: 292.1130. Found 292.1123.

2-Isopropyl-2-phenylbenzothiazoline (1f)

¹H NMR (400 MHz, CDCl₃): δ 7.53-7.49 (m, 2H), 7.35-7.29 (m, 2H), 7.26-7.20 (m, 1H), 7.02-6.98 (m, 1H), 6.93-6.87 (m, 1H), 6.75-6.68 (m, 2H), 4.43 (brs, 1H), 2.52 (sept, J = 6.8 Hz, 1H), 1.06 (d, J = 6.8 Hz, 3H), 0.93 (d, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 146.2, 145.5, 128.1,127.5, 127.2, 125.9, 124.9, 121.3, 120.7, 110.6, 86.9, 39.6, 18.4, 18.3 ppm.⁸⁹

2-Phenacyl-2-methylbenzothiazoline (1'g)

¹H NMR (400 MHz, CDCl₃): δ 7.94 (dd, J = 8.2, 1.2 Hz, 2H), 7.61 (dt, J = 7.2, 2.0 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.05 (dd, J = 7.6, 0.8 Hz, 1H), 6.92 (td, J = 7.6, 1.2 Hz, 1H), 6.71 (td, J = 7.6, 1.2 Hz, 1H), 6.62 (dd, J = 7.8, 1.2 Hz, 1H), 5.30 (s, 1H), 3.78 (d, J = 16.0 Hz, 1H), 3.63 (d, J = 16.0 Hz, 1H), 1.89 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 198.6, 145.9, 136.8, 133.7, 128.8, 128.1, 125.5, 125.1, 122.2, 119.9, 109.9, 75.6, 50.3, 28.5 ppm.^{S10}

2-Acetonyl-2-methylbenzothiazoline (1'h)

¹H NMR (400 MHz, CDCl₃): δ 7.03 (dd, *J* = 8.0, 4.0 Hz, 1H), 6.91 (td, *J* = 7.8, 1.2 Hz, 1H), 6.71 (td, *J* = 7.6, 1.2 Hz, 1H), 6.60 (dd, *J* = 8.0, 0.8 Hz, 1H), 5.06 (s, 1H), 3.30 (d, *J* = 16.0 Hz, 1H), 3.05 (d, *J* = 20.0 Hz, 1H), 2.17 (s, 3H), 1.80 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 207.5, 145.8, 125.5, 125.2, 122.1, 120.0, 110.0, 74.8, 55.1, 31.3, 28.5 ppm.^{S9}

2-(p-Methylbenzoyl) -2-(p-methylphenyl)benzothiazoline (1"i)

¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 7.04 (d, *J* = 7.6 Hz, 1H), 6.96 (t, *J* = 7.6 Hz, 1H), 6.76 (t, *J* = 7.6 Hz, 2H), 5.66 (brs, 1H), 2.34 (s, 3H), 2.33 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 194.5, 145.0, 144.1, 138.7, 138.2, 130.5, 130.2, 129.8, 129.0, 126.7, 126.0, 125.8, 121.1, 121.0, 111.8, 83.9, 21.7, 21.1 ppm; IR (neat, cm⁻¹): 3337, 3027, 2919, 1673, 1606, 1473, 1259, 1183, 742; LRMS (ESI): *m*/*z* = 368 [M+Na]; HRMS (ESI): Calcd for C₂₂H₁₉NNaOS: 368.1080. Found 368.1098.

2-(p-Bromobenzoyl) -2-(p-bromophenyl)benzothiazoline (1"j)

¹H NMR (400 MHz, CDCl₃): δ 7.61-7.42 (m, 8H), 7.07 (d, J = 8.0 Hz, 1H), 7.00 (t, J = 8.0 Hz, 1H), 6.86-6.74 (m,

2H), 5.63 (brs, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 193.2, 144.6, 139.8, 132.4, 131.8, 131.7, 131.3, 128. 8, 128. 6, 126. 5, 125.4, 123.3, 121.7, 121.3, 112.3, 83.4 ppm; IR (neat, cm⁻¹): 3343, 3067, 1678, 1584, 1485, 1472, 1395, 1258, 1239, 1073, 1009, 737; LRMS (ESI): *m/z* - 496 [M+Na]; HRMS (ESI): Calcd for C₂₀H₁₃Br₂NNaOS: 495.8977. Found 495.8994.

2-Acetyl-2-phenylbenzothiazoline (1k)

¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, *J* = 7.2 Hz, 2H), 7.48-7.31 (m, 3H), 7.08 (d, *J* = 8.0 Hz, 1H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.81 (t, *J* = 6.4 Hz, 2H), 5.53 (brs, 1H), 2.22 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 202.8, 145.9, 138.8, 129.0, 128.9, 127.0, 126.1, 125.0, 121.7, 121.5, 112.4, 86.3, 24.7 ppm; IR (neat, cm⁻¹): 3339, 1701, 1460, 1177, 753, 697; LRMS (ESI): *m/z* = 278 [M+Na] HRMS (ESI): Calcd for C₁₅H₁₃NNaOS: 278.0610. Found 278.0600.

2-Pivaloyl-2-phenylbenzothiazoline (11)

¹H NMR (400 MHz, CDCl₃): δ 7.53 (d, *J* = 7.6 Hz, 2H), 7.46-7.29 (m, 3H), 7.10 (d, *J* = 7.6 Hz, 1H), 6.95 (t, *J* = 8.0 Hz, 1H), 6.77 (t, *J* = 7.6 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 5.66 (brs, 1H), 1.12 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 209.6, 145.6, 139.3, 129.0, 128.6, 126.6, 126.0, 125.2, 121.2, 121.1, 111.8, 85.3, 43.8, 29.4 ppm; IR (neat, cm⁻¹): 3344, 2984, 1688, 1580, 1474, 741, 701; LRMS (ESI): *m/z* = 320 [M+Na]; HRMS (ESI): Calcd for C₁₈H₁₉NNaOS: 320.1080. Found 320.1071.

2-Diethoxymethyl-2-phenylbenzothiazoline (1m)

¹H NMR (400 MHz, CDCl₃): δ 7.63-7.59 (m, 2H), 7.35-7.29 (m, 2H), 7.28-7.24 (m, 1H), 7.02-6.98 (m, 1H), 6.93-

6.89 (m, 1H), 6.75-6.68 (m, 2H), 4.87 (s, 1H), 3.87-3.71 (m, 2H), 3.68-3.56 (m, 2H), 1.21-1.12 (m, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 146.3, 141.8, 127.8, 127.6, 127.2, 126.5, 125.2, 121.3, 120.4, 110.3, 107.5, 83.1, 67.0, 66.1, 15.30, 15.28 ppm; IR (neat, cm⁻¹): 3367, 3062, 2975, 2879, 1581, 1473, 1460, 1446, 1111, 1062, 741, 714, 696; LRMS (ESI): *m/z* = 338 [M+Na]; HRMS (ESI): Calcd for C₁₈H₂₁NO₂SNa: 338.1185. Found 338.1192.

3-2. General procedure of hydroalkylation and hydroacylation

General procedure of alkylation (Procedure I)

Alkenes (0.05 mmol), **1a** (30.4 mg, 0.1 mmol) and Ru(bpy)₃Cl₂•6H₂O (1.9 mg, 0.0025 mmol) were dissolved in degassed 1,2-dichloroethane (1.0 mL), if necessary, other additives were added at this point. Then white LED (5 W) was irradiated at room temperature for 24 h. The solvent was evaporated and 1,1,2-trichloroethane was added as an internal standard and ¹H NMR was measured in CDCl₃ for the calculation of the NMR yield. Then crude products were purified by preparative TLC to give **3**.

Other hydroalkylation reactions in Table 4 were performed based on this Procedure I.

Data of products

¹H NMR (400 MHz, CDCl₃): δ 7.45-7.37 (m, 5 H), 7.34-7.27 (m, 3H), 7.21-7.17 (m, 2H), 3.85 (d, *J* = 4.8 Hz, 1H), 3.50-3.42 (m, 1H), 3.27-3.21 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 136.6, 136.4, 129.23, 129.19, 129.1, 128.9, 128.0, 127.6, 112.1, 111.4, 48.3, 38.5, 28.5 ppm.^{S11}

¹H NMR (400 MHz, CDCl₃): δ 7.35-7.27 (m, 5H), 7.24-7.18 (m, 4H), 3.82 (d, *J* = 4.8 Hz, 1H), 3.50-3.40 (m, 1H), 3.31-3.18 (m, 2H), 2.37 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 139.0, 136.8, 133.4, 129.9, 129.2, 128.9, 127.8, 127.6, 112.2, 111.5, 48.0, 38.5, 28.7, 21.2 ppm; IR (neat, cm⁻¹) 3445, 3062, 3029, 2922, 2862, 2360, 2254, 1905, 1604, 1515, 1496, 1455, 702; LRMS (ESI): *m*/*z* = 283 [M+Na]; HRMS (ESI): Calcd for C₁₈H₁₆N₂Na: 283.1206. Found 283.1217.

¹H NMR (400 MHz, CDCl₃): δ 8.32-8.28 (m, 2H), 7.62-7.58 (m, 2H), 7.37-7.30 (m, 3H), 7.21-7.17 (m, 2H), 3.92 (d, *J* = 2.4 Hz, 1H), 3.64-3.57 (m, 1H), 3.36-3.23 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 148.4, 143.3. 135.9, 129.5, 129.3, 128.8, 128.1, 124.4, 111.5, 110.8, 47.7, 38.3, 28.0 ppm; IR (neat, cm⁻¹): 3085, 3028, 2906, 2850, 2360, 2255, 1605, 1516, 1350, 701; LRMS (ESI): *m*/*z* = 314 [M+Na]; HRMS (ESI): Calcd for C₁₇H₁₃N₃O₂Na: 314.0900. Found 314.0894.

¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.39-7.29 (m, 3H), 7.14-7.10 (m, 2H), 3.88 (d, J = 5.2 Hz, 1H), 3.57-3.50 (m, 1H), 3.34-3.21 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 140.2, 135.9, 131.4 (q, J = 32 Hz), 129.4, 129.0, 128.9, 128.6, 127.9,126.2 (q, J = 3.7 Hz), 123.6 (q, J = 271 Hz), 111.2, 111.1, 48.0, 38.3, 28.2 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –64.29 (s, 3F) ppm; IR (neat, cm⁻¹): 3065, 3031, 2903, 2365, 2256, 1924, 1620, 1422, 1327, 1169, 1126, 1070, 701; LRMS (ESI): m/z = 337 [M+Na]; HRMS (ESI): Calcd for C₁₈H₁₃F₃N₂Na: 337.0923. Found 337.0939.

¹H NMR (400 MHz, CDCl₃): δ 7.41-7.34 (m, 2H), 7.34-7.26 (m, 3H), 7.20-7.16 (m, 2H), 7.14-7.08 (m, 2H), 3.84 (d, J = 5.2 Hz, 1H), 3.57-3.42 (m, 1H), 3.29-3.17 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 163.0 (d, J = 247 Hz), 136.4, 132.2 (d, J = 3.4 Hz), 129.94, 129.87, 129.3, 128.9, 127.7, 116.4, 116.2, 112.0, 111.3, 47.6, 38.6, 28.6 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ 113.65 - -113.72 (m, 1F) ppm; IR (neat, cm⁻¹): 3064, 3030, 2903, 2863, 2255, 2230, 1955, 1894, 1682, 1605, 1512, 1497, 1455, 1231, 1162, 841, 757, 701; LRMS (ESI): m/z = 287 [M+Na]; HRMS (ESI) Calcd for C₁₇H₁₃FN₂Na: 287.0955. Found 287.0942.

¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 8.4 Hz, 2H), 7.38-7.25 (m, 5H), 7.18 (d, *J* = 6.8 Hz, 2H), 3.83 (d, *J* = 4.8 Hz, 1H), 3.47-3.40 (m, 1H), 3.29-3.18 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 136.2, 135.3, 132.4, 129.7, 129.3, 127.8, 123.3, 111.8, 111.2, 47.8, 38.4, 28.3 ppm; IR (neat, cm⁻¹): 3064, 3029, 2900, 2255, 2230, 1902, 1592, 1490, 1455, 1409, 1075, 1011, 759, 701; LRMS (ESI): *m*/*z* = 347 [M+Na]; HRMS (ESI): Calcd for C₁₇H₁₃BrN₂Na: 347.0213. Found 347.0165.

¹H NMR (400 MHz, CDCl₃): δ 8.11-8.07 (m, 2H), 7.49-7.45 (m, 2H), 7.34-7.27 (m, 3H), 7.20-7.16 (m, 2H), 3.93 (s, 3H), 3.89 (d, *J* = 5.2 Hz, 1H), 3.55-3.51 (m, 1H), 3.51-3.25 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 141.2, 136.1, 120.9, 120.4, 129.3, 128.9, 128.2, 127.8, 111.8, 111.2, 52.3, 48.2, 38.4, 28.2 ppm; IR (neat, cm⁻¹): 3422, 3063, 3029, 2952, 2902, 2360, 2255, 1942, 1720, 1285, 1114, 708, 419; LRMS (ESI): *m/z* = 327 [M+Na]; HRMS (ESI): Calcd for C₁₉H₁₆N₂O₂Na: 327.1104. Found 283.1111.

¹H NMR (400 MHz, CDCl₃): δ 10.04 (s, 1H), 7.97-7.92 (m, 2H), 7.60-7.56 (m, 2H), 7.34 (m, 3H), 7.21-7.17 (m, 2H), 3.92 (d, *J* = 5.2 Hz, 1H), 3.60-3.53 (m, 1H), 3.36-3.23 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 191.5, 142.8, 136.8, 135.9, 130.4, 129.3, 128.90, 128.88, 127.9, 111.7,111.1, 48.3, 38.4, 28.1 ppm; IR (neat, cm⁻¹): 3379, 3064, 3029, 2903, 2850, 2747, 2255, 1955, 1814, 1703, 1608, 1215, 757; LRMS (ESI): *m/z* = 297 [M+Na]; HRMS (ESI): Calcd for C₁₈H₁₄N₂ONa: 297.0998. Found 297.1013.

¹H NMR (400 MHz, CDCl₃): δ 7.39-7.33 (m, 2H), 7.33-7.27 (m, 1H), 7.21-7.17 (m, 2H), 3.61 (d, *J* = 4.0 Hz, 1H), 3.04 (dd, *J* = 14.2, 6.0 Hz, 1H), 2.65 (dd, *J* = 14.2, 9.6 Hz, 1H), 2.25-2.15 (m, 1H), 1.91-1.78 (m, 1H), 1.74-1.61 (m, 1H), 1.13 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 137.0, 129.2, 128.9, 127.5, 112.5, 111.5, 44.4, 37.1, 26.4, 24.4, 11.3 ppm; IR (neat, cm⁻¹): 3087, 3064, 3029, 2969, 2930, 2881, 2254, 19551812, 1718, 1655, 1604, 1584, 1496, 1456, 737, 701; LRMS (ESI): *m*/*z* = 199 [M+H]; HRMS (ESI): Calcd for C₁₃H₁₅N₂: 199.1230. Found 199.1228.

¹H NMR (400 MHz, CDCl₃): δ 7.40-7.27 (m, 5H), 3.87 (d, *J* = 2.0 Hz, 1H), 3.20 (dd, *J* =14.2, 4.0 Hz, 1H), 2.73 (dd, *J* = 14.4, 11.2 Hz, 1H), 2.19-2.15 (m, 1H), 1.91-1.78 (m, 1H), 1.74-1.61 (m, 1H), 1.13 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 137.8, 129.22, 129.18, 127.6, 113.1, 112.2, 53.0, 34.6, 34.5, 28.2, 22.3 ppm; IR (neat, cm⁻¹): 3087, 3064, 3030, 2967, 2873, 2251, 1604, 1585, 1496, 1478, 1456, 1373, 1227, 742, 700; LRMS (ESI): *m/z* = 249 [M+Na]; HRMS (ESI) Calcd for C₁₅H₁₈N₂Na: 249.1362. Found 249.1371.

¹H NMR (400 MHz, CDCl₃): δ 7.38-7.27 (m, 5H), 7.25-7.22 (m, 2H), 7.22-7.15 (m, 1H), 7.11-7.04 (m, 1H), 3.86-3.77 (m, 2H), 3.38-3.20 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 138.6, 136.2, 129.3, 129.1, 28.8, 128.4, 128.2, 127.8, 127.4, 127.0, 126.0, 111.9, 111.1, 44.1, 40.0, 29.3 ppm; IR (neat, cm⁻¹): 3445, 3108, 3064, 3030, 2900, 2855, 2255, 2224, 1603, 1571, 1496, 1455, 701; LRMS (ESI): *m/z* = 275 [M+Na]; HRMS (ESI) Calcd for C₁₅H₁₂N₂SNa: 275.0613. Found 275.0601.

¹H NMR (400 MHz, CDCl₃): δ 7.19-7.03 (m, 8H), 6.94-6.90 (m, 2H), 4.25 (q, *J* = 6.8 Hz, 2H), 3.88 (q, *J* = 7.2 Hz, 2H), 3.79 (d, *J* = 10.8 Hz, 1H), 3.71-3.62 (m, 1H), 3.10 (dd, *J* = 13.2 Hz, 4.0 Hz, 1H), 2.83 (dd, *J* = 13.2 Hz, 10.4 Hz, 1H), 1.31 (t, *J* = 7.2 Hz, 3H), 0.92 (t, *J* = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 168.5, 167.7. 140.0, 139.0, 129.3, 128.5, 128.1, 128.0, 126.9, 126.1, 61.7, 61.2, 58.0, 47.7, 40.8, 14.2, 13.7 ppm.^{S12}

¹H NMR (400 MHz, CDCl₃): δ 7.32-7.26 (m, 2H), 7.22-7.17 (m, 3H), 3.14 (t, *J* = 7.6 Hz, 1H), 2.65 (t, *J* = 7.6 Hz, 2H), 2.16-2.08 (m, 2H), 1.49 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 168.8, 141.1, 128.6, 128.4, 126.1, 81.4, 53.2, 33.3, 30.4, 28.0 ppm; IR (neat, cm⁻¹): 3449, 3087, 3063, 3028, 3004, 2978, 2931, 2865, 1743, 1727, 1368, 1287, 1254, 1138, 849, 700; LRMS (ESI): *m/z* = 343 [M+Na]; HRMS (ESI): Calcd for C₁₉H₂₈O₄Na: 343.1880. Found 343.1880.

¹H NMR (400 MHz, CDCl₃): δ 7.40-7.37 (m, 2H), 7.34-7.19 (m, 6H), 7.10-7.04 (m, 2H), 3.88-3.82 (m, 1H), 3.61-3.52 (m, 2H), 3.21-3.04 (m, 1H), 3.04 (s, 3H), 3.01 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 169.0, 167.3, 150.9, 138.8, 138.2, 129.6, 128.9, 128.64, 128.59, 128.4, 127.3, 126.7, 52.3, 52.3, 37.6, 28.1, 27.9 ppm; IR (neat, cm⁻¹): 3062, 3029, 2923, 2852, 1746, 1681, 1453, 1421, 1380, 754, 703; LRMS (ESI): *m/z* = 359 [M+Na]; HRMS (ESI): Calcd for C₂₀H₂₀N₂O₃Na: 359.1366. Found 359.1383.

¹H NMR (400 MHz, CDCl₃): δ 7.42-7.23 (m, 10H), 4.11-4.04 (m, 1H), 3.72 (dd, *J* = 14.0, 11.2 Hz, 1H), 3.54 (d, *J* = 2.8 Hz, 1H), 3.25 (dd, *J* = 13.6, 5.6 Hz, 1H), 1.57 (s, 3H), 1.54 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 164.7, 139.6, 139.2, 129.4, 129.0, 128.8, 127.9, 126.9, 105.4, 48.5, 47.8, 38.3, 28.2, 28.1 ppm.^{S13}

¹H NMR (400 MHz, CDCl₃): δ 7.36-7.27 (m, 4H), 7.22-7.18 (m, 2H), 6.98 (d, *J* = 8.0 Hz, 1H), 6.94-6.90 (m, 2H), 3.84 (d, *J* = 5.2 Hz, 1H), 3.81 (s, 3H), 3.46-3.39 (m, 1H), 3.25 (d, *J* = 8.0 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 160.1, 137.9, 136.6, 130.3, 129.2, 128.9, 127.6, 120.2, 114.3, 113.9, 112.1, 111.5, 55.3, 48.3, 38.5, 28.5 ppm; IR (neat, cm⁻¹): 3649, 3381, 3062, 3029, 2923, 2853, 2838, 2360, 2254, 1954, 1682, 1602, 1585, 1494, 1455, 1438, 1264, 1051, 702; LRMS (ESI): *m/z* = 299 [M+Na]; HRMS (ESI): Calcd for C₁₈H₁₆N₂ONa: 299.1155. Found 299.1155.

¹H NMR (400 MHz, CDCl₃): δ 7.56-7.52 (m, 2H), 7.38-7.27 (m, 5H), 7.21-7.17 (m, 2H), 3.85 (d, *J* = 5.2 Hz, 1H), 3.46-3.39 (m, 1H), 3.30-3.20 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 138.6, 136.1, 132.4, 131.2, 130.8, 129.3, 128.9, 127.8, 127.0, 123.2, 111.7, 111.1, 47.9, 38.4, 28.3 ppm; IR (neat, cm⁻¹): 3551, 3063, 3029, 2917, 2850, 2255, 1952, 1878, 1718, 1569, 1476, 704; LRMS (ESI): *m*/*z* = 347 [M+Na]; HRMS (ESI): Calcd for C₁₇H₁₃BrN₂Na: 347.0213. Found 347.0204.

¹H NMR (400 MHz, CDCl₃): δ 7.69-7.53 (m, 4H), 7.38-7.27 (m, 3H), 7.21-7.17 (m, 2H), 3.88 (d, J = 5.2 Hz, 1H), 3.58-3.51 (m, 1H), 3.34-3.21 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 137.4, 135.9, 131.6 (q, J = 32.8 Hz), 131.1, 129.8, 129.1, 128.9, 127.9, 126.1 (q, J = 3.7 Hz), 125.0 (q, J = 3.8 Hz), 123.7 (q, J = 271 Hz), 111.7, 111.1, 48.1, 38.4, 28.2 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –64.09 (s, 3F) ppm; IR (neat, cm⁻¹): 3066, 3031, 2903, 2360, 1691, 1672, 1603, 1496, 1454, 1330, 1168, 1128, 1076, 704; LRMS (ESI): m/z = 337 [M+Na]; HRMS (ESI) Calcd for C₁₈H₁₃F₃N₂Na: 337.0923. Found 337.0936.

 $\mathbf{3} \alpha \mathbf{a}$

¹H NMR (400 MHz, CDCl₃): δ 7.34-7.19 (m, 5H), 7.16-7.12 (m, 2H), 6.97-6.90 (m, 2H), 4.15 (d, *J* = 6.4 Hz, 1H), 4.03-3.95 (m, 1H), 3.86 (s, 3H), 3.33-3.21 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 156.9, 137.2, 129.9, 129.0, 128.84, 128.78, 127.2, 124.3, 121.1, 112.3, 112.2, 111.0, 55.5, 42.2, 37.0, 27.3 ppm; IR (neat, cm⁻¹) 3566, 3064, 3029, 2922, 2841, 2254, 2044, 1952, 1904, 1682, 1603, 1587, 1495, 1248, 1027, 755, 700; LRMS (ESI): *m/z* = 299 [M+Na]; HRMS (ESI): Calcd for C₁₈H₁₆N₂ONa: 299.1155. Found 299.1157.

¹H NMR (400 MHz, CDCl₃): δ 7.42-7.23 (m, 5H), 7.22-7.09 (m, 4H), 3.98 (d, J = 6.4 Hz, 1H), 3.95-3.88 (m, 1H), 3.37-3.28 (m, 1H), 3.27-3.18 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 160.1 (d, J = 245 Hz), 136.3, 130.7 (d, J = 8.6 Hz), 129.1, 128.92, 128.88, 127.6, 124.9 (d, J = 3.5 Hz), 123.5 (d, J = 13.4 Hz), 116.2 (d, J = 22.4 Hz), 111.8, 111.5, 41.4, 37.8, 27.6, 27.6 ppm; IR (neat, cm⁻¹): 3566, 3087, 3065, 3030, 2905, 2666, 2256, 1956, 1806, 1616, 1603, 1585, 1493, 1456, 760, 700; ¹⁹F NMR (376 MHz, CDCl₃): δ –117.95– –118.01 (m, 1F) ppm; LRMS

(ESI): m/z = 287 [M+Na]; HRMS (ESI): Calcd for C₁₇H₁₃N₂FNa: 287.0955. Found 287.0961.

General procedure of acylation (Procedure II)

Alkenes (0.10 mmol), **1b** (63.4 mg, 0.20 mmol) and Eosin Y-2Na (1.4 mg, 0.0020 mmol) was dissolved in degassed 1,2-dichloroethane (1.0 mL), if necessary, other additives were added at this point. Then irradiation of white LED (7 W) at room temperature. After 24 h, the solvent was evaporated and the 1,1,2-trichloroethane as an internal standard was added and ¹H NMR was measured in CDCl₃ for the calculation of the NMR yield. Then crude products were purified by preparative TLC to give **3**.

Other acylation reactions in Table 4 were performed based on this Procedure II.

¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 7.2 Hz, 2H), 7.55 (t, J = 7.6 Hz, 1H), 7.46-7.30 (m, 7H), 5.11 (d, J = 8.4 Hz, 1H), 4.54 (d, J = 8.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 193.0, 134.4, 133.9, 132.1, 130.1, 129.9, 129.3, 129.0, 128.6, 112.1, 111.6, 54.8, 26.8 ppm.^{S11}

¹H NMR (400 MHz, CDCl₃): δ 7.92-7.88 (m, 2H), 7.57-7.51 (m, 1H), 7.44-7.38 (m, 2H), 7.26-7.19 (m, 4H), 5.07 (d, *J* = 8.4 Hz, 1H), 4.51 (d, *J* = 8.4 Hz), 2.32 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 193.1, 140.1, 134.4, 133.9, 130.8, 129.3, 129.0, 128.9, 128.4, 112.2, 111.7, 54.6, 26.9, 21.2 ppm; IR (neat, cm⁻¹): 3350, 3059, 3027, 2921, 2360, 2257, 2209, 1968, 1910, 1811, 1772, 1682, 1256, 1223, 755, 688; LRMS (ESI): *m/z* 275 [M+H] HRMS (ESI) Calcd for C₁₈H₁₅N₂O: 275.1179. Found 275.1179.

¹H NMR (400 MHz, CDCl₃): δ 8.30 (d, J = 8.0 Hz, 2H), 7.87 (dd, J = 7.6, 1.2 Hz, 1H), 7.62-7.57 (m, 3H), 7.45 (t, J = 8.0 Hz, 2H), 5.23 (d, J = 8.0 Hz, 1H), 4.60 (d, J = 7.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 192.0, 148.8, 138.6, 135.1, 133.3, 129.9, 129.3, 129.2, 125.2, 111.4, 110.9, 54.0, 26.5 ppm; IR (KBr, cm⁻¹) 3354, 3082, 3025, 2919, 2258, 2211, 1931, 1683, 1597, 1524, 1449, 1350, 1260, 1224, 1112, 843, 755, 706; ESI-MS (*m/z*): [M]⁺ calcd. for C₁₇H₁₁N₃NaO₃, 328.0700; found, 328.0693.

¹H NMR (400 MHz, CDCl₃): δ 7.90-7.86 (m, 2H), 7.72-7.66 (m, 2H), 7.62-7.56 (m, 1H), 7.51 (d, *J* = 8.0 Hz, 2H), 7.47-7.40 (m, 2H), 5.19 (d, *J* = 8.0 Hz, 1H), 4.57 (d, *J* = 8.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 192.4, 135.8, 134.9, 133.4, 132.3 (q, *J* = 2.9 Hz), 129.24, 129.17, 127.14, 127.10, 127.07, 127.0, 123.1 (q, *J* = 271 Hz), 111.7, 111.1, 54.2 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –64.35 (s, 3F) ppm; IR (neat, cm⁻¹): 3066, 3028, 2920, 2360, 2258, 1927, 1684, 1619, 1597, 1580, 1326, 1171, 1130, 1069, 758, 699; LRMS (ESI): *m*/*z* = 351 [M+Na]; HRMS (ESI): Calcd for C₁₈H₁₁F₃N₂ONa: 351.0716. Found 351.0726.

¹H NMR (400 MHz, CDCl₃): δ 7.88 (dd, J = 8.4, 0.4 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 8.0 Hz, 2H), 7.37-7.33 (m, 2H), 7.12 (t, J = 8.4 Hz, 2H), 5.10 (d, J = 8.0 Hz, 1H), 4.52 (d, J = 8.0, 1H) ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –111.54 (m, 1F); ¹³C NMR (100 MHz, CDCl₃): δ = 192.9, 164.7, 162.2, 134.6, 133.7, 130.6 (d, J = 8.6 Hz), 129.2 (d, J = 19.8 Hz), 127.9 (d, J = 3.3 Hz), 117.3 (d, J = 21.9 Hz), 112.0, 111.5, 53.9, 26.9 ppm; IR (KBr, cm⁻¹) 3071, 3027, 2918, 2258, 1902, 1682, 1598, 1510, 1449, 1239, 1162, 816, 758, 689; ESI-MS (m/z): [M]⁺ calcd. for C₁₇H₁₁FN₂NaO, 301.0753; found, 301.0748.

¹H NMR (400 MHz, CDCl₃): δ 7.89-7.85 (m, 2H), 7.60-7.53 (m, 3H), 7.46-7.40 (m, 2H), 7.26-7.22 (m, 2H), 5.08 (d, *J* = 8.0 Hz, 1H), 4.52 (d, *J* = 8.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 192.6, 134.7, 133.6, 122.4, 131.0, 130.2, 129.2, 129.1, 124.5, 111.9, 111.3, 54.1, 26.6 ppm; IR (neat, cm⁻¹): 3026, 2916, 2360, 2257, 1908, 1682, 1596, 1579, 1489, 1258, 1222, 1074, 1011, 761; LRMS (ESI): *m*/*z* = 360 [M+Na]; HRMS (ESI): Calcd for C₁₇H₁₁BrN₂ONa: 360.9947. Found 360.9960.

¹H NMR (400 MHz, CDCl₃): δ 8.11-8.07 (m, 2H), 7.90-7.85 (m, 2H), 7.60-7.54 (m, 1H), 7.47-7.39 (m, 4H), 5.16 (d, *J* = 8.4 Hz, 1H), 4.57 (d, *J* = 8.0 Hz, 1H), 3.91 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 192.5, 165.9, 136.6, 134.7, 133.6, 131.7, 131.2, 129.2, 129.1, 128.8, 111.8, 111.2, 54.6, 52.4, 26.5 ppm; IR (neat, cm⁻¹): 3348, 3064, 3025, 2953, 2917, 2846, 2258, 1938, 1816, 1717, 1683, 1286, 1114, 759, 706; LRMS (ESI): *m/z* = 341 [M+Na]; HRMS (ESI): Calcd for C₁₉H₁₄N₂O₃Na: 341.0897. Found 341.0911.

¹H NMR (400 MHz, CDCl₃): δ 10.01 (s, 1H), 7.97-7.93 (m, 2H), 7.91-7.86 (m, 2H), 7.61-7.54 (m, 3H), 7.46-7.40 (m, 2H), 5.20 (d, *J* = 8.4 Hz, 1H), 4.60 (d, *J* = 8.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 192.3, 190.9, 138.0, 137.2, 134.9, 133.5, 131.1, 129.5, 129.2, 129.2, 111.7, 111.1, 54.6, 26.5 ppm; IR (neat, cm⁻¹): 3354, 3063, 3025, 2917, 2838, 2743, 2363, 2258, 1931, 1703, 1684, 1607, 1213, 1174, 759, 696; LRMS (ESI): *m/z* = 311 [M+Na]; HRMS (ESI) Calcd for C₁₈H₁₂N₂O₃Na: 311.0791. Found 348.0803.

¹H NMR (400 MHz, CDCl₃): δ 7.98-7.93 (m, 2H), 7.71-7.65 (m, 1H), 7.58-7.52 (m, 2H), 4.32 (d, *J* = 8.8 Hz, 1H), 4.14-4.09 (m, 1H), 2.20-1.98 (m, 2H), 0.94 (t, *J* = 7.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 196.4, 134.7, 134.5, 129.2, 128.6, 112.2, 111.9, 48.3, 24.0, 23.1, 9.7 ppm; IR (neat, cm⁻¹): 3064, 2973, 2916, 2359, 2256, 1682, 1597, 1579, 1449, 697; LRMS (ESI): *m*/*z* = 235 [M+Na]; HRMS (ESI): Calcd for C₁₃H₁₂N₂ONa: 235.0842. Found 235.0843.

¹H NMR (400 MHz, CDCl₃): δ 7.96 (dd, J = 10.0, 4.0 Hz, 2H), 7.66 (td, J = 8.0, 1.2 Hz, 1H), 7.53 (t, J = 8.0 Hz, 2H), 4.28 (d, J = 8.0 Hz, 1H), 4.07 (d, J = 8.0 Hz, 1H), 1.14 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 198.2$, 137.4, 134.4, 129.1, 128.6, 113.2, 112.5, 54.1, 34.8, 28.6, 22.3 ppm; IR (KBr, cm⁻¹) 3382, 3063, 2969, 2925, 2255, 1675, 1597, 1579, 1477, 1448, 1374, 1303, 1247, 1219, 756, 690; ESI-MS (m/z): [M]⁺ calcd. for C₁₅H₁₆N₂NaO, 263.1165; Found, 263.1155.

¹H NMR (400 MHz, CDCl₃): δ 7.98-7.93 (m, 2H), 7.63-7.57 (m, 1H), 7.49-7.43 (m, 2H), 7.40-7.37 (m, 1H), 7.14-7.11 (m, 1H), 7.05-7.01 (m, 1H), 5.41 (d, J = 8.4 Hz, 1H), 4.59 (dd, J = 8.4, 0.8 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 191.7, 134.7, 133.6, 132.8, 129.3, 129.2, 129.1, 128.4, 128.3, 111.7, 111.4, 49.5, 27.4 ppm; IR (neat, cm⁻¹): 3110, 2918, 2360, 2257, 1683, 1449, 1247, 754, 707, 687; LRMS (ESI): m/z = 289 [M+Na]; HRMS (ESI): Calcd for C₁₅H₁₀N₂OSNa: 289.0406. Found 289.0408.

¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 7.2 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.35-

7.16 (m, 5H), 5.32 (d, J = 11.2 Hz, 1H), 4.44 (d, J = 11.2 Hz, 1H), 4.23-4.11 (m, 2H), 3.94 (q, J = 7.2 Hz, 2H), 1.22 (t, J = 7.2 Hz, 3H), 0.96 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 197.3, 168.2, 168.1, 135.9, 134.5, 133.2, 129.02, 128.97, 128.91, 128.6, 128.0, 61.9, 61.4, 56.0, 52.9, 14.0, 13.8 ppm; IR (neat, cm⁻¹): 3456, 3344, 3063, 3030, 2982, 2938, 2905, 1966, 1902, 1730, 1682, 1597, 1449, 756, 699, 604, 548; LRMS (ESI): *m/z* 377 [M+Na]; HRMS (ESI): Calcd for C₂₁H₂₂NaO₅: 377.1359. Found 377.1375.

3mb

¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 6.8 Hz, 2H), 7.49 (t, J = 7.4 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 3.89 (t, J = 7.2 Hz, 1H), 3.52 (d, J = 7.2 Hz, 2H), 1.48 (s, 18H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 196.9, 168.4, 136.4, 133.3, 128.6, 128.1, 81.8, 49.2, 37.8, 27.9 ppm; IR (neat, cm⁻¹): 3447, 2978, 1730, 1692, 1368, 1256, 1142, 849, 768, 691; LRMS (ESI): m/z = 357 [M+Na]; HRMS (ESI): Calcd for C₁₉H₂₆NaO₅: 357.1672. Found 357.1681.

¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, *J* = 7.2 Hz, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.37-7.20 (m, 7H), 5.82 (d, *J* = 3.2 Hz, 1H), 3.83 (d, *J* = 3.2 Hz, 1H), 3.33 (s, 3H), 3.30 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 198.1, 167.7, 167.1, 151.5, 137.0, 134.9, 133.6, 130.2, 129.4, 128.59, 128.58, 127.7, 56.7, 51.4, 28.9, 28.6 ppm; IR (neat, cm⁻¹): 3429, 3063, 2959, 1968, 1908, 1682, 1597, 1580, 1455, 1109, 938, 864, 751, 701, 629, 562; LRMS (ESI): *m/z* = 373 [M+Na]; HRMS (ESI): Calcd for C₂₀H₁₈N₂NaO₄: 373.1159. Found 373.1152.

¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, *J* = 7.2 Hz, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.40-7.20 (m, 7H), 5.59 (d, *J* = 4.8 Hz, 1H), 4.20 (d, *J* = 4.8 Hz, 1H), 1.84 (s, 3H), 1.82 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 196.9, 164.7, 164.3, 136.1, 135.0, 133.4, 130.3, 129.3, 128.7, 128.5, 127.8, 105.2, 53.7, 49.5, 28.4, 27.0 ppm; IR (neat, cm⁻¹) 3063, 3003, 2924, 1748, 1680, 1318, 1266, 1225, 737, 718, 699; LRMS (ESI): *m/z* = 361 [M+Na]; HRMS (ESI)

Calcd for C₂₀H₁₈NaO₅: 361.1046. Found 361.1062.

¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, *J* = 7.6 Hz, 2H), 7.60 (t, *J* = 7.2 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 3.90-3.75 (m, 1H), 2.73 (dd, *J* = 14.4, 11.0 Hz, 1H), 2.54-2.30 (m, 3H), 2.20-2.05 (m, 2H), 1.95-1.78 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 210.2, 200.4, 135.4, 133.5, 128.9, 128.4, 45.2, 43.2, 41.0, 28.4, 24.8 ppm.^{S16}

¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, J = 7.2 Hz, 2H), 7.62 (t, J = 7.2 Hz, 1H), 7.51 (t, J = 7.4 Hz, 2H), 4.20-4.08 (m, 1H), 2.72 (dd, J = 18.4, 7.8 Hz, 1H), 2.51-2.10 (m, 5H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 216.8, 200.2, 135.6, 133.6, 128.9, 128.5, 43.0, 41.0, 37.3, 27.0 ppm.^{S16}

3sb

¹H NMR (400 MHz, CDCl₃): δ 13.56 (s, 1H), 8.52 (d, *J* = 8.0 Hz, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 7.77-7.40 (m, 7H), 6.86 (s, 1H), 5.10 (brs, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 200.9, 158.8, 142.6, 138.2, 131.6, 130.1, 129.4, 128.9, 128.4, 126.6, 126.1, 124.7, 121.7, 111.5, 108.0 ppm.^{S17}

3ub

Mixture of keto and enol. The data of keto form: ¹H NMR (400 MHz, CDCl₃): δ 8.19-8.13 (m, 2H), 7.79-7.27 (m, 8H), 5.02 (dd, 9.2, 4.0 Hz, 1H), 3.57 (dd, *J* = 18.4, 4.4 Hz, 1H), 3.06 (dd, *J* = 18.0, 8.8 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 174.7, 171.8, 135.3, 134.4, 131.6, 131.4, 129.9, 129.2, 128.9, 128.8, 128.7, 127.7, 126.5, 126.4, 48.6, 33.8, 31.9 ppm.

¹H NMR (400 MHz, CDCl₃): δ 7.96-7.90 (m, 2H), 7.58-7.52 (m, 1H), 7.47-7.41 (m, 2H), 7.28-7.23 (m, 7H), 7.21-7.14 (m, 2H), 4.83 (t, 7.4 Hz, 1H), 3.74 (d, *J* = 7.2 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 198.0, 144.2, 137.1, 133.1, 128.61, 128.58, 128.1, 127.9, 126.4, 45.9, 44.7 ppm.^{S18}

3wb

¹H NMR (400 MHz, CDCl₃): δ 8.00-7.96 (m, 2H), 7.60-7.54 (m, 1H), 7.49-7.42 (m, 2H), 7.39-7.27 (m, 5H), 4.30 (dd, *J* = 10.4, 4.0 Hz, 1H), 3.96 (dd, *J* = 18.0, 10.4 Hz, 1H), 3.70 (s, 3H), 3.28 (dd, *J* = 18.0, 4.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 173.9, 138.3, 136.4, 133.3, 128.9, 128.6, 128.1, 127.8, 127.6, 52.4, 46.3, 42.8 ppm.^{S19}

¹H NMR (400 MHz, CDCl₃): δ 7.29-7.22 (m, 5H), 7.12 (d, *J* = 8.0 Hz, 2H), 7.10-7.04 (m, 2H), 3.85-3.79 (m, 1H), 3.60 (d, *J* = 3.2 Hz, 1H), 3.51 (dd, *J* = 14.0, 10.4 Hz, 1H), 3.13 (dd, *J* = 14.0, 6.0 Hz, 1H), 3.041 (s, 3H), 3.035 (s, 3H), 2.31 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 169.1, 167.3, 150.9, 138.3, 136.2, 135.7, 129.4, 129.3, 128.6, 128.3, 127.4, 52.4, 52.3, 37.2, 28.1, 27.9, 21.1 ppm; IR (neat, cm⁻¹): 3413, 3028, 2955, 2922, 2863, 1903, 1746, 1682, 1451, 1422, 1380, 754, 703; LRMS (ESI): *m/z* = 373 [M+Na]; HRMS (ESI): Calcd for C₂₁H₂₂N₂O₃Na: 373.1523. Found 373.1527.

¹H NMR (400 MHz, CDCl₃): δ 7.38-7.32 (m, 2H), 7.29-7.24 (m, 3H), 7.07-6.96 (m, 4H), 3.81-3.74 (m, 1H), 3.56 (d, J = 3.2 Hz, 1H), 3.55-3.49 (m, 1H), 3.14 (dd, J = 14.0, 6.0 Hz, 1H), 3.06 (s, 3H), 3.03 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 169.0, 167.3, 161.7 (d, J = 243 Hz), 150.8, 137.8, 134.5 (d, J = 3.1 Hz), 131.0 (d, J = 7.9 Hz), 128.6, 128.5, 127.3, 115.5 (d, J = 21 Hz), 52.4, 52.2, 36.8, 28.1, 27.9 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ-117.60--117.67 (m, 1F) ppm; IR (neat, cm⁻¹): 3415, 3031, 2958, 2922, 1894, 1746, 1682, 1509, 1453, 1423, 1381, 755, 704 ppm; LRMS (ESI): m/z = 377 [M+Na]; HRMS (ESI): Calcd for C₂₀H₁₉FN₂O₃Na: 377.1272. Found 377.1256.

¹H NMR (400 MHz, CDCl₃): δ 7.28-7.21 (m, 3H), 7.03-6.97 (m, 2H), 4.05 (d, J = 2.8 Hz, 1H), 3.13 (d, J = 2.8 Hz, 1H), 3.07 (s, 3H), 2.97 (s, 3H), 1.15 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 170.3, 168.7, 151.0, 137.1, 129.4, 128.2, 128.0, 63.3, 52.4, 35.8, 29.1, 28.2 ppm; IR (neat, cm⁻¹): 3412, 3031, 2957, 1745, 1677, 1452, 1423, 1378, 753, 713; LRMS (ESI): m/z = 325 [M+Na]; HRMS (ESI): Calcd for C₁₇H₂₂N₂O₃Na: 325.1523. Found 325.1534.

¹H NMR (400 MHz, CDCl₃): δ 7.27-7.23 (m, 3H), 7.01-6.97 (m, 2H), 4.16-4.08 (m, 1H), 3.89 (d, *J* = 4.4 Hz, 1H), 3.50 (dd, *J* = 9.6 Hz, 18.4 Hz, 1H), 3.11 (s, 3H), 3.01 (s, 3H), 2.97 (dd, *J* = 6.0 Hz, 18.2 Hz, 1H), 2.22 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 206.3, 168.2, 167.6, 150.9, 137.7, 128.7, 128.4, 127.3, 52.7, 45.0, 44.1, 30.5, 28.1,

28.0 ppm; IR (neat, cm⁻¹): 3413, 3030, 2957, 2924, 2851, 2363, 1746, 1715, 1678, 1379, 756; LRMS (ESI): m/z = 303 [M+H]; HRMS (ESI): Calcd for C₁₆H₁₉N₂O₄: 303.1339. Found 303.1349.

¹H NMR (400 MHz, CDCl₃): δ 8.06-8.00 (m, 2H), 7.61-7.55 (m, 1H), 7.51-7.45 (m, 2H), 7.31-7.25 (m, 3H), 7.13-7.08 (m, 2H), 4.36-4.33 (m, 1H), 4.09 (dd, *J* = 18.2, 9.2 Hz, 1H), 3.99 (d, *J* = 4.0 Hz, 1H), 3.53 (dd, *J* = 18.2, 6.0 Hz, 1H), 3.11 (s, 3H), 3.05 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 197.7, 168.3, 167.8, 151.0, 138.2, 136.8, 133.4, 1128.7, 128.4, 128.1, 127.4, 53.0, 44.5, 40.4, 28.2, 28.0 ppm; IR (neat, cm⁻¹): 3361, 3062, 3030, 2956, 2924, 2852, 2360, 1746, 1682, 1449, 1379, 752; LRMS (ESI): *m/z* = 387 [M+Na]; HRMS (ESI) Calcd for C₂₁H₂₀N₂O₄Na: 387.1315. Found 387.1333.

¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 8.4 Hz, 2H), 7.38-7.22 (m, 5H), 7.12 (d, J = 8.0 Hz, 2H), 5.80 (d, J = 3.2 Hz, 1H), 3.80 (d, J = 3.2 Hz, 1H), 3.33 (s, 3H), 3.30 (s, 3H), 2.33 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 197.6, 167.7, 167.2, 151.6, 144.6, 137.3, 132.3, 130.1, 129.5, 129.3, 128.6, 127.7, 56.7, 51.4, 28.9, 28.6, 21.7 ppm; IR (neat, cm⁻¹) 2957, 2924, 1682, 1605, 1455, 1379, 1275, 741, 701. LRMS (ESI) *m/z* 387 [M+Na] HRMS (ESI) Calcd for C₂₁H₂₀N₂NaO₄: 387.1315. Found 387.1329.

¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, *J* = 8.4 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.36-7.20 (m, 5H), 5.74 (d, *J* = 2.4 Hz, 1H), 3.84 (d, *J* = 2.4 Hz, 1H), 3.32 (s, 3H), 3.30 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 197.1, 167.5, 167.0, 151.5, 136.6, 133.6, 131.9, 130.8, 130.1, 128.9, 128.7, 127.9, 56.6, 51.3, 28.9, 28.6 ppm; IR (neat, cm⁻¹): 3437, 3061, 2957, 1682, 1584, 751; LRMS (ESI): *m*/*z* = 451 [M+Na]; HRMS (ESI): Calcd for C₂₀H₁₇BrN₂NaO₄: 451.0264. Found 451.0256.

¹H NMR (400 MHz, CDCl₃): δ 7.41-7.31 (m, 5H), 4.87 (d, *J* = 2.4 Hz, 1H), 3.88 (d, *J* = 2.8 Hz, 1H), 3.29 (s, 3H), 3.27 (s, 3H), 2.17 (s, 3H) ppm.; ¹³C NMR (100 MHz, CDCl₃): δ 206.3, 167.24, 167.22, 151.3, 135.8, 130.5, 128.8, 128.2, 60.5, 51.3, 28.9, 28.6, 28.5 ppm; IR (neat, cm⁻¹) 3061, 2924, 1682, 1455, 1422, 1379, 756, 702. LRMS (ESI) *m/z* 311 [M+Na] HRMS (ESI) Calcd for C₁₅H₁₆N₂NaO₄: 311.1002. Found 311.1017.

The pivaloyl adduct **3nl** was obtained too low yield to isolate. The ¹H NMR data from crude product, see: ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.15 (m, 5H), 5.27 (d, *J* = 4.4 Hz, 1H), 3.62 (d, *J* = 4.0 Hz, 1H), 3.31 (s, 3H), 3.26 (s, 3H), 1.02 (s, 9H) ppm.

¹H NMR (400 MHz, CDCl₃): δ 7.29-7.24 (m, 3H), 7.20-7.16 (m, 2H), 5.28 (d, J = 8.8 Hz, 1H), 4.01 (d, J = 2.8 Hz, 1H), 3.94-3.89 (m, 1H), 3.88-3.82 (m, 1H), 3.67-3.60 (m, 1H), 3.51-3.38 (m, 2H), 3.16 (s, 3H), 3.15 (s, 3H), 1.23 (t, J = 7.0 Hz, 3H), 0.95 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 168.3, 167.9, 151.2, 136.4, 128.52, 128.49, 127.9, 101.8, 63.2, 61.5, 52.0, 51.7, 28.3, 28.2, 15.21, 15.18 ppm; IR (neat, cm⁻¹): 3418, 3032,

2976, 2930, 1747, 1678, 1453, 1422, 1379, 1124, 1061, 757, 704; LRMS (ESI): *m/z* 371 [M+Na]; HRMS (ESI) Calcd for C₁₈H₂₄N₂O₅Na: 371.1577. Found 371.1571.

¹H NMR (400 MHz, CDCl₃): δ 7.46-7.36 (m, 5H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 3.84 (d, *J* = 5.2 Hz, 1H), 3.46-3.39 (m, 1H), 3.21 (d, *J* = 14.4 Hz, 2H), 2.33 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 137.3, 136.5, 133.5, 129.9, 129.1, 129.2, 128.8, 128.1, 112.1, 111.5, 48.4, 38.1, 28.4, 21.1 ppm; IR (neat, cm⁻¹): 3090, 3031, 2922, 2862, 2366, 2255, 1955, 1906, 1515, 1497, 1455, 812, 758, 701; LRMS (ESI): *m/z* 283 [M+Na]; HRMS (ESI): Calcd for C₁₈H₁₆N₂Na: 283.1206. Found 283.1194.

3ad

¹H NMR (400 MHz, CDCl₃): δ 7.45-7.38 (m, 3H), 7.37-7.33 (m, 2H), 7.15-7.09 (m, 2H), 7.03-6.96 (m, 2H), 3.86 (d, *J* = 5.2 Hz, 1H), 3.47-3.39 (m, 1H), 3.33-3.18 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 162.1 (d, *J* = 245 Hz), 136.1, 132.3 (d, *J* = 3.3 Hz), 130.54, 130.46, 129.3, 129.2, 128.0, 116.0 (d, *J* = 21.4 Hz), 111.9, 114.4, 48.4, 37.8, 28.7 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –116.00- –116.07 (m, 1F) ppm; IR (neat, cm⁻¹): 3034, 2904, 2359, 2256, 1889, 1603, 1510, 1455, 1224, 1510, 834, 760, 701; LRMS (ESI): *m/z* 287 [M+Na]; HRMS (ESI): Calcd for C₁₇H₁₃FN₂Na: 287.0955. Found 287.0950.

¹H NMR (400 MHz, CDCl₃): δ 7.39 (s, 5H), 4.22 (d, J = 5.6 Hz, 1H), 3.01 (d, J = 5.6 Hz, 1H), 1.11 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 136.2, 129.3, 128.7, 128.6, 56.8, 35.0, 28.5, 25.1 ppm; IR (neat, cm⁻¹): 3064, 3033,
2968, 2913, 2253, 1604, 1497, 1479, 1455, 1371, 1216, 714; LRMS (ESI): *m/z* 235 [M+Na]; HRMS (ESI): Calcd for C₁₄H₁₆N₂Na: 235.1206. Found 236.1200.

¹H NMR (400 MHz, CDCl₃): δ 7.45-7.38 (m, 5H), 4.90 (d, *J* = 6.4 Hz, 1H), 4.39 (d, *J* = 5.6 Hz, 1H), 3.91-3.81 (m, 1H), 3.67-3.53 (m, 2H), 3.45-3.34 (m, 2H), 1.29 (t, *J* = 7.0 Hz, 3H), 1.06 (t, *J* = 7.0 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 133.8, 129.1, 128.8, 112.1, 112.0, 102.4, 64.7, 64.0, 50.0, 25.7, 15.10, 15.07 ppm; IR (neat, cm⁻¹): 3065, 3034, 2979, 2924, 2377, 2255, 1719, 1456, 1118, 1067, 702; LRMS (ESI): *m/z* 281 [M+Na]; HRMS (ESI): Calcd for C₁₅H₁₈N₂O₂Na: 281.1260. Found 281.1274.

3-3. Other experimental methods

Synthesis of deuterated benzalmalononitrile 2a-d

Deuterated benzaldehyde (0.30 mL, 2.54 mmol) and piperidine (25 μ L, 0.254 mmol) were mixed in EtOH, then malononitrile (169 mg, 2.54 mmol) was added to the mixture. After about 10 min, the product was generated as a precipitate. The mixture was stirred overnight, the precipitate was filtered and washed with EtOH. The crude product was recrystallized by dichloromethane and hexane to give **2a-d** (223 mg, 1.32 mmol, 52%).

Deuteration of benzylic position of 1a

2a (251.4 mg, 0.829 mmol) was dissolved in mixture of methanol- d_4 (2.0 mL) and dichloromethane (3.0 mL). After the mixture was stirred for 24 h, the solvent was removed to give **2a**-*d* (94.5 % deuterated).

Synthesis of 2-aminofuran derivative

Triethylamine (50 μ L) was added to the resulting mixture of **3a**, which was obtained by the Procedure II. Then, the reaction mixture was stirred for 1 h, and the solvent was removed, and the residue was purified by PTLC to give 2-aminofuran derivative **4** in 78% yield.

Data of 4:

¹H NMR (400 MHz, CDCl₃): δ 7.45-7.34 (m, 7H), 7.26-7.19 (m, 3H), 4.97 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 161.2, 139.7, 135.3, 131.7, 131.0, 129.5, 129.0, 128.5, 128.4, 127.4, 115.0, 73.6 ppm.^{S20}

Radical scavenging experiments

According to the general procedure of alkylation and acylation. TEMPO (19.8 mg, 0.127 mmol) was added to the solution. Then crude products were purified by preparative TLC (hexane: AcOEt = 10:1) to give **5**.

Data of 5:

¹H NMR (400 MHz, CDCl₃): δ = 7.38-7.32 (m, 4H), 7.28 (d, *J*=6.4 Hz, 1H), 4.83 (s, 2H), 1.63-1.32 (m, 6H), 1.26 (s, 6H), 1.15 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 138.3, 128.2, 127.5, 127.3, 78.7, 60.0, 39.7, 33.1, 20.3, 17.1 ppm.^{S21}

5a

¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, J = 7.2 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 1.85-1.53 (m, 4H), 1.50-1.41 (m, 1H), 1.28 (s, 6H), 1.12 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 132.9, 129.8, 129.6, 128.5, 60.4, 39.1, 32.0, 20.9, 17.0 ppm.^{S22}

5b

The products from maleic anhydride (3t) were decomposed by any purification methods and they couldn't be separated and collected data.

4. Mechanistic studies

4-1. Cyclic Voltammetry

All voltammograms were measured at room temperature using Ag/AgNO₃ reference electrode, a platinum (Pt) counter and working electrode. The conditions of the experiments were as follows: a CH₃CN solution of 100 mM tetrabutylammonium hexafluorophosphate (Bu₄NPF₆) and a scan rate of 50 mV/s. The potentials of 1,3-dimethyl-5-benzylidene barbituric acid **2o** and benzylidenemeldrum's acid **2p** were taken at half-wave potential ($E_{1/2}$) since the oxidation was reversible. The potentials of benzothiazolines were taken at half-height of the peak ($E_{p/2}$) since the oxidations were non-reversible.

To convert the potentials from Ag/AgNO₃ to Fc/Fc⁺ reference, ferrocene was measured under the above conditions in a CH₃CN solution, and -0.44 V was subtracted from the measured values. To convert the potentials from Fc/Fc⁺ to SCE reference, +0.38 V was added from the values according to the literature.^{S23)}

According to Figure S1, the oxidation potential of **1e** and **1f** was almost same value (**1e**: $E_{p/2} = 0.69$ V vs. SCE, **1f**: $E_{p/2} = 0.70$ V vs. SCE) and both of them could be oxidized by photoredox catalysts (Ru(bpy)₃²⁺, Eosin Y-2Na). Hence, the reason why isopropyl transfer didn't proceed is C-C bond cleavage of **1f** couldn't be occurred from the cation radical species.

Figure S1. Cyclic voltammograms of benzothiazoline derivatives. Upper left: 2-benzyl-2phenylbenzothiazoline (**1a**), Upper right: 2-benzoyl-2-phenylbenzothiazoline (**1b**), Lower left: 2-*tert*-butyl-2phenylbenzothiazoline (**1e**), Lower right: 2-isopropyl-2-phenylbenzothiazoline (**1f**).

4-2. KIE study

The procedure of KIE study using deuterated benzalmalononitrile (Scheme 4B)

Scheme S5. KIE determined experiment from an intermolecular competition of benzalmalononitrile.

The 1:1 mixture of **2a** (11.6 mg, 0.075 mmol) and α -deuterated **2a** (**2a**-*d*, 11.6 mg, 0.075 mmol), and benzothiazoline **1a** (91.3 mg, 0.3 mmol), photoredox catalyst (Ru(bpy)₃Cl₂) (5.8 mg, 0.0077 mmol) was dissolved in degassed 1,2-dichloroethane (3.0 mL). Then irradiation of white LED (5 W) at room temperature. After 2 h, the solvent was evaporated and 1,1,2,2-tetrachloroethane was added as an internal standard and ¹H NMR was measured in CDCl₃ for the calculation of the NMR yield.

The procedure of KIE study using deuterated benzothiazoline derivative (Scheme 4C)

According to the Scheme S1, the hydrogen-exchange of benzothiazoline **2a** was not fast (7% exchange for 24 h), and the KIE study was performed for a few hours (2 h). Thus, we defined the hydrogen-exchange could be almost negligible under the KIE conditions.

Then, the KIE measurement of the C-C bond cleavage of **1a** was performed by using 1:1 mixture of **1a** and **1a**- d_2 in the same vessel under the standard condition. After 2 h, the negative secondary KIE was observed ($k_{\rm H}/k_{\rm D} = 0.91$). This result suggested that the C-C bond cleavage of the benzothiazoline **1a** was not the rate-determined step but the radical addition to alkenes was the rate-determined step of this reaction.

Scheme S6. KIE determination experiment from an intermolecular competition of benzothiazoline 1a.

2a (7.7 mg, 0.05 mmol) and 1:1 mixture of benzothiazoline **1a** (15.2 mg, 0.05 mmol) and deuterated benzothiazoline **1a**-*d* (15.3 mg, 0.05 mmol), photoredox catalyst (Ru(bpy)₃Cl₂•6H₂O) (2.0 mg, 0.0025 mmol) were dissolved in degassed 1,2-dichloroethane (1.0 mL). Then white LED (5 W) was irradiated at room temperature for 2 h. After evaporation of the solvent, 1,1,2,2-tetrachloroethane was added as an internal standard, and ¹H NMR was measured in CDCl₃ for the calculation of the NMR yield.

Calculation method of KIE: **1a**-*d* was containing 5.5% of ¹H, the $k_{\rm H}/k_{\rm D}$ could not be estimated by simply comparison of these yields. Since the deuterated product was underestimated, the correction of the KIE value was conducted. We calculated the simple simultaneous equations as follows:

 $k_{\rm H}/k_{\rm D} = n_{\rm H}/n_{\rm D} (n_{\rm H/D}$: the amounts of the products) $n_{\rm H}({\rm obs}) = n_{\rm H} + 0.055 n_{\rm D}$ $n_{\rm D}({\rm obs}) = 0.945 n_{\rm D}$ $(n_{\rm H/D}({\rm obs})$: observed the amounts of products)

The rate of mono-deuterated benzyl one, which contained in **1a**-*d* at a rate of 5.5%, was approximated as almost same value with the rate of **1a**-*d*.

4-3. Proposed Mechanism.

Figure S2. Proposed mechanism

Benzothiazoline 1 is oxidized by an excited photoredox catalyst via single-electron transfer (SET), and the generated cation radical species (1^{++}) releases radical species (R_{-}). The radical species adds to substrate 2a, followed by a reduction via SET with a photoredox catalyst. The generated carbanion is protonated by 6-H⁺ to give product 3.

5. References

- S1) J. G. McCoy, J. J. Marugan, K. Liu, W. Zheng, N. Southall. W. Huang, M. Heilig, C. P. Austin, ACS Chem. Neurosci., 2010, 1, 559-574.
- S2) A. A. Poeylaut-Pelena, S. A. Testero, E. G. Mata, Chem. Commun., 2011, 47, 1565-1567.
- S3) P. Ballesteros, B. W. Roberts, Org. Synth., 1986, 64, 63.
- S4) K. Tanaka, X. Chen, T. Kimura, F. Yoneda, Chem. Pharm. Bull., 1988, 36, 60-69.
- S5) H. S. Sandhu, S. Sapra, M. Gupta, K. Nepali, R. Gautam, S. Yadav, R. Kumar, S. M. Jachal, M. Chugh, M. K. Gupta, O. P. Suri, K. L. Dhar, *Bioorg. Med. Chem.*, 2010, 18, 5626-5633.
- S6) R. Hommelsheim, K. J. Hock, C. Schumacher, M. A. Hussein, T. V. Nguyen, R. M. Koenigs, *Chem. Commun.*, 2018, 54, 11439-11442.
- S7) M. B. Shaghafi, R. E. Grote, E. R. Jarvo, Org. Lett., 2011, 13, 5188-5191.
- S8) E. Bayer, E. Breitraier, Chem. Ber., 1969, 102, 728-735.
- S9) M. Kodomari, A. Satoh, R. Nakano, T. Aoyama, Synth. Commun., 2007, 37, 3329-3335.
- S10) Y. Fu, J.-Y. Wang, D. Zhang, Y.-F. Chen, S. Gao, L.-X. Zhao, F. Ye, Molecules, 2017, 22, 1601.
- S11) X.-Z. Fan, J.-W. Rong, H.-L. Wu, Q. Zhou, H.-P. Deng, J. D. Tan, C.-W. Xue, L.-Z. Wu, H.-R. Tao, J. Wu, Angew. Chem. Int. Ed., 2018, 57, 8514-8518.
- S12) S. Selvaraj, A. S. Rajendran, N. Arumugam, Cheminform, 1988, 19, 150.
- S13) E. Fillion, D. Fishlock, A. Wilsily, J. M. Goll, J. Org. Chem., 2005, 70, 1316-1327.
- S14) Y. Zheng, Z. Xue, L. Liu, C. Shu, W. Yuan, X. Zhang, Org. Biomol. Chem., 2013, 11, 412-415.
- S15) A. Genoni, M. Benaglia, E. Massolo, S. Rossi, Chem. Commun., 2013, 49, 8365-8367.
- S16) S. Dong, G. Wu, X. Yuan, C. Zou, J. Ye, Org. Chem. Front., 2017, 4, 2230-2234.
- S17) D. A. Pedroza, F. D. Leon, A. Varela-Ramirez, C. Lema, R. J. Aguilera, S. Mito, *Bioorg. Med. Chem.*, 2014, 22, 842-847.
- S18) N. Parveen, R. Saha, G. Sekar, Adv. Synth. Catal., 2017, 359, 3741-3751.
- S19) W.-J. Zhao, M. Yan, D. Huang, S.-J. Ji, Tetrahedron, 2005, 61, 5585-5593.
- S20) C. Yu, J. Lu, T. Li, D. D. Wang, B. Qin, H. Zhang, C. A. Yao, Synlett, 2011, 16, 2420-2424.
- S21) M. Nomura, C. Takayama, M. Kajitani, *Inorg. Chem.*, 2003, **42**, 6441-6446.
- S22) K. Jing, J.-P. Yao, Z.-Y. Li, Q.-L. Li, H.-S. Lin, G.-W. Wang, J. Org. Chem., 2017, 82, 12715-12725.
- S23) V. V. Pavlishchuk, A. W. Addison, Inorganica Chimica Acta, 2000, 298, 97-102.

6. Spectral data

1a

1b

S47

1c

1d

A_moriyamakaworuko_752_pro — km-752-pro-C

1e

inderstation of the

210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

. all a distributed a distributed

A_moriyamakaworuko_1009_pro1_C — km-1009-pro1-C

فالحق . Induction

1f

S51

n high all states and a states of the states

-50

-0 -50

yahaniyi bilalariyi ahiyo ahiyo

1'g

1'h

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 A_todamitsuhiro-3-85_C - tm-3-85_C

S54

-300 -200 -100 -0 --100 --200

S55

1k

11

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 ft (ppm)

 ${\sf A_moriyamakaworuko_diethoxy_thiazoline_pro-km-diethoxy-thiazoline-C}$

1m

30

20 10 0

-10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 A_moriyamakaworuko_570_GPC_C --- km-570-GPC-C

-0

3ca

3da

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 11 (ppm)

A_moriyamakaworuko_664_PTLC_1_C --- km-664-PTLC-1-C

3fa

-600 -500 -400 -300 -200 -100 -0 --100

0 -10

18000 -17000 ₿n CN. 16000 -15000 ċΝ MeO₂C² 14000 3ga -13000 12000 -11000 10000 -9000 -8000 -7000 -6000 -5000 4000 -3000 -2000 -1000 1 -0 274 X 113 X 100 L 190 L 4.L.h. 년 --1000 5.0 4.5 f1 (ppm) 4.0 3.5 3.0 2.5 2.0 .0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 1.5 1.0 0.5 0.0 -0.5 A_moriyamakaworuko_1270_GPC_a — km-1270-GPC-a

3ga

3ha

S66

3ia

A_moriyamakaworuko_1340_GPC2_a_C — km-1340-GPC2-a-C

3ja

3ka

3la

A_moriyamakaworuko_1389_GPC_c_C — km-1389-GPC-c-C

3ma

3na

A_moriyamakaworuko_1166_pro_C --- km-1166_pro-C
30a

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 A_moriyamakaworuko_1407_GPC_b - km-1407-GPC-b-C

3ab

3bb

Bz Į ,CN ĊΝ O₂N² 1 3cb ĺ u. 1.73 -I 2.84-I 2.03-I 1.00 Å 0.96-1 1,72 -1 70 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 f1 (ppm) .0 9.5 9.0 8.5 8.0 7.5 0.5 0.0 -0.5 A_mouritoshiki-951-1-2 — MT-951-1-2 138.61 135.11 135.11 129.88 129.28 129.28 129.23 11.41 191.98 148.75 -54.00 -26.45 77.33 76.70

-3000

-2500

-2000

-1500

1000

-500

-0

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

-0

10

0 -10

3cb

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 f1(ppm) A_mouritoshiki-951-2-2-C --- MT-951-1-2-C

<520 518 4500 4584466 4000 Βz CN 3500 сN F₃C² ſ 3db -3000 -2500 -2000 -1500 -1000 -500 0 2004 1.00 0.96 6.5 6.0 5.5 5.0 4.5 f1 (ppm) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 .0 9.5 9.0 8.5 8.0 7.5 7.0 0.5 0.0 -0.5 A_moriyamakaworuko_1267_pro — km-1267-pro

3db

3eb

A_mouritoshiki-p-F-malo-C — MT-p-F-malo-C

3fb

3gb

3hb

-11000 10000 Βz -9000 _CN ſſ ćΝ J -8000 3ib -7000 -6000 -5000 4000 -3000 -2000 1000 •0 2014 2314 ЧЧ 95 3.5 3.0 2.5 2.0 3.35 --1000 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (ppm) .0 9.5 9.0 8.5 1.5 1.0 0.5 0.0 -0.5 8.0 7.5 A_moriyamakaworuko_1201_PTLC_3 - km-1201-PTLC-3 <112.24 <111.90 ₹77.05 77.05 76.73 48.34 <24.01 23.15 23.15 9.72 -0.01 -2500 -2000 -1500 -1000 -500 -0 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 A_moriyamakaworuko_1201_PTLC_3 --- km-1201-PTLC-3

3ib

3jb

3kb

A_moriyamakaworuko_1280_GPC_b_C — km-1280-GPC-b-C

3lb

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 A_todamitsuhiro-4-42_C - tm-4-42_C

3nb

3ob

3qb

3rb

3sb

210 200 190 180 170 160 150 140 130 120 110 110 90 A_todamitsuhiro-maleimi — tm-maleimi

60 50 40

30 20 10 0 -10

80 70

-0 --500

A_moriyamakaworuko_1173_pro_C — km-1173-pro-C

3vb

A_uchikura_data_TU_612_GPC — TU_612_GPC

S95

-7000 -6000 -5000 4000 -3000 -2000

-1000

-0 --1000 --2000

.Ph .CN ĊΝ 0Me + 3xa **)**, 3.81 년 2.05 년 1.87 년 1.00 Å 3.76-1 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 f1 (ppm) .0 9.5 9.0 8.5 8.0 7.5 7.0 1.5 1.0 0.5 0.0 -0.5 A_moriyamakaworuko_691_GPC_2 — km-691-GPC-2 137.93 136.62 136.62 130.28 130.28 120.17 120.17 114.35 114.35 114.35 112.07 112.07 60.02 77.37 77.26 77.06 77.06 -28.47

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

A_moriyamakaworuko_691_GPC_2_C --- km-691-GPC-2-C

3xa

S96

-11000

10000

-9000

-8000

-7000

-6000 -5000 4000

-3000 -2000

1000

-0

-1000

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

-0

3ya

3za

3aa

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 retramplemente 1405 pc - tr 1405 pc 2

A_moriyamakaworuko_1405_pro — km-1405-pro-C

3nd

-0 --1000

10

0 -10

3ne

A_moriyamakaworuko_1240_PTLC_1_C — km-1240-PTLC-1-C

3nh

3ni

3nj

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

A_todamitsuhiro-5-45_C — tm-5-45_C

3nk

-200 -o --200

0 -10

3nl

3nm

A_moriyamakaworuko_759_GPC_a_C — km-759-GPC-a-C

3ad

3ae

A_moriyamakaworuko_768_PTLC_1_C — km-768-PTLC-1-C

3am

S114

A_moriyamakaworuko_1304_PTLC2_1_C — km-1304-PTLC2-1-C

4

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 A_mouritoshiki-618-C — MT-618-C (TEMPO-Bn)

5a

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 11 (ppm)

A_todamitsuhiro-4-103-pro2_2-C --- tm-4-103-pro2_2-C

5b

S117

20 10 0 -10

-1000 -0 --1000