Supporting information

KVPO₄F as a novel insertion-type anode for potassium ion batteries

Hong Tan, Xiaoqiong Du, Jian-Qiu Huang, Biao Zhang * Department of Applied Physics, the Hong Kong Polytechnic University, Hung Hom, Hong Kong, P.R. *Corresponding author: Biao Zhang. Email: biao.ap.zhang@polyu.edu.hk*

Experimental

1. KVPO₄F preparation

 $KVPO_4F$ was prepared by a sol-gel method. For a typical synthesis, 0.92 g NH₄H₂PO₄, 0.936 g H₄NO₃V, 0.557 g KF and 1.228 g citric acid were first dissolved in 30 ml deionized water by sequence in a 50 ml beaker with stirring. After evaporating the water under continuous stirring at 80 °C, the obtained mixture was transferred to a vacuum oven at 60 °C overnight. Prior to thermal treatment, the dried mixture was finely ground into powder in an agate mortar. The green-colored powder was then annealed in a tube furnace at 700 °C for 8 h under Ar protection. The obtained black powder was directly used for the subsequent characterization and electrochemical test without further treatment.

2. Material Characterization

The phase was determined by X-ray diffraction (XRD) performing on a Rigaku Smart Lab 9kW diffractometer using Cu-K α radiation (λ =1.54178Å). The morphology of the sample was characterized by scanning electron microscopy (TESCAN MAIA3) and transmission electron microscopy (JEOL Model JEM-2100F).

3. Electrochemical test

For the fabrication of KVPO₄F electrode, 70 wt% KVPO₄F, 20 wt% carbon black and 10 wt% Polyvinylidene fluoride (PVDF) were first dry-mixed in an agate mortar and then wet-mixed with N-Methyl-2-pyrrolidone (NMP) to form a homogeneous slurry.

The obtained slurry was cast onto a copper foil and dried in an oven at 60 °C overnight. Discs with a diameter of 12 mm were cut from the dried tape to employ as the anodes for half-cell assembly while potassium plate was used as counter electrode. To examine the performance of KVPO₄F as cathode, aluminum foil, instead of copper foil, was used to prepare the electrodes. For in-situ XRD test, the aforementioned electrode slurry was cast on a Be window. The typical loading of KVPO₄F is around 2 mg for each electrode. 1 M KPF₆ in ethylene carbonate (EC)/propylene carbonate (PC) (1:1 in volume) was used as electrolyte and the glass fiber (Whatman, GF/D) was employed as a separator. The half-cell was assembled in a standard CR2032 coin cell configuration and the symmetric KVPO₄F full cell was assembled in a two-electrode Swagelok cell. Typically, for the fabrication of symmetric KVPO₄F full cells, the active mass ratio of cathode versus anode is maintained at around 2:1. All assembly was carried out in an argon-filled glove box with O₂ and H₂O content less than 0.5 ppm. For the XRD characterization of the electrode after cycles, the cell was disassembled in glove box and the electrode was washed with DMC for several times before it was sealed in an in-situ XRD holder with a beryllium window. The galvanostatic tests were performed on LAND CT2001A Battery Testing systems. Cyclic voltammetry (CV) tests were conducted on a Solartron Analytical 1400 electrochemical workstation.

Supporting figures and tables

Figure S1. XRD patterns of the samples prepared with various KF content (100%, 120% and 150%) based on the stoichiometric composition of KVPO₄F. The high peak intensity at 32.6 degree indicates the presence of KVOPO₄.¹

Figure S2. (a), (b) TEM images of as-obtained KVPO₄F and (c) high-magnification TEM image showing an interlayer spacing of 6.42 Å, indexed to the (200) plane.

The Rietveld refinement results including parameters and crystallographic data of the as-prepared $KVPO_4F$ is shown in Table S1. The CIF profile proposed by Fedotov et al² was used as a starting structure model for the refinement.

		KVPO ₄ F	Space group Pna2 ₁			
	a=12.8289	Å b=6.4046 Å	c=10.6038 Å	z=8	V=8	371.26 Å ³
Atom	Position	x/a	y/b	z/c	Occ	B _{iso}
K1	4a	0.3705(5)	0.778(1)	0.290(5)	0.5	1.8(1)
K1'	4a	0.3876(6)	0.778(3)	0.321(3)	0.5	1.8(1)
K2	4a	0.1075(5)	0.719(2)	0.043(2)	0.5	1.8(1)
K2'	4a	0.0937(3)	0.679(1)	0.0728(12)	0.5	1.8(1)
V1	4a	0.3831(3)	0.4915(3)	0	1	0.75(5)
V2	4a	0.2478(3)	0.2535(3)	0.2489(10)	1	0.75(5)
P1	4a	0.502(4)	0.333(3)	0.257(3)	1	0.75(5)
P2	4a	0.1819(12)	0.4968(9)	0.4935(9)	1	0.75(5)
01	4a	0.486(2)	0.479(1)	0.143(2)	1	1.0(1)
02	4a	0.519(2)	0.479(4)	0.372(1)	1	1.0(1)
03	4a	0.401(2)	0.212(3)	0.290(9)	1	1.0(1)
O4	4a	0.592(7)	0.207(7)	0.229(10)	1	1.0(1)
05	4a	0.118(3)	0.312(6)	0.532(4)	1	1.0(1)
O6	4a	0.108(3)	0.673(6)	0.467(5)	1	1.0(1)
07	4a	0.242(3)	0.537(7)	0.629(7)	1	1.0(1)
08	4a	0.250(3)	0.462(3)	0.391(6)	1	1.0(1)
F1	4a	0.272(1)	0.524(2)	0.867(10)	1	1.0(1)
F2	4a	0.272(2)	0.483(1)	0.121(4)	1	1.0(1)

Table S1. Rietveld refinement results of the obtained KVPO₄F

Figure S3. (a) Voltage profiles (b) Rate capability and (c) Cyclic performance of electrodes

with 90 wt.% KVPO₄F.

Figure S4. (a) Voltage profiles of the 1st and 2nd cycle and (b) cycling test of pure carbon black as anode for K-ion half-cell.

The GITT test was carried out to evaluate the diffusion coefficient of KVPO₄F at 25 °C. The discharge/charge duration time is set as 30 min while the rest interval is set as 2 h. The calculation of the diffusion coefficient was based on previous work.³ As shown in equation (1), m_B is the mass of active material of electrode, M_B is the molar mass of KVPO₄F, V_M is the molar volume of KVPO₄F, the theoretical density ρ of KVPO₄F was calculated based on the crystallographic data obtained by refinement following Rachel Rosten's method.⁴ S is the geometric area of the electrode, the value of which is 1.13 cm² in this case, τ is the duration time upon each charge/discharge.

The diffusion coefficients deduced from the GITT profiles and equation (1) are depicted in Fig. S5.

Figure S5. (a) GITT profiles of KVPO₄F and the diffusion coefficients deduced from the GITT profiles as a function of the cell potential upon (b) discharge and (c) charge.

Insertion type anode	Reversible capacity	Capacity retention	Rate capability	Electrolyte	Loading	Refere nce
K ₂ Ti ₆ O ₁₃	90 mAh·g ⁻¹ at 50 mA·g ⁻¹	84 % after 1000 cycles at 500 mA·g ⁻¹	57 mAh·g ⁻¹ at 1000 mA·g ⁻¹	$\begin{array}{c} 0.8 \text{ mol} \cdot \text{L}^{-1} \\ \text{KPF}_6 \text{ in} \\ \text{PC/FEC} \\ (5\%) \end{array}$	-	5
K2Ti4O9	80 mAh·g ⁻¹ at 100 mA·g ⁻¹	50 % after 30 cycles at 100 mA·g ⁻¹	$\begin{array}{c} 20 \\ mAh \cdot g^{-1} \\ at \ 2000 \\ mA \cdot g^{-1} \end{array}$	1 mol·L ⁻¹ KPF ₆ in EC/PC(1:1)	2.0 - 3.0 mg·cm ⁻²	6
K ₂ Ti ₈ O ₁₇	181 mAh∙g ⁻¹ at 20 mA∙g ⁻¹	61 % after 50 cycles at 20 mA·g ⁻¹	44.2 mAh·g ⁻¹ at 500 mA·g ⁻¹	0.8 mol·L ⁻¹ KPF ₆ in EC/DEC(1:1)	-	7
KTi ₂ (PO ₄) ₃	75.6 mAh·g ⁻¹ at 64 mA·g ⁻¹	$\sim 95 \%$ after 100 cycles at 64 mA·g ⁻¹	65 mAh·g ⁻¹ at 640 mA·g ⁻¹	0.8 mol·L ⁻¹ KPF ₆ in EC/DEC(1:1)	1.0 mg∙cm ⁻²	8
MoS ₂	73 mAh·g ⁻¹ at 10 mA·g ⁻¹	97.5 % after 200 cycles at 10 mA·g ⁻¹	55 mAh·g ⁻¹ at 160 mA·g ⁻¹	60 uL 0.5mol·L ⁻¹ KPF ₆ in EC/PC(1:1)	2.0 mg·cm ⁻²	9
Graphite	$263 \\ mAh \cdot g^{-1} at \\ 28 \\ mA \cdot g^{-1}$	50 % after 50 cycles at 140 mA·g ⁻¹	80 mAh·g ⁻¹ at 279 mA·g ⁻¹	$0.8 \text{ mol} \cdot \text{L}^{-1}$ $KPF_6 \text{ in}$ $EC/DEC(1:1)$)	2.0 mg·cm ⁻²	10
KVPO₄F	$150 \\ mAh \cdot g^{-1} at \\ 20 \\ mA \cdot g^{-1}$	91 % after 100 cycles at 100 mA·g ⁻¹	65 mAh·g ⁻¹ at 2000 mA·g ⁻¹	80 uL 1 mol·L ⁻¹ KPF ₆ in EC/PC(1:1)	2.0 mg·cm ⁻²	This work
	$127 \\ mAh \cdot g^{-1} at \\ 50 \\ mA \cdot g^{-1}$	95 % after rate test at 50 mA·g ⁻¹	60 mAh·g ⁻¹ at 1000 mA·g ⁻¹	80 uL 1 mol·L ⁻¹ KPF ₆ in EC/PC(1:1)	4.0 mg∙cm ⁻²	

 Table S2. Comparison of the performance of insertion type anode and graphite for K-ion

 batteries

Figure S6. (a) Voltage profiles and (b) Rate performance of electrodes using aluminum foil as a current collector and with a higher mass loading of active material (4.0 mg/cm²).

Figure S7. (a) XRD patterns of the electrode after 50 cycles at 55 °C; (b) Cycling performance of the $KVPO_4F$ electrode transferring from 55 °C to 25 °C.

Figure S8. (a) The voltage profiles of the as-prepared KVPO₄F as cathode for K-ion half-cell within 3.0 - 4.95 V (vs. K⁺/K) and the corresponding (b) Cycling performance.

Figure S9. The CV curves of the symmetric $KVPO_4F$ full cell with the oxidation peaks referring to the structure evolution from $KVPO_4F$ to $K_{0.75}VPO_4F$ (O1), $K_{0.625}VPO_4F$ (O2), $K_{0.5}VPO_4F$ (O3) and VPO_4F (O4), as suggested by Ceder et al¹¹.

Figure S10. The voltage profiles of the 1st cycle for the symmetric KVPO₄F full cell.

References

- 1 K. Chihara, A. Katogi, K. Kubota and S. Komaba, *Chem. Commun.*, 2017, **53**, 5208-5211.
- S. S. Fedotov, N. R. Khasanova, A. S. Samarin, O. A. Drozhzhin, D. Batuk, O. M. Karakulina, J. Hadermann, A. M. Abakumov and E. V. Antipov, *Chem. Mater.*, 2016, 28, 411-415.
- 3 Z. Jian, Z. Xing, C. Bommier, Z. Li and X. Ji, Adv. Energy Mater., 2016, 6, 1-5.
- 4 R. Rosten, M. Koski and E. Koppana, J. Undergrad. Mater. Res., 2018, 2, 1-4.
- 5 S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji and X. Zhang, *ACS Appl. Mater. Interfaces*, 2018, **10**, 15542-15547.
- 6 B. Kishore, V. G and N. Munichandraiah, J. Electrochem. Soc., 2016, 163, A2551-A2554.
- 7 J. Han, M. Xu, Y. Niu, G. N. Li, M. Wang, Y. Zhang, M. Jia and C. M. Li, *Chem. Commun.*, 2016, **52**, 11274-11276.
- 8 J. Han, Y. Niu, S. Bao, Y.-N. Yu, S.-Y. Lu and M. Xu, *Chem. Commun.*, 2016, **52**, 11661-11664.
- 9 X. Ren, Q. Zhao, W. D. McCulloch and Y. Wu, *Nano Res.*, 2017, **10**, 1313-1321.
- 10 Z. Jian, W. Luo and X. Ji, J. Am. Chem. Soc., 2015, 137, 11566-11569.
- 11 H. Kim, D. Seo, M. Bianchini, R. J. Clément, H. Kim, J. C. Kim, Y. Tian, T. Shi, W. Yoon and G. Ceder, *Adv. Energy Mater.*, 2018, **8**, 1801591.