Supplementary Information

Benzothiazolines as Radical Transfer Reagents: Hydroalkylation and Hydroacylation of Alkenes by Radical Generation under Photoirradiation Conditions

Akiyama*	
Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan	
Contents	Page
1. General Methods	S2
2. Additional Data	
2-1. Screening of detail conditions of hydroalkylation and hydroacylation	S3
2-2. Substrate scope of benzalmalononitrile derivatives	S5
2-3. Generality of the alkyl and acyl group using benzalmalononitrile	S6
2-4. The reaction of benzothiazoline $\mathbf{1 - d}$, deuterated at benzyl position	S7
$2-5$. Comparison with carboxylates	S8
2-6. Comparison with Hantzsch ester	S8
2-7. Large scale experiments for isolation of product	S9
3. Synthetic Procedures and Characterization of New Compounds	
3-1. Synthesis of the benzothiazolines 1, 1' and 1"	S10
3-2. General procedure of hydroalkylation and hydroacylation	S18
3-3. Other experimental methods	S38
4. Mechanistic studies	
4-1. Cyclic Voltammetry	S40
4-2. KIE study	S42
4-3. Proposed mechanism	S44
5. References	S45
6. Spectral data	S46

1. General Methods

All operations were performed under air unless otherwise noted. NMR spectra for products data (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) were recorded on a Bruker AVANCE-III (400 MHz for ${ }^{1} \mathrm{H}, 125 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$) spectrometer using CDCl_{3} [tetramethylsilane (0 ppm) served as an internal standard in ${ }^{1} \mathrm{H}$ NMR and $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ in ${ }^{13} \mathrm{C}$ NMR, hexafluorobenzene (-163 ppm) served as an external standard in ${ }^{19} \mathrm{~F}$ NMR]. Chemical shifts are expressed in parts per million (ppm). IR spectra were recorded on an FT/IR-4200 (JASCO Co., Ltd.). UV-Vis spectra were recorded on a V-670 UV-VIS-NIR spectrophotometer (JASCO Co., Ltd.). ESI mass analyses were performed on Bruker micrOTOF mass spectrometer. GPC purification was performed on a LC-918R/U (Japan Analytical Industry Co., Ltd.). Cyclic Voltammetry was performed on VersaSTAT 4 (AMETEL Co., Ltd.).

All solvents were distilled according to the usual procedures and stored over molecular sieves unless otherwise noted. All of the substrates were purified by distillation (for liquid) or recrystallization (for solid). Benzalmalononitrile derivatives ($\mathbf{2 a}, \mathbf{2 c - 2 1})^{\mathrm{S} 1}$, malonate derivatives ($\mathbf{2 m},{ }^{\mathrm{S} 2} \mathbf{2 n},{ }^{\mathrm{S3}} \mathbf{2 0},{ }^{\mathrm{S4}} \mathbf{2 p}{ }^{\mathrm{S5}}$), methyl α phenylacrylate $(\mathbf{2 x})^{56}$ and imines $(\mathbf{4 a - 4} \mathbf{j})^{57}$ were synthesized according to the literature procedures. Other chemicals were purchased and used as received.

2. Additional Data

2-1. Screening of detail conditions of hydroalkylation and hydroacylation

- Hydroalkylation of benzalmalononitrile 2a.

Table S1. Screening of conditions of hydroalkylation of benzalmalononitrile

 2a	 1a (2.0 equiv)		
entry	PC	solvent	yield ${ }^{\text {a) }}$
1	I	EtOH (0.2 M)	0\%
2	I	Toluene (0.2 M)	15\%
3	I	DCE (0.2 M)	45\%
$4^{\text {b) }}$	I	DCE (0.2 M)	33\%
$5^{\text {b) }}$	II	DCE (0.2 M)	14\%
$6^{\text {b) }}$	III	DCE (0.2 M)	88\%
7	III	DCE	>95\%
8	-	DCE	5\%
$9^{\text {c) }}$	III	DCE	24\%

a) NMR Yield (Internal standard substance: 1,1,2-trichloroethane)
b) Using 11 W white LED.
c) No light irradiation condition.

1,2-Dichloroethane (DCE) gave the best result in combination with I as a photoredox catalyst (entries 1-3). The most suitable photoredox catalyst was $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2}$ (entries 4-6), and use of stronger light source decreased the yield of the products. The reaction was over in 5 h . But, it was difficult to follow the reaction by TLC because the spot was overlapped with the starting materials.

Hydroacylation of benzalmalononitrile 2a.

Table S2. Screening of conditions of hydroacylation of benzalmalononitrile 2a.

a) NMR yield (Internal standard: 1,1,2-trichloroethane)
b) No light irradiation conditions.

- Hydroacylation of benzylidenemalonate 21.

Table S3. Screening of conditions of hydroacylation of benzylidenemalonate.

 21	 1b (2.0 equiv)	additive ($20 \mathrm{~mol} \%$) Eosin Y-2Na (5 mol\%) solvent (0.1 M) rt, 24 h white LED (5 W)	
entry	solvent	additive	yield ${ }^{\text {a }}$
1	DCE	$\mathrm{Yb}(\mathrm{OTf})_{3}$	78\% (67\%)
2	DMF	$\mathrm{Yb}(\mathrm{OTf})_{3}$	10\%
3	THF	$\mathrm{Yb}(\mathrm{OTf})_{3}$	25\%
4	toluene	$\mathrm{Yb}(\mathrm{OTf})_{3}$	36\%
5	DCE	$\mathrm{La}(\mathrm{OTf})_{3}$	58\%
6	DCE	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	24\%
7	DCE	AlCl_{3}	$>5 \%$
8	DCE	TsOH	24\%

a) NMR Yield (Internal standard substance: 1,1,2-trichloroethane)

Ytterbium triflate was the most effective Lewis acid and 3lb was obtained in 67% isolated yield.

2-2. Substrate scope of benzalmalononitrile derivatives

Table S4. Substrate scope of benzalmalononitrile derivatives.

Meta- and ortho-substituted benzalmalononitriles were also found to be suitable substrates. But, α-methyl benzalmalononitrile did not participate in this reaction due to its steric hindrance.

2-3. Generality of the alkyl and acyl group using benzalmalononitrile

Table S5. Generality of the alkyl and acyl group using benzalmalononitrile.

Generality of the alkyl group was investigated for benzalmalononitrile (1a). Although substituted benzyl and tertbutyl group were transferred efficiently, phenacyl and acetonyl group, which successfully reacted with barbituric acid derivative 1n, were not transferred. Diethoxymethyl group adduct 3an was obtained in a low yield and the reduction product 7 was obtained in 51% yield. The mechanism of formation of 7 has not been clarified.

2-4. The reaction of benzothiazoline 1- d, deuterated at benzyl position

Deuterated benzyl transfer reaction was performed by mixing 2a and $\mathbf{1 a} \mathbf{- d}$ under the standard photoredox conditions (Scheme S1). The reaction proceeded similar to the non-deuterated one, however, the deuteration ratio of benzyl position was decreased in the product (3.6% lack from $\mathbf{1 a} \mathbf{a} \boldsymbol{d}$). In addition, partial deuteration (6.9%) was observed at β-position of the product. It means that the exchange at benzyl position of benzothiazoline 1a or protonation of the resulting anion species from imine intermediate (Scheme S2) occurred under the reaction conditions.

Scheme S1. Deuterated benzyl transfer

Scheme S2. Proposed mechanism of the isomerization of 2-benzothiazolines

2-5. Comparison with carboxylates

Scheme S3. Hydroacylation of 2h by using carboxylate as an acyl radical precursor.

By use of benzothiazoline, high substituent tolerance was shown, and hydroformylation product of electron deficient alkene bearing formyl group $\mathbf{2 h}$ was selectively obtained in 60% yield (Table 1). In contrast, by use of carboxylate under basic condition, desired hydroalkylation product was not obtained and polymerization proceeded under the basic conditions.

2-6. Comparison with Hantzsch ester

Table S6. Hydrobenzylation of benzalmalononitrile 2a by using Hantzsch ester

Use of Hantzsch ester furnished the addition product 3aa in about 70% yields, which are lower than that using benzothiazoline 1a.

2-7. Large scale experiments for isolation of product

Scheme S4. Hydroalkylation and hydroacylation of 2n in $1 \mathbf{m m o l}$ scale.

Although the longer reaction time was necessary, both hydrobenzylation and hydrobenzoylation products 3na and $\mathbf{3 n b}$ were obtained in good yields in 1 mmol scale.

3. Synthetic Procedures and Characterization of New Compounds

$3-1$. Synthesis of the benzothiazolines $1,1^{\prime}$ and $1^{\prime \prime}$

Table S7. Synthesis of benzothiazolines

Method A (1a)

Corresponding ketones (10.2 mmol) and 2-aminothiophenol ($2.2 \mathrm{~mL}, 20.7 \mathrm{mmol}$) were mixed in EtOH (10 mL) under N_{2}, and heated at $80^{\circ} \mathrm{C}$ for 4 d . The mixture was cooled and the solvent was removed under vacuum. The crude product was purified by recrystallization from a mixture of dichloromethane and hexane followed by silica-gel column chromatography to give benzothiazolines $\mathbf{1}$.

Method B (1b, $\left.\mathbf{1}^{\prime} \mathbf{\prime}, \mathbf{1}{ }^{\prime} \mathbf{\prime} \mathbf{j}\right)$

Corresponding ketones (24 mmol) and 2-aminothiophenol ($3.8 \mathrm{~mL}, 36 \mathrm{mmol}$) were mixed in EtOH $(20 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 16 h and then the precipitate was filtered to give benzothiazolines $\mathbf{1 b}$ and 1 '" in pure form.

Method C (1c-1e)

Corresponding ketones (54.3 mmol) and 2-aminothiophenol ($1.2 \mathrm{~mL}, 82 \mathrm{mmol}$) were mixed in benzene (11 $\mathrm{mL})$ under N_{2}. Then $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(25.5 \mathrm{mg}, 0.136 \mathrm{mmol})$ was added to the reaction mixture, and refluxed for 30 hours. After the solvent was removed, the crude product was purified by silica gel column chromatography to give the products. If the crude mixture couldn't be purified, the mixture was dissolved in EtOH and 0.5 equiv of NaBH_{4} was added at $0^{\circ} \mathrm{C}$, and stirred at room temperature. After the ketone was consumed, acetone was added and solvent was removed. The crude residue was dissolved in dichloromethane and extracted with dichloromethane for 3 times, then combined organic layers were washed with brine and dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removed the solvent, the crude product was purified by silica gel column chromatography to give the desired product.

Method D (1f)

Isopropyl phenyl ketone ($3 \mathrm{~mL}, 19.9 \mathrm{mmol}$) and 2-aminothiophenol ($3.3 \mathrm{~mL}, 29.9 \mathrm{mmol}$) were mixed with alumina ($30 \mathrm{~g}, 1000 \mathrm{wt} \%$), and were heated at $80^{\circ} \mathrm{C}$ for 48 h . The alumina was filtered out by Celite ${ }^{\circledR}$ and washed with chloroform, followed by purified by silica gel column chromatography. Then the mixture was dissolved in EtOH and 0.5 equiv of NaBH_{4} was added at $0^{\circ} \mathrm{C}$, and stirred at room temperature. After the ketone was consumed, acetone was added and removed solvent. The residue was dissolved in dichloromethane and extracted with dichloromethane for 3 times, then combined organic phase was washed with brine and dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removed the solvent, the crude product was purified by silica gel column chromatography to give the $\mathbf{1 f}$ in 11% yield.

Method E (1'g, 1'h)

Corresponding ketone (15 mmol) and 2-aminothiophenol ($2.1 \mathrm{~mL}, 19.5 \mathrm{mmol}$) were mixed (10 mL) under N_{2}. The mixture was heated at $80^{\circ} \mathrm{C}\left(\mathbf{1}^{\prime} \mathbf{g}\right)$ or $50^{\circ} \mathrm{C}\left(\mathbf{1}^{\prime} \mathbf{h}\right)$ for 3 h and then the crude product was purified by recrystallization from a mixture of dichloromethane and hexane, followed by silica-gel column chromatography, and further recrystallized from a mixture of dichloromethane and hexane to give benzothiazolines $\mathbf{1}^{\prime}$.

Method F (1k)

1-Phenyl-1,2-propanedione (15 mmol) and 2-aminothiophenol ($1.6 \mathrm{~mL}, 15 \mathrm{mmol}$) were mixed in EtOH 15 mL) under N_{2}. After the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 51 h , generated precipitate was filtered, washed with hexane to give the $\mathbf{1 k}(657 \mathrm{mg}, 2.57 \mathrm{mmol})$ in 17% yield.

Method G (11)

3,3-Dimethyl-1-phenyl-1,2-butanedione (5.5 mmol) and 2-aminothiophenol ($1.2 \mathrm{~mL}, 11 \mathrm{mmol}$) were mixed in benzene $(3.7 \mathrm{~mL})$ under N_{2}. Then $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(52.2 \mathrm{mg}, 0.274 \mathrm{mmol})$ was added to the reaction mixture, and stirred at room temperature for 48 h . The solvent was removed and the residue was purified by silica-gel column chromatography, followed by recrystallization from hexane to give product ($1.13 \mathrm{~g}, 3.80 \mathrm{mmol}, 69 \%$ yield).

Method H (1m)

α, α-Diethoxy acetophenone ($2.50 \mathrm{~mL}, 12.5 \mathrm{mmol}$) and 2-aminothiophenol $(2.0 \mathrm{~mL}, 19 \mathrm{mmol})$ were mixed in benzene (25 mL) under N_{2}. Then $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(59.3 \mathrm{mg}, 0.312 \mathrm{mmol})$ was added to the reaction mixture, and stirred at room temperature for 26 h . After the solvent was removed, the crude product was purified by silica gel column chromatography and recrystallized with dichloromethane and hexane to give the products.

Data of benzothiazolines

2-Benzyl-2-phenylbenzothiazoline (1a)

1a
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.10-$ $7.06(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.76(\mathrm{~m}, 4 \mathrm{H}), 4.47(\mathrm{brs}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.6,143.2,135.2,120.4,128.3,128.2,127.6,127.1,127.0,126.0$, 125.6, 122.2, 120.8, 111.1, 81.7, 49.6 ppm; IR (neat, cm^{-1}): 3352, 3060, 3027, 2922, 1579, 1495, 1471, 1460, 1390, 1256, 742, 699; LRMS (ESI): $m / z=304[\mathrm{M}+\mathrm{H}]$; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NS}: 304.1154$. Found 304.1143.

2-Benzoyl-2-phenylbenzothiazoline (1b)

1b
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-$
$7.27(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{brs}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.6,144.9,140.8,133.1,132.9,130.3,129.2,128.8,128.3,126.8,126.2,125.6$, 121.24, 121.19, 111.8, $84.2 \mathrm{ppm} .{ }^{\text {s8 }}$

2-(p-Methoxybenzyl)-2-phenylbenzothiazoline (1c)

1c
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.01-$ $6.94(\mathrm{~m}, 3 \mathrm{H}), 6.80-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.67-6.63(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{brs}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.6,143.4,136.7,132.1,130.2,128.9,128.3,127.5,127.0,126.0$, $125.5,122.2,120.7,111.0,81.6,49.1,21.1 \mathrm{ppm}$; IR (neat, cm^{-1}): 3350, 3023, 2919, 1578, 1513, 1471, 1459, 1390, 741, 697; LRMS (ESI): $m / z=318[M+H]$; HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NS}: 318.1311$. Found 318.1300.

2-(p-Fluorobenzyl)-2-phenylbenzothiazoline (1d)

1d
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.71(\mathrm{~m}, 6 \mathrm{H}), 4.41$ (brs, 1H), $3.60(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.0(\mathrm{~d}, J=$ $244 \mathrm{~Hz}), 145.4,143.0,131.8(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 128.4,127.7,127.2,126.0,125.6,122.2,121.0$, $115.0(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 111.3,81.7,48.9 \mathrm{ppm}$; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-116.92--117.00(\mathrm{~m}, 1 \mathrm{~F}) \mathrm{ppm} ; \mathrm{IR}$ (neat, cm^{-1}): 3356, 3063, 2921, 2362, 1890, 1603, 1579, 1508,1472, 1460, 1222, 759, 742, 698; LRMS (ESI): m/z $=322[\mathrm{M}+\mathrm{H}]$; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{FNS}$: 322.1060. Found 322.1046.

2-tert-Butyl-2-phenylbenzothiazoline (1e)

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.56-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.89-$ $6.83(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.65(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{brs}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.3,144.3$, $128.2,127.1,126.9,124.8,121.1,120.7,111.0,91.2,40.2,26.9 \mathrm{ppm} ;$ IR (neat, cm^{-1}): 3398, 3060, 3030, 2969, 2905, 2870, 2361, 1583, 1472, 1391, 741, 700; LRMS (ESI): $m / z=292[\mathrm{M}+\mathrm{Na}] ;$ HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NSNa}: 292.1130$. Found 292.1123.

2-Isopropyl-2-phenylbenzothiazoline (1f)

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.93-$ $6.87(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.68(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{brs}, 1 \mathrm{H}), 2.52(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 146.2,145.5,128.1,127.5,127.2,125.9,124.9,121.3,120.7$, $110.6,86.9,39.6,18.4,18.3 \mathrm{ppm} .{ }^{\mathrm{s} 9}$

2-Phenacyl-2-methylbenzothiazoline (1'g)

1'g
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{dt}, J=7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.05(\mathrm{dd}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=7.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.6,145.9,136.8,133.7,128.8,128.1,125.5,125.1,122.2,119.9,109.9,75.6,50.3,28.5$ ppm. ${ }^{\text {S10 }}$

1'h
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.03(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{td}, J=7.6,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ (s, $3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 207.5,145.8,125.5,125.2,122.1,120.0,110.0,74.8,55.1$, $31.3,28.5 \mathrm{ppm} .{ }^{59}$

2-(p-Methylbenzoyl) -2-(p-methylphenyl)benzothiazoline (1"i)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.66$ (brs, 1 H$), 2.34$ $(\mathrm{s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.5,145.0,144.1,138.7,138.2,130.5,130.2,129.8$, $129.0,126.7,126.0,125.8,121.1,121.0,111.8,83.9,21.7,21.1 \mathrm{ppm}$; IR (neat, cm^{-1}): 3337, 3027, 2919, 1673, 1606, 1473, 1259, 1183, 742; LRMS (ESI): $m / z=368$ [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NNaOS}$ 368.1080. Found 368.1098.

2-(p-Bromobenzoyl) -2-(p-bromophenyl)benzothiazoline (1"j)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61-7.42(\mathrm{~m}, 8 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.74(\mathrm{~m}$,

2H), 5.63 (brs, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 193.2, 144.6, 139.8, 132.4, 131.8, 131.7, 131.3, 128. 8, 128. 6, 126. 5, 125.4, 123.3, 121.7, 121.3, 112.3, 83.4 ppm ; IR (neat, cm^{-1}): 3343, 3067, 1678, 1584, 1485, 1472, 1395, 1258, 1239, 1073, 1009, 737; LRMS (ESI): m/z - 496 [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{NNaOS}$: 495.8977. Found 495.8994.

2-Acetyl-2-phenylbenzothiazoline (1k)

1k
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.53(\mathrm{brs}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.8$, $145.9,138.8,129.0,128.9,127.0,126.1,125.0,121.7,121.5,112.4,86.3,24.7 \mathrm{ppm}$; IR (neat, cm^{-1}): 3339, 1701, 1460, 1177, 753, 697; LRMS (ESI): $m / z=278[\mathrm{M}+\mathrm{Na}]$ HRMS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NNaOS}: 278.0610$. Found 278.0600 .

2-Pivaloyl-2-phenylbenzothiazoline (11)

11
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{brs}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$: δ 209.6, 145.6, 139.3, 129.0, 128.6, 126.6, 126.0, 125.2, 121.2, 121.1, 111.8, 85.3, 43.8, $29.4 \mathrm{ppm} ;$ IR (neat, cm^{-1}): 3344, 2984, 1688, 1580, 1474, 741, 701; LRMS (ESI): $m / z=320[\mathrm{M}+\mathrm{Na}] ;$ HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NNaOS}: 320.1080$. Found 320.1071.

2-Diethoxymethyl-2-phenylbenzothiazoline (1m)

1m
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.93-$
$6.89(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.68(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 3.87-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.56(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.12(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.3,141.8,127.8,127.6,127.2,126.5,125.2,121.3,120.4,110.3,107.5,83.1,67.0$, $66.1,15.30,15.28 \mathrm{ppm}$; IR (neat, cm^{-1}): 3367, 3062, 2975, 2879, 1581, 1473, 1460, 1446, 1111, 1062, 741, 714, 696; LRMS (ESI): $m / z=338[\mathrm{M}+\mathrm{Na}]$; HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{SNa}$: 338.1185. Found 338.1192.

3-2. General procedure of hydroalkylation and hydroacylation

 General procedure of alkylation (Procedure I)

Alkenes (0.05 mmol), $\mathbf{1 a}(30.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.9 \mathrm{mg}, 0.0025 \mathrm{mmol})$ were dissolved in degassed 1,2-dichloroethane (1.0 mL), if necessary, other additives were added at this point. Then white LED (5 W) was irradiated at room temperature for 24 h . The solvent was evaporated and 1,1,2-trichloroethane was added as an internal standard and ${ }^{1} \mathrm{H}$ NMR was measured in CDCl_{3} for the calculation of the NMR yield. Then crude products were purified by preparative TLC to give 3 .

Other hydroalkylation reactions in Table 4 were performed based on this Procedure I.

Data of products

3aa
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.50-3.42 (m, 1H), 3.27-3.21 (m, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.6,136.4,129.23,129.19,129.1$, 128.9, 128.0, 127.6, 112.1, 111.4, 48.3, 38.5, $28.5 \mathrm{ppm} .{ }^{\text {S } 11}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 4 \mathrm{H}), 3.82(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.40(\mathrm{~m}, 1 \mathrm{H})$, 3.31-3.18 (m, 2H), 2.37 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.0,136.8,133.4,129.9,129.2,128.9$, $127.8,127.6,112.2,111.5,48.0,38.5,28.7,21.2 \mathrm{ppm}$; IR (neat, cm^{-1}) $3445,3062,3029,2922,2862,2360,2254$, 1905, 1604, 1515, 1496, 1455, 702; LRMS (ESI): $m / z=283$ [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{Na}$: 283.1206. Found 283.1217.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.32-8.28(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 3.92$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.23(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.4,143.3$. $135.9,129.5,129.3,128.8,128.1,124.4,111.5,110.8,47.7,38.3,28.0 \mathrm{ppm}$; IR (neat, cm^{-1}): 3085, 3028, 2906, 2850, 2360, 2255, 1605, 1516, 1350, 701; LRMS (ESI): $m / z=314$ [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}$: 314.0900. Found 314.0894.

3da
${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.10$ $(\mathrm{m}, 2 \mathrm{H}), 3.88(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.21(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 140.2, 135.9, $131.4(\mathrm{q}, ~ J=32 \mathrm{~Hz}), 129.4,129.0,128.9,128.6,127.9,126.2(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.6(\mathrm{q}, J=271 \mathrm{~Hz})$, 111.2, 111.1, 48.0, 38.3, 28.2 ppm ; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-64.29$ ($\mathrm{s}, 3 \mathrm{~F}$) ppm; IR (neat, cm^{-1}): 3065, 3031, 2903, 2365, 2256, 1924, 1620, 1422, 1327, 1169, 1126, 1070, 701; LRMS (ESI): $m / z=337$ [M+Na];

HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{Na}$: 337.0923. Found 337.0939.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 3.84$ $(\mathrm{d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.17(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.0(\mathrm{~d}, J=247$ Hz), 136.4, 132.2 (d, $J=3.4 \mathrm{~Hz}$), 129.94, 129.87, 129.3, 128.9, 127.7, 116.4, 116.2, 112.0, 111.3, 47.6, 38.6, 28.6 ppm; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 113.65--113.72(\mathrm{~m}, 1 \mathrm{~F}) \mathrm{ppm}$; IR (neat, cm^{-1}): 3064, 3030, 2903, 2863, 2255, 2230, 1955, 1894, 1682, 1605, 1512, 1497, 1455, 1231, 1162, 841, 757, 701; LRMS (ESI): $m / z=287$ [M+Na]; HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{Na}$: 287.0955. Found 287.0942.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.18(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.2,135.3,132.4$, 129.7, 129.3, 127.8, 123.3, 111.8, 111.2, 47.8, 38.4, 28.3 ppm ; IR (neat, cm^{-1}): 3064, 3029, 2900, 2255, 2230, 1902, 1592, 1490, 1455, 1409, 1075, 1011, 759, 701; LRMS (ESI): $m / z=347$ [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{Na}: 347.0213$. Found 347.0165.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.11-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 3.93$ $(\mathrm{s}, 3 \mathrm{H}), 3.89(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.25(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.4$, 141.2, 136.1, 120.9, 120.4, 129.3, 128.9, 128.2, 127.8, 111.8, 111.2, 52.3, 48.2, 38.4, 28.2 ppm ; IR (neat, cm^{-} ${ }^{1}$) : 3422, 3063, 3029, 2952, 2902, 2360, 2255, 1942, 1720, 1285, 1114, 708, 419; LRMS (ESI): $m / z=327[\mathrm{M}+\mathrm{Na}]$; HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$: 327.1104. Found 283.1111.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.04(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.17(\mathrm{~m}$, $2 \mathrm{H}), 3.92(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.23(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.5$, $142.8,136.8,135.9,130.4,129.3,128.90,128.88,127.9,111.7,111.1,48.3,38.4,28.1 \mathrm{ppm}$; IR (neat, cm^{-1}): 3379 , 3064, 3029, 2903, 2850, 2747, 2255, 1955, 1814, 1703, 1608, 1215, 757; LRMS (ESI): $m / z=297$ [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{ONa}$: 297.0998. Found 297.1013.

3ia
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.04 (dd, $J=14.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.65(\mathrm{dd}, J=14.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.61$ (m, 1H), 1.13 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.0,129.2,128.9,127.5,112.5,111.5$, $44.4,37.1,26.4,24.4,11.3 \mathrm{ppm}$; IR (neat, cm^{-1}): 3087, 3064, 3029, 2969, 2930, 2881, 2254, 19551812, 1718, 1655, 1604, 1584, 1496, 1456, 737, 701; LRMS (ESI): $m / z=199$ [M+H]; HRMS (ESI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2}$: 199.1230. Found 199.1228.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.27(\mathrm{~m}, 5 \mathrm{H}), 3.87(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=14.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73$ (dd, $J=14.4,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.8,129.22,129.18,127.6,113.1,112.2,53.0,34.6,34.5,28.2,22.3 \mathrm{ppm} ;$ IR (neat, cm^{-1}): 3087, 3064, 3030, 2967, 2873, 2251, 1604, 1585, 1496, 1478, 1456, 1373, 1227, 742, 700; LRMS (ESI): $m / z=249[\mathrm{M}+\mathrm{Na}] ;$ HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Na}$: 249.1362. Found 249.1371.

3ka
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 1 \mathrm{H}), 3.86-$ $3.77(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.20(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.6,136.2,129.3,129.1,28.8,128.4$, $128.2,127.8,127.4,127.0,126.0,111.9,111.1,44.1,40.0,29.3 \mathrm{ppm}$; IR (neat, cm^{-1}): 3445, 3108, 3064, 3030, 2900, 2855, 2255, 2224, 1603, 1571, 1496, 1455, 701; LRMS (ESI): $m / z=275$ [M+Na]; HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{SNa}$: 275.0613 . Found 275.0601.

3la
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.19-7.03(\mathrm{~m}, 8 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{q}, J=7.2 \mathrm{~Hz}$, 2 H), 3.79 (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=13.2 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=13.2 \mathrm{~Hz}, 10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.5,167.7$. $140.0,139.0,129.3,128.5,128.1,128.0,126.9,126.1,61.7,61.2,58.0,47.7,40.8,14.2,13.7 \mathrm{ppm} .^{512}$

3ma
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 3.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 2 H), 2.16-2.08 (m, 2H), $1.49(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.8,141.1,128.6,128.4,126.1,81.4$, $53.2,33.3,30.4,28.0 \mathrm{ppm}$; IR (neat, cm^{-1}): 3449, 3087, 3063, 3028, 3004, 2978, 2931, 2865, 1743, 1727, 1368, 1287, 1254, 1138, 849, 700; LRMS (ESI): $m / z=343$ [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}$: 343.1880. Found 343.1880.

3na
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.61-$ $3.52(\mathrm{~m}, 2 \mathrm{H}), 3.21-3.04(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.0,167.3$, $150.9,138.8,138.2,129.6,128.9,128.64,128.59,128.4,127.3,126.7,52.3,52.3,37.6,28.1,27.9 \mathrm{ppm}$; IR (neat, cm^{-1}): 3062, 3029, 2923, 2852, 1746, 1681, 1453, 1421, 1380, 754, 703; LRMS (ESI): $m / z=359[\mathrm{M}+\mathrm{Na}] ;$ HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}: 359.1366$. Found 359.1383.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.23(\mathrm{~m}, 10 \mathrm{H}), 4.11-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=14.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}$, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=13.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $166.2,164.7,139.6,139.2,129.4,129.0,128.8,127.9,126.9,105.4,48.5,47.8,38.3,28.2,28.1$ ppm. ${ }^{S 13}$

3xa
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 2 \mathrm{H})$, $3.84(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 160.1,137.9,136.6,130.3,129.2,128.9,127.6,120.2,114.3,113.9,112.1,111.5,55.3,48.3,38.5,28.5$ ppm; IR (neat, cm^{-1}): 3649, 3381, 3062, 3029, 2923, 2853, 2838, 2360, 2254, 1954, 1682, 1602, 1585, 1494, 1455, 1438, 1264, 1051, 702; LRMS (ESI): $m / z=299$ [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{ONa}$ 299.1155. Found 299.1155.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.46-3.39 (m, 1H), 3.30-3.20 (m, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.6,136.1,132.4,131.2,130.8$, 129.3, 128.9, 127.8, 127.0, 123.2, 111.7, 111.1, 47.9, 38.4, 28.3 ppm; IR (neat, cm^{-1}): 3551, 3063, 3029, 2917, 2850, 2255, 1952, 1878, 1718, 1569, 1476, 704; LRMS (ESI): $m / z=347$ [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Br} \mathrm{N}_{2} \mathrm{Na}: 347.0213$. Found 347.0204.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.58-3.51 (m, 1H), 3.34-3.21 (m, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.4,135.9,131.6(\mathrm{q}, J=32.8 \mathrm{~Hz})$, $131.1,129.8,129.1,128.9,127.9,126.1(\mathrm{q}, J=3.7 \mathrm{~Hz}), 125.0(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.7(\mathrm{q}, J=271 \mathrm{~Hz}), 111.7,111.1$, 48.1, 38.4, $28.2 \mathrm{ppm} ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-64.09$ (s, 3F) ppm; IR (neat, cm^{-1}): 3066, 3031, 2903, 2360, 1691, 1672, 1603, 1496, 1454, 1330, 1168, 1128, 1076, 704; LRMS (ESI): $m / z=337$ [M+Na]; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{Na}$: 337.0923. Found 337.0936.

3 α a
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.90(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.03-3.95 (m, 1H), 3.86 ($\mathrm{s}, 3 \mathrm{H}$), 3.33-3.21 (m, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.9,137.2,129.9$, $129.0,128.84,128.78,127.2,124.3,121.1,112.3,112.2,111.0,55.5,42.2,37.0,27.3 \mathrm{ppm}$; IR (neat, cm^{-1}) 3566 , 3064, 3029, 2922, 2841, 2254, 2044, 1952, 1904, 1682, 1603, 1587, 1495, 1248, 1027, 755, 700; LRMS (ESI): $m / z=299[\mathrm{M}+\mathrm{Na}] ;$ HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{ONa}$: 299.1155. Found 299.1157.

$3 \beta \mathbf{a}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.42-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.09(\mathrm{~m}, 4 \mathrm{H}), 3.98(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.88(\mathrm{~m}, 1 \mathrm{H})$, 3.37-3.28 (m, 1H), 3.27-3.18 (m, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.1$ (d, $J=245 \mathrm{~Hz}$), 136.3, 130.7 (d, $J=8.6 \mathrm{~Hz}), 129.1,128.92,128.88,127.6,124.9(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 123.5(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 116.2(\mathrm{~d}, J=22.4 \mathrm{~Hz})$, $111.8,111.5,41.4,37.8,27.6,27.6 \mathrm{ppm}$; IR (neat, cm^{-1}): 3566, 3087, 3065, 3030, 2905, 2666, 2256, 1956, 1806, 1616, 1603, 1585, 1493, 1456, 760, 700; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-117.95-118.01$ (m, 1F) ppm; LRMS
(ESI): $m / z=287[\mathrm{M}+\mathrm{Na}]$; $\mathrm{HRMS}(\mathrm{ESI})$: Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{FNa}$: 287.0955. Found 287.0961.

General procedure of acylation (Procedure II)

Alkenes (0.10 mmol), 1b ($63.4 \mathrm{mg}, 0.20 \mathrm{mmol}$) and Eosin Y-2Na ($1.4 \mathrm{mg}, 0.0020 \mathrm{mmol}$) was dissolved in degassed 1,2 -dichloroethane (1.0 mL), if necessary, other additives were added at this point. Then irradiation of white LED $(7 \mathrm{~W})$ at room temperature. After 24 h , the solvent was evaporated and the 1,1,2-trichloroethane as an internal standard was added and ${ }^{1} \mathrm{H}$ NMR was measured in CDCl_{3} for the calculation of the NMR yield. Then crude products were purified by preparative TLC to give 3 .

Other acylation reactions in Table 4 were performed based on this Procedure II.

3ab
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.30(\mathrm{~m}, 7 \mathrm{H}), 5.11(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 193.0,134.4,133.9,132.1,130.1$, $129.9,129.3,129.0,128.6,112.1,111.6,54.8,26.8 \mathrm{ppm} .{ }^{\text {s11 }}$

3bb
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 4 \mathrm{H}), 5.07$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 2.32(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 193.1, 140.1, 134.4, $133.9,130.8,129.3,129.0,128.9,128.4,112.2,111.7,54.6,26.9,21.2 \mathrm{ppm}$; IR (neat, cm^{-1}): 3350, 3059, 3027, 2921, 2360, 2257, 2209, 1968, 1910, 1811, 1772, 1682, 1256, 1223, 755, 688; LRMS (ESI): m/z 275 [M+H] HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}: 275.1179$. Found 275.1179.

3cb
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.45$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.0$, $148.8,138.6,135.1,133.3,129.9,129.3,129.2,125.2,111.4,110.9,54.0,26.5 \mathrm{ppm}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3354,3082$, $3025,2919,2258,2211,1931,1683,1597,1524,1449,1350,1260,1224,1112,843,755,706$; ESI-MS $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{NaO}_{3}, 328.0700$; found, 328.0693.

3db
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.47-7.40(m, 2H), $5.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.4$, $135.8,134.9,133.4,132.3(\mathrm{q}, J=2.9 \mathrm{~Hz}), 129.24,129.17,127.14,127.10,127.07,127.0,123.1(\mathrm{q}, J=271 \mathrm{~Hz})$, 111.7, 111.1, 54.2 ppm ; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-64.35$ (s, 3F) ppm; IR (neat, cm^{-1}): 3066, 3028, 2920, $2360,2258,1927,1684,1619,1597,1580,1326,1171,1130,1069,758,699 ;$ LRMS (ESI): $m / z=351[\mathrm{M}+\mathrm{Na}]$; HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{ONa}$ 351.0716. Found 351.0726.

3eb
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88(\mathrm{dd}, J=8.4,0.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=8.0,1 \mathrm{H}) \mathrm{ppm}$; ${ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-111.54(\mathrm{~m}, 1 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=192.9,164.7,162.2,134.6,133.7,130.6(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=19.8 \mathrm{~Hz}), 127.9(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 117.3(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 112.0,111.5,53.9,26.9 \mathrm{ppm} ;$ IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3071,3027,2918,2258,1902,1682,1598,1510,1449,1239,1162,816,758,689$; ESI-MS $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{NaO}$, 301.0753; found, 301.0748 .

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 5.08$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.6,134.7,133.6,122.4$, $131.0,130.2,129.2,129.1,124.5,111.9,111.3,54.1,26.6 \mathrm{ppm}$; IR (neat, cm^{-1}): 3026, 2916, 2360, 2257, 1908, 1682, 1596, 1579, 1489, 1258, 1222, 1074, 1011, 761; LRMS (ESI): $m / z=360[M+N a] ;$ HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{ONa}$: 360.9947. Found 360.9960.

3gb
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.11-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.90-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 4 \mathrm{H}), 5.16$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.5,165.9$, 136.6, 134.7, 133.6, 131.7, 131.2, 129.2, 129.1, 128.8, 111.8, 111.2, 54.6, 52.4, 26.5 ppm ; IR (neat, cm^{-1}): 3348, 3064, 3025, 2953, 2917, 2846, 2258, 1938, 1816, 1717, 1683, 1286, 1114, 759, 706; LRMS (ESI): $m / z=341$ [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}: 341.0897$. Found 341.0911.

3hb
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.01(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.91-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.40$ $(\mathrm{m}, 2 \mathrm{H}), 5.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 192.3,190.9$, 138.0, 137.2, 134.9, 133.5, 131.1, 129.5, 129.2, 129.2, 111.7, 111.1, 54.6, 26.5 ppm ; IR (neat, cm^{-1}): 3354, 3063, 3025, 2917, 2838, 2743, 2363, 2258, 1931, 1703, 1684, 1607, 1213, 1174, 759, 696; LRMS (ESI): $m / z=311$ [M+Na]; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$: 311.0791. Found 348.0803.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.14-4.09 (m, 1H), 2.20-1.98(m, 2H), $0.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.4,134.7$, $134.5,129.2,128.6,112.2,111.9,48.3,24.0,23.1,9.7 \mathrm{ppm}$; IR (neat, $\left.\mathrm{cm}^{-1}\right): 3064,2973,2916,2359,2256,1682$, 1597, 1579, 1449, 697; LRMS (ESI): $m / z=235$ [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{ONa}$ 235.0842. Found 235.0843.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.96(\mathrm{dd}, J=10.0,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{td}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.2$, $137.4,134.4,129.1,128.6,113.2,112.5,54.1,34.8,28.6,22.3 \mathrm{ppm}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3382,3063,2969,2925,2255$, 1675, 1597, 1579, 1477, 1448, 1374, 1303, 1247, 1219, 756, 690; ESI-MS (m/z): $[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}$, 263.1165; Found, 263.1155.

3kb
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.14-$ $7.11(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 191.7,134.7,133.6,132.8,129.3,129.2,129.1,128.4,128.3,111.7,111.4,49.5,27.4 \mathrm{ppm}$; IR (neat, cm^{-1}): 3110, 2918, 2360, 2257, 1683, 1449, 1247, 754, 707, 687; LRMS (ESI): $m / z=289$ [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OSNa}$: 289.0406 . Found 289.0408.

$31 b$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-$
$7.16(\mathrm{~m}, 5 \mathrm{H}), 5.32(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.3,168.2,168.1,135.9$, $134.5,133.2,129.02,128.97,128.91,128.6,128.0,61.9,61.4,56.0,52.9,14.0,13.8 \mathrm{ppm}$; IR (neat, cm^{-1}): 3456 , 3344, 3063, 3030, 2982, 2938, 2905, 1966, 1902, 1730, 1682, 1597, 1449, 756, 699, 604, 548; LRMS (ESI): m / z 377 [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NaO}_{5}$: 377.1359. Found 377.1375.

3mb
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.9,168.4,136.4$, 133.3, 128.6, 128.1, 81.8, 49.2, 37.8, 27.9 ppm ; IR (neat, cm^{-1}): 3447, 2978, 1730, 1692, 1368, 1256, 1142, 849, 768, 691; LRMS (ESI): $m / z=357[M+N a] ;$ HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NaO}_{5}$: 357.1672. Found 357.1681.

3nb
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.20(\mathrm{~m}, 7 \mathrm{H}), 5.82(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.1,167.7$, 167.1, 151.5, 137.0, 134.9, 133.6, 130.2, 129.4, 128.59, 128.58, 127.7, 56.7, 51.4, 28.9, 28.6 ppm; IR (neat, cm^{-} ${ }^{1}$): $3429,3063,2959,1968,1908,1682,1597,1580,1455,1109,938,864,751,701,629,562 ;$ LRMS (ESI): m / z $=373$ [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{4}$: 373.1159. Found 373.1152.

3ob
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.20(\mathrm{~m}, 7 \mathrm{H}), 5.59(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 196.9,164.7$, 164.3, 136.1, 135.0, 133.4, 130.3, 129.3, 128.7, 128.5, 127.8, 105.2, 53.7, 49.5, 28.4, 27.0 ppm ; IR (neat, cm^{-1}) 3063, 3003, 2924, 1748, 1680, 1318, 1266, 1225, 737, 718, 699; LRMS (ESI): $m / z=361[\mathrm{M}+\mathrm{Na}] ;$ HRMS (ESI)

Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NaO}_{5}$: 361.1046. Found 361.1062.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.90-$ $3.75(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=14.4,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.30(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.78(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 210.2,200.4,135.4,133.5,128.9,128.4,45.2,43.2,41.0,28.4,24.8 \mathrm{ppm} .{ }^{\mathrm{Sl}}{ }^{2}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.20-$ $4.08(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=18.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.10(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 216.8$, $200.2,135.6,133.6,128.9,128.5,43.0,41.0,37.3,27.0 \mathrm{ppm}^{\text {S }}{ }^{516}$

3sb
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.56(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.40(\mathrm{~m}, 7 \mathrm{H})$, $6.86(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{brs}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.9,158.8,142.6,138.2,131.6,130.1,129.4$, $128.9,128.4,126.6,126.1,124.7,121.7,111.5,108.0 \mathrm{ppm} .{ }^{517}$

3ub
Mixture of keto and enol. The data of keto form: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.19-8.13(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.27(\mathrm{~m}$, $8 \mathrm{H}), 5.02(\mathrm{dd}, 9.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=18.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=18.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.7,171.8,135.3,134.4,131.6,131.4,129.9,129.2,128.9,128.8,128.7,127.7,126.5$, $126.4,48.6,33.8,31.9 \mathrm{ppm}$.

3vb
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.96-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.21-$ $7.14(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{t}, 7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.0,144.2$, $137.1,133.1,128.61,128.58,128.1,127.9,126.4,45.9,44.7 \mathrm{ppm} .{ }^{\mathrm{S} 18}$

3wb
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.30$ (dd, $J=10.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=18.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{dd}, J=18.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 197.6,173.9,138.3,136.4,133.3,128.9,128.6,128.1,127.8,127.6,52.4,46.3,42.8$ ppm. ${ }^{\text {S19 }}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.79(\mathrm{~m}, 1 \mathrm{H})$, $3.60(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=14.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=14.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.041(\mathrm{~s}, 3 \mathrm{H}), 3.035(\mathrm{~s}$, 3 H), $2.31(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.1,167.3,150.9,138.3,136.2,135.7,129.4,129.3$, 128.6, 128.3, 127.4, 52.4, 52.3, 37.2, 28.1, 27.9, 21.1 ppm ; IR (neat, cm^{-1}): 3413, 3028, 2955, 2922, 2863, 1903, 1746, 1682, 1451, 1422, 1380, 754, 703; LRMS (ESI): $m / z=373$ [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$: 373.1523. Found 373.1527.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.07-6.96(\mathrm{~m}, 4 \mathrm{H}), 3.81-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.56$ $(\mathrm{d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=14.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.0,167.3,161.7(\mathrm{~d}, J=243 \mathrm{~Hz}$), $150.8,137.8,134.5(\mathrm{~d}, J=3.1 \mathrm{~Hz}$), $131.0(\mathrm{~d}, J=7.9$ Hz), 128.6, 128.5, 127.3, $115.5(\mathrm{~d}, J=21 \mathrm{~Hz}), 52.4,52.2,36.8,28.1,27.9 \mathrm{ppm}$; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-$ 117.60--117.67 (m, 1F) ppm; IR (neat, cm^{-1}): 3415, 3031, 2958, 2922, 1894, 1746, 1682, 1509, 1453, 1423, 1381, 755, 704 ppm ; LRMS (ESI): $m / z=377$ [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{Na}: 377.1272$. Found 377.1256.

3ne
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.3,168.7,151.0,137.1$, $129.4,128.2,128.0,63.3,52.4,35.8,29.1,28.2 \mathrm{ppm}$; IR (neat, cm^{-1}): 3412, 3031, 2957, 1745, 1677, 1452, 1423, 1378, 753, 713; LRMS (ESI): $m / z=325$ [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}: 325.1523$. Found 325.1534 .

3ng
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.50(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 18.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 18.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.3,168.2,167.6,150.9,137.7,128.7,128.4,127.3,52.7,45.0,44.1,30.5,28.1$,
28.0 ppm ; IR (neat, cm^{-1}): $3413,3030,2957,2924,2851,2363,1746,1715,1678,1379,756$; LRMS (ESI): $m / z=$ 303 [M+H]; HRMS (ESI): Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}: 303.1339$. Found 303.1349.

3nh
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.06-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.13-$ $7.08(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=18.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=18.2,6.0$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.11(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.7,168.3,167.8,151.0,138.2,136.8$, $133.4,1128.7,128.4,128.1,127.4,53.0,44.5,40.4,28.2,28.0 \mathrm{ppm}$; IR (neat, cm^{-1}): 3361, 3062, 3030, 2956, 2924, 2852, 2360, 1746, 1682, 1449, 1379, 752; LRMS (ESI): $m / z=387$ [M+Na]; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}: 387.1315$. Found 387.1333.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.6,167.7,167.2,151.6,144.6,137.3,132.3,130.1,129.5,129.3,128.6,127.7,56.7,51.4,28.9,28.6,21.7$ ppm; IR (neat, cm^{-1}) 2957, 2924, 1682, 1605, 1455, 1379, 1275, 741, 701. LRMS (ESI) $m / z 387$ [M+Na] HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{4}$: 387.1315 . Found 387.1329.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.74(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.1,167.5$, $167.0,151.5,136.6,133.6,131.9,130.8,130.1,128.9,128.7,127.9,56.6,51.3,28.9,28.6 \mathrm{ppm}$; IR (neat, cm^{-1}): 3437, 3061, 2957, 1682, 1584, 751; LRMS (ESI): $m / z=451$ [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{NaO}_{4}$: 451.0264. Found 451.0256.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.31(\mathrm{~m}, 5 \mathrm{H}), 4.87(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H})$, 3.27 (s, 3H), 2.17 (s, 3H) ppm.; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.3,167.24,167.22,151.3,135.8,130.5,128.8$, $128.2,60.5,51.3,28.9,28.6,28.5 \mathrm{ppm}$; IR (neat, cm^{-1}) $3061,2924,1682,1455,1422,1379,756,702$. LRMS (ESI) $m / z 311[\mathrm{M}+\mathrm{Na}]$ HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{4}: 311.1002$. Found 311.1017.

The pivaloyl adduct 3nl was obtained too low yield to isolate. The ${ }^{1} \mathrm{H}$ NMR data from crude product, see: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.15(\mathrm{~m}, 5 \mathrm{H}), 5.27(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}$, $3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.94-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H})$, $1.23(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.3,167.9,151.2,136.4$, $128.52,128.49,127.9,101.8,63.2,61.5,52.0,51.7,28.3,28.2,15.21,15.18 \mathrm{ppm}$; IR (neat, cm^{-1}): 3418,3032 ,

2976, 2930, 1747, 1678, 1453, 1422, 1379, 1124, 1061, 757, 704; LRMS (ESI): m/z 371 [M+Na]; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}: 371.1577$. Found 371.1571.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~d}, J$ $=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 137.3, 136.5, 133.5, 129.9, 129.1, 129.2, 128.8, 128.1, 112.1, 111.5, 48.4, 38.1, 28.4, 21.1 ppm ; IR (neat, cm^{-1}): 3090, 3031, 2922, 2862, 2366, 2255, 1955, 1906, 1515, 1497, 1455, 812, 758, 701; LRMS (ESI): $m / z 283$ [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{Na}$: 283.1206. Found 283.1194.

3ad
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 2 \mathrm{H}), 3.86$ $(\mathrm{d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.18(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.1(\mathrm{~d}, J=245$ $\mathrm{Hz}), 136.1,132.3$ (d, $J=3.3 \mathrm{~Hz}), 130.54,130.46,129.3,129.2,128.0,116.0(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 111.9,114.4,48.4$, 37.8, $28.7 \mathrm{ppm} ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-116.00-116.07(\mathrm{~m}, 1 \mathrm{~F}) \mathrm{ppm} ; \operatorname{IR}\left(\mathrm{neat}, \mathrm{cm}^{-1}\right): 3034,2904,2359$, 2256, 1889, 1603, 1510, 1455, 1224, 1510, 834, 760, 701; LRMS (ESI): m/z 287 [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{Na}: 287.0955$. Found 287.0950.

3ae
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39(\mathrm{~s}, 5 \mathrm{H}), 4.22(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.2,129.3,128.7,128.6,56.8,35.0,28.5,25.1 \mathrm{ppm}$; IR (neat, cm^{-1}): 3064, 3033,

2968, 2913, 2253, 1604, 1497, 1479, 1455, 1371, 1216, 714; LRMS (ESI): $m / z 235$ [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{Na}$: 235.1206 . Found 236.1200.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.38(\mathrm{~m}, 5 \mathrm{H}), 4.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.81$ $(\mathrm{m}, 1 \mathrm{H}), 3.67-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.34(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 133.8,129.1,128.8,112.1,112.0,102.4,64.7,64.0,50.0,25.7,15.10,15.07 \mathrm{ppm}$; IR (neat, cm^{-1}): 3065, 3034, 2979, 2924, 2377, 2255, 1719, 1456, 1118, 1067, 702; LRMS (ESI): m/z 281 [M+Na]; HRMS (ESI): Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$: 281.1260. Found 281.1274.

3-3. Other experimental methods

Synthesis of deuterated benzalmalononitrile 2a-d

Deuterated benzaldehyde ($0.30 \mathrm{~mL}, 2.54 \mathrm{mmol}$) and piperidine ($25 \mu \mathrm{~L}, 0.254 \mathrm{mmol}$) were mixed in EtOH, then malononitrile ($169 \mathrm{mg}, 2.54 \mathrm{mmol}$) was added to the mixture. After about 10 min , the product was generated as a precipitate. The mixture was stirred overnight, the precipitate was filtered and washed with EtOH. The crude product was recrystallized by dichloromethane and hexane to give $\mathbf{2 a}-\boldsymbol{d}(223 \mathrm{mg}, 1.32 \mathrm{mmol}, 52 \%)$.

Deuteration of benzylic position of 1a

$\mathbf{2 a}(251.4 \mathrm{mg}, 0.829 \mathrm{mmol})$ was dissolved in mixture of methanol $-d_{4}(2.0 \mathrm{~mL})$ and dichloromethane $(3.0 \mathrm{~mL})$. After the mixture was stirred for 24 h , the solvent was removed to give $\mathbf{2 a} \mathbf{- d}$ (94.5% deuterated).

Synthesis of 2-aminofuran derivative

Triethylamine ($50 \mu \mathrm{~L}$) was added to the resulting mixture of $\mathbf{3 a}$, which was obtained by the Procedure II. Then, the reaction mixture was stirred for 1 h , and the solvent was removed, and the residue was purified by PTLC to give 2-aminofuran derivative 4 in 78% yield.

Data of 4:

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.34(\mathrm{~m}, 7 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 3 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 161.2,139.7,135.3,131.7,131.0,129.5,129.0,128.5,128.4,127.4,115.0,73.6 \mathrm{ppm} .{ }^{\mathrm{S} 20}$

Radical scavenging experiments

According to the general procedure of alkylation and acylation. TEMPO $(19.8 \mathrm{mg}, 0.127 \mathrm{mmol})$ was added to the solution. Then crude products were purified by preparative TLC (hexane: AcOEt $=10: 1$) to give 5 .

Data of 5 :

5a
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 1.63-1.32(\mathrm{~m}, 6 \mathrm{H}), 1.26$ $(\mathrm{s}, 6 \mathrm{H}), 1.15(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.3,128.2,127.5,127.3,78.7,60.0,39.7,33.1$, $20.3,17.1 \mathrm{ppm} .{ }^{521}$

5b
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-$ $1.53(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 6 \mathrm{H}), 1.12(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 166.4,132.9$, $129.8,129.6,128.5,60.4,39.1,32.0,20.9,17.0 \mathrm{ppm} .{ }^{522}$

The products from maleic anhydride ($\mathbf{3 t}$) were decomposed by any purification methods and they couldn't be separated and collected data.

4. Mechanistic studies

4-1. Cyclic Voltammetry

All voltammograms were measured at room temperature using $\mathrm{Ag} / \mathrm{AgNO}_{3}$ reference electrode, a platinum (Pt) counter and working electrode. The conditions of the experiments were as follows: a $\mathrm{CH}_{3} \mathrm{CN}$ solution of 100 mM tetrabutylammonium hexafluorophosphate $\left(\mathrm{Bu}_{4} \mathrm{NPF}_{6}\right)$ and a scan rate of $50 \mathrm{mV} / \mathrm{s}$. The potentials of 1,3 -dimethyl-5-benzylidene barbituric acid 20 and benzylidenemeldrum's acid $\mathbf{2 p}$ were taken at half-wave potential $\left(\mathrm{E}_{1 / 2}\right)$ since the oxidation was reversible. The potentials of benzothiazolines were taken at half-height of the peak $\left(\mathrm{E}_{\mathrm{p} / 2}\right)$ since the oxidations were non-reversible.

To convert the potentials from $\mathrm{Ag} / \mathrm{AgNO}_{3}$ to $\mathrm{Fc} / \mathrm{Fc}^{+}$reference, ferrocene was measured under the above conditions in a $\mathrm{CH}_{3} \mathrm{CN}$ solution, and -0.44 V was subtracted from the measured values. To convert the potentials from $\mathrm{Fc} / \mathrm{Fc}^{+}$ to SCE reference, +0.38 V was added from the values according to the literature. ${ }^{\text {S23) }}$

According to Figure S 1 , the oxidation potential of $\mathbf{1 e}$ and $\mathbf{1 f}$ was almost same value ($\mathbf{1 e}: \mathrm{E}_{\mathrm{p} / 2}=0.69 \mathrm{~V}$ vs. $\mathrm{SCE}, \mathbf{1 f}$: $\mathrm{E}_{\mathrm{p} / 2}=0.70 \mathrm{~V}$ vs. SCE) and both of them could be oxidized by photoredox catalysts $(\mathrm{Ru}(\mathrm{bpy}))_{3}{ }^{2+}$, Eosin $\left.\mathrm{Y}-2 \mathrm{Na}\right)$. Hence, the reason why isopropyl transfer didn't proceed is C-C bond cleavage of $\mathbf{1 f}$ couldn't be occurred from the cation radical species.

Figure S1. Cyclic voltammograms of benzothiazoline derivatives. Upper left: 2-benzyl-2-
phenylbenzothiazoline (1a), Upper right: 2-benzoyl-2-phenylbenzothiazoline (1b), Lower left: 2-tert-butyl-2phenylbenzothiazoline (1e), Lower right: 2-isopropyl-2-phenylbenzothiazoline (1f).

4-2. KIE study

The procedure of KIE study using deuterated benzalmalononitrile (Scheme 4B)

Scheme S5. KIE determined experiment from an intermolecular competition of benzalmalononitrile.

The $1: 1$ mixture of $\mathbf{2 a}(11.6 \mathrm{mg}, 0.075 \mathrm{mmol})$ and α-deuterated $\mathbf{2 a}(\mathbf{2 a - d}, 11.6 \mathrm{mg}, 0.075 \mathrm{mmol})$, and benzothiazoline $1 \mathbf{1 a}(91.3 \mathrm{mg}, 0.3 \mathrm{mmol})$, photoredox catalyst $\left(\mathrm{Ru}(\mathrm{bpy}){ }_{3} \mathrm{Cl}_{2}\right)(5.8 \mathrm{mg}, 0.0077 \mathrm{mmol})$ was dissolved in degassed 1,2-dichloroethane (3.0 mL). Then irradiation of white LED $(5 \mathrm{~W})$ at room temperature. After 2 h , the solvent was evaporated and 1,1,2,2-tetrachloroethane was added as an internal standard and ${ }^{1} \mathrm{H}$ NMR was measured in CDCl_{3} for the calculation of the NMR yield.

The procedure of KIE study using deuterated benzothiazoline derivative (Scheme 4C)

According to the Scheme S1, the hydrogen-exchange of benzothiazoline 2a was not fast (7% exchange for 24 h), and the KIE study was performed for a few hours (2 h). Thus, we defined the hydrogen-exchange could be almost negligible under the KIE conditions.

Then, the KIE measurement of the C-C bond cleavage of $\mathbf{1 a}$ was performed by using $1: 1$ mixture of $\mathbf{1 a}$ and $\mathbf{1 a}-\boldsymbol{d}_{\mathbf{2}}$ in the same vessel under the standard condition. After 2 h , the negative secondary KIE was observed ($k_{\mathrm{H}} / k_{\mathrm{D}}=0.91$). This result suggested that the C-C bond cleavage of the benzothiazoline 1a was not the rate-determined step but the radical addition to alkenes was the rate-determined step of this reaction.

Scheme S6. KIE determination experiment from an intermolecular competition of benzothiazoline 1a.

$\mathbf{2 a}(7.7 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $1: 1 \mathrm{mixture}$ of benzothiazoline $\mathbf{1 a}(15.2 \mathrm{mg}, 0.05 \mathrm{mmol})$ and deuterated benzothiazoline 1a-d $(15.3 \mathrm{mg}, 0.05 \mathrm{mmol})$, photoredox catalyst $\left(\mathrm{Ru}(\mathrm{bpy})_{3} \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)(2.0 \mathrm{mg}, 0.0025 \mathrm{mmol})$ were dissolved in degassed 1,2-dichloroethane (1.0 mL). Then white LED $(5 \mathrm{~W})$ was irradiated at room temperature for 2 h . After evaporation of the solvent, 1,1,2,2-tetrachloroethane was added as an internal standard, and ${ }^{1} \mathrm{H}$ NMR was measured in CDCl_{3} for the calculation of the NMR yield.

Calculation method of KIE: 1a-d was containing 5.5% of ${ }^{1} \mathrm{H}$, the $k_{\mathrm{H}} / k_{\mathrm{D}}$ could not be estimated by simply comparison of these yields. Since the deuterated product was underestimated, the correction of the KIE value was conducted. We calculated the simple simultaneous equations as follows:

$$
\begin{aligned}
& k_{\mathrm{H}} / k_{\mathrm{D}}=\mathrm{n}_{\mathrm{H}} / \mathrm{n}_{\mathrm{D}}\left(\mathrm{n}_{\mathrm{H} / \mathrm{D}}: \text { the amounts of the products }\right) \\
& \mathrm{n}_{\mathrm{H}}(\mathrm{obs})=\mathrm{n}_{\mathrm{H}}+0.055 \mathrm{n}_{\mathrm{D}} \\
& \mathrm{n}_{\mathrm{D}}(\mathrm{obs})=0.945 \mathrm{n}_{\mathrm{D}} \\
& \left(\mathrm{n}_{\mathrm{H} / \mathrm{D}}(\mathrm{obs}): \text { observed the amounts of products }\right)
\end{aligned}
$$

The rate of mono-deuterated benzyl one, which contained in $\mathbf{1 a - d}$ at a rate of 5.5%, was approximated as almost same value with the rate of 1a-d.

4-3. Proposed Mechanism.

Figure S2. Proposed mechanism
Benzothiazoline 1 is oxidized by an excited photoredox catalyst via single-electron transfer (SET), and the generated cation radical species $\left(1^{++}\right)$releases radical species (R•). The radical species adds to substrate 2 a , followed by a reduction via SET with a photoredox catalyst. The generated carbanion is protonated by $6-\mathbf{H}^{+}$to give product 3 .

5. References

S1) J. G. McCoy, J. J. Marugan, K. Liu, W. Zheng, N. Southall. W. Huang, M. Heilig, C. P. Austin, ACS Chem. Neurosci., 2010, 1, 559-574.

S2) A. A. Poeylaut-Pelena, S. A. Testero, E. G. Mata, Chem. Commun., 2011, 47, 1565-1567.
S3) P. Ballesteros, B. W. Roberts, Org. Synth., 1986, 64, 63.
S4) K. Tanaka, X. Chen, T. Kimura, F. Yoneda, Chem. Pharm. Bull., 1988, 36, 60-69.
S5) H. S. Sandhu, S. Sapra, M. Gupta, K. Nepali, R. Gautam, S. Yadav, R. Kumar, S. M. Jachal, M. Chugh, M. K. Gupta, O. P. Suri, K. L. Dhar, Bioorg. Med. Chem., 2010, 18, 5626-5633.
S6) R. Hommelsheim, K. J. Hock, C. Schumacher, M. A. Hussein, T. V. Nguyen, R. M. Koenigs, Chem. Commun., 2018, 54, 11439-11442.

S7) M. B. Shaghafi, R. E. Grote, E. R. Jarvo, Org. Lett., 2011, 13, 5188-5191.
S8) E. Bayer, E. Breitraier, Chem. Ber., 1969, 102, 728-735.
S9) M. Kodomari, A. Satoh, R. Nakano, T. Aoyama, Synth. Commun., 2007, 37, 3329-3335.
S10) Y. Fu, J.-Y. Wang, D. Zhang, Y.-F. Chen, S. Gao, L.-X. Zhao, F. Ye, Molecules, 2017, 22, 1601.
S11) X.-Z. Fan, J.-W. Rong, H.-L. Wu, Q. Zhou, H.-P. Deng, J. D. Tan, C.-W. Xue, L.-Z. Wu, H.-R. Tao, J. Wu, Angew. Chem. Int. Ed., 2018, 57, 8514-8518.

S12) S. Selvaraj, A. S. Rajendran, N. Arumugam, Cheminform, 1988, 19, 150.
S13) E. Fillion, D. Fishlock, A. Wilsily, J. M. Goll, J. Org. Chem., 2005, 70, 1316-1327.
S14) Y. Zheng, Z. Xue, L. Liu, C. Shu, W. Yuan, X. Zhang, Org. Biomol. Chem., 2013, 11, 412-415.
S15) A. Genoni, M. Benaglia, E. Massolo, S. Rossi, Chem. Commun., 2013, 49, 8365-8367.
S16) S. Dong, G. Wu, X. Yuan, C. Zou, J. Ye, Org. Chem. Front., 2017, 4, 2230-2234.
S17) D. A. Pedroza, F. D. Leon, A. Varela-Ramirez, C. Lema, R. J. Aguilera, S. Mito, Bioorg. Med. Chem., 2014, 22, 842-847.
S18) N. Parveen, R. Saha, G. Sekar, Adv. Synth. Catal., 2017, 359, 3741-3751.
S19) W.-J. Zhao, M. Yan, D. Huang, S.-J. Ji, Tetrahedron, 2005, 61, 5585-5593.
S20) C. Yu, J. Lu, T. Li, D. D. Wang, B. Qin, H. Zhang, C. A. Yao, Synlett, 2011, 16, 2420-2424.
S21) M. Nomura, C. Takayama, M. Kajitani, Inorg. Chem., 2003, 42, 6441-6446.
S22) K. Jing, J.-P. Yao, Z.-Y. Li, Q.-L. Li, H.-S. Lin, G.-W. Wang, J. Org. Chem., 2017, 82, 12715-12725.
S23) V. V. Pavlishchuk, A. W. Addison, Inorganica Chimica Acta, 2000, 298, 97-102.

6. Spectral data

1a

1c

1d

$1 \mathbf{e}$

1'g

1'h

$1 " i$

[^0]
$1 " j$

1k

1m

3aa

3ba

3ca

3da

3ea

3fa

3ga

3ha

 A_moriyamakaworuko_1008_pro1 - km-1008-pro

3ia

3ja

3ka

31a

[^1]
3ma

3na

$30 a$

3wa

3ab

3bb

3cb

3db

3eb

3fb

3gb

3hb

3ib

3jb

3kb

31b

3mb

3nb

3ob

3qb

3rb

3sb

A.Jodamitsuiniro-4-110.H $=\mathrm{m}-4-110 . \mathrm{H}$

3ub

3vb

3wb

3xa

$3 y a$

3za

3aa

3阝a

3nc

3nd

3ne

3ng

3nh

3ni

3nj

3nk

3nl

3nm

$3 a c$

3ad

$3 a e$

3am

4

$5 \mathbf{5}$

5b

[^0]:

[^1]:

