Supporting Information

Photoelectrochemical cell for P-H/C-H cross-coupling with hydrogen evolution

Jing-Hao Wang,^[a, b] Xu-Bing Li,^[a, b] Jian Li,^[a, b] Hao-Lin Wu,^[a, b] Xiao-Lei Nan,^[a, b] Chen-Ho Tung,^[a, b] and Li-Zhu Wu*^[a, b]

^[a] Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China

^[b] School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China

*Corresponding author: E-mail: lzwu@mail.ipc.ac.cn

1. Materials and methods	2
2. General experimental procedures	3
3. Cyclic voltammograms experiments	6
4. Characterization data for all products	7
5. ¹ H and ¹³ C spectra of products	24

1. Materials and methods

¹H NMR spectra were recorded using a Bruker Avance DPX 400 MHz instrument with tetramethylsilane (TMS) as an internal standard. ¹³C NMR spectra were obtained at 101 MHz and referenced to the internal solvent signals. Multiplicities are indicated, s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), coupling constants (J) are in Hertz (Hz). High-resolution mass spectra (HRMS-ESI) were recorded on a Q-TOF mass spectrometer. Commercially available reagents and solvents were used without further purification. Cyclic voltammograms were obtained on a CHI 660E potentiostat. Photoelectrochemical was carried out with blue LEDs (λ = 450 nm). The instrument for electrolysis is dual display potentiostat (DJS-292B) (made in China). The anode electrode is reticulated vitreous carbon (RVC) electrodes (500 PPI, 1.0 cm × 1.0 cm × 0.5 cm) and the cathode electrode is platinum plate electrodes (0.5 cm × 1.0 cm). The reticulated vitreous carbon electrodes can be available at Alfa Aesar (CAS No. 7440-44-0). Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum ether.

Figure S1. The picture of the home-made BiVO₄ electrode and the photoelectrochemical cell.

2. General experimental procedures

2.1 Preparation of the BiVO₄

The BiVO₄ electrode was prepared by electro-deposition. First, Bi(NO₃)₃·5H₂O (0.04 M) and KI (0.4 M) were dissolved in 50 mL distilled water to form a clear solution. Then, HNO₃ was added to adjust the pH to 1.7. Next, 0.23 M p-benzoquinone ethanol solution (20 mL) was added to above mixed solution and stirred vigorously for 20 min. The electrodeposition was carried out in three-electrode cell using a constant potential of -0.1 V *vs* Ag/AgCl for 10 min at room temperature. (FTO as working electrode, Pt plate as the counter electrode and Ag/AgCl as the reference electrode). After being taken out and washed with distilled water, the dried BiOI film was covered by dipping 200 μ L containing vanadyl acetylacetonate (0.2 M) DMSO solution. BiVO₄ film was formed by heating in a muffle furnace at 450 °C for 1 hour. After being cooled down to room temperature, the electrode was soaked in 1.0 M NaOH solution for 30 min to remove excess V₂O₅. Finally, the BiVO₄ electrode was rinsed with distilled water.

2.2 General procedure for the C-H/P-H Cross-coupling:

Method A: Photoelectrochemical

The PEC experiments were carried out in an undivided cell equipped with BiVO₄ as the working electrode (1.0 cm \times 2.0 cm), Pt plate as the counter electrode (0.5 cm \times 1.0 cm) and Ag/AgCl as the reference electrode. N-phenyl tetrahydroisoquinoline **1a** (0.2 mmol), diphenylphosphine oxide **2a** (0.2 mmol), NHPI (0.2 equiv) and 2,6-Lutidine (1.5 equiv) were dissolved in 5 mL acetonitrile with ^{*n*}Bu₄NBF₄ (0.1 M) as an electrolyte. The reaction mixture was stirred for 1 minutes. Then the PEC cell was sealed using a rubber septum and flushed with nitrogen gas. After piercing the septum with a nitrogen-filled balloon to sustain nitrogen atmosphere, photoelectrochemical electrolysis was performed at a constant potential of +0.1 V vs. Ag/AgCl for 12 h. When the reaction was finished, the entire reaction mixture was then transferred to a silica gel column and eluted with a mixture of petrol ether and ethyl acetate to give the corresponding products.

Method B: Electrochemical

The electrolysis was carried out in an undivided cell, with a RVC anode (500 PPI, 1.0 cm \times 1.0 cm \times 0.5 cm) and a platinum cathode (0.5 cm \times 1.0 cm). N-phenyl tetrahydroisoquinoline **1a** (0.2 mmol) and diphenylphosphine oxide **2a** (0.2 mmol) were dissolved in 5 mL acetonitrile with ^{*n*}Bu₄NBF₄ (0.1 M) as an electrolyte. The reaction mixture was then stirred for 1 minutes. Then the EC cell was sealed using a rubber septum and flushed with nitrogen gas. After piercing the septum with a nitrogen-filled balloon to sustain nitrogen atmosphere, electrolysis was performed at a constant current of 10 mA for 2 h. When the reaction was finished, the entire reaction mixture was then transferred to a silica gel column and eluted with a mixture of petrol ether and ethyl acetate to give the corresponding products.

2.3 Control Experiments:

Figure S2. The comparison of PEC and EC. The NHPI-mediated P-H/C-H cross-coupling in a PEC cell (red) is cathodically shifted by 1.4 V compared to an EC cell (black).

The control experiments were carried out in an undivided cell equipped with glassy carbon electrode as the working electrode (1.0 cm \times 2.0 cm \times 0.3 cm), Pt plate as the counter electrode (0.5 cm \times 1.0 cm) and Ag/AgCl as the reference electrode. N-phenyl tetrahydroisoquinoline **1a** (0.2 mmol), diphenylphosphine oxide **2a** (0.2 mmol), NHPI (0.2 equiv) and 2,6-Lutidine (1.5 equiv) were dissolved in 5 mL acetonitrile with "Bu₄NBF₄ (0.1 M) as an electrolyte. The reaction mixture was stirred for 1 minutes. Then the EC cell was sealed using a rubber septum and flushed with nitrogen gas. After piercing the septum with a nitrogen-filled balloon to sustain nitrogen atmosphere, electrolysis was performed at a constant potential of +1.5 V *vs*. Ag/AgCl for 12 h. When the reaction was finished, the entire reaction mixture was then transferred to a silica gel column and eluted with a mixture of petrol ether and ethyl acetate to give the corresponding products.

3. Cyclic voltammograms experiments

The cyclic voltammograms were recorded in an electrolyte of ${}^{n}Bu_{4}NBF_{4}$ (0.1 M) in MeCN using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and a Ag/AgCl reference electrode. The scan rate was 100 mV/s.

Figure S3. CVs obtained in MeCN (6 mL) with 0.1 M ⁿBu₄NBF₄: black line, 1a (5 mM); red line, 2a (5 mM).

Figure S4. CVs obtained in MeCN (6 mL) with 0.1 M "Bu4NBF4 : 5 mM NHPI (black); 5 mMNHPI solution containing 10 mM 2,6-Lutidine (red); 5 mM NHPI solution containing 10 mM 2,6-Lutidineand5mM1a(blue).

4. Characterization data for all products

diphenyl(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphine oxide (3aa)

Reaction was proceeded according to General Method A with 0.1 V vs. Ag/AgCl constant potential electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3aa**. (white solid, mp 197.7–200.1 °C, yield: 90%).

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3aa**. (white solid, mp 197.7–200.1 °C, yield: 85%).

¹H NMR (400 MHz, Chloroform-d) δ 7.85 – 7.76 (m, 2H), 7.74 – 7.66 (m, 2H), 7.59 – 7.49 (m, 1H), 7.49 – 7.39 (m, 3H), 7.35 - 7.30 (m, 2H), 7.17 – 7.04 (m, 4H), 6.93 (t, *J* = 7.5 Hz, 1H), 6.84 – 6.73 (m, 3H), 6.65 (d, *J* = 7.8 Hz, 1H), 5.56 (d, *J* = 10.6 Hz, 1H), 4.10 – 3.96 (m, 1H), 3.67 – 3.43 (m, 1H), 2.90 – 2.76 (m, 1H), 2.73 – 2.62 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 150.00 (d, *J*_{*C*-*P*} = 9.3 Hz), 136.89 (d, *J*_{*C*-*P*} = 4.5 Hz), 132.28 (d, *J*_{*C*-*P*} = 90.6 Hz), 132.26 (d, *J*_{*C*-*P*} = 8.5 Hz), 131.92 (d, *J*_{*C*-*P*} = 2.9 Hz), 131.71 (d, *J*_{*C*-*P*} = 9.25 Hz), 131.37 (d, *J*_{*C*-*P*} = 84.3 Hz), 131.68, 129.94, 129.24 (d, *J*_{*C*-*P*} = 2.4 Hz), 129.13, 128.44 (d, *J*_{*C*-*P*} = 11.1 Hz), 128.27 (d, *J*_{*C*-*P*} = 11.38 Hz), 127.79 (d, *J*_{*C*-*P*} = 3.6 Hz), 127.41 (d, *J*_{*C*-*P*} = 3.4 Hz), 125.52 (d, *J*_{*C*-*P*} = 3.0 Hz), 119.55, 116.79, 61.98 (d, *J*_{*C*-*P*</sup> = 79.7 Hz), 45.17, 25.63. ³¹P NMR (162 MHz, Chloroform-d) δ 32.34. HRMS (ESI) calcd. for C₂₇H₂₄NNaOP [M+Na]⁺: 432.1488. Found: 432.1486.}

(2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)diphenylphosphine oxide (3ba)

Reaction was proceeded according to General Method A with 0.1 V vs. Ag/AgCl constant

potential electrolysis . The reaction mixture was purified by silica gel column chromatography to afford the product **3ba**. (white solid, mp 175.3–176.9 °C, yield: 88%).

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis . The reaction mixture was purified by silica gel column chromatography to afford the product **3 ba**. (white solid, mp 175.3–176.9 °C, yield: 80%).

¹H NMR (400 MHz, Chloroform-d) δ 7.82 – 7.64 (m, 4H), 7.55 – 7.49 (m, 1H), 7.48 – 7.40 (m, 3H), 7.37 - 7.32 (m, 2H), 7.19 – 7.11 (m, 1H), 7.07 (d, *J* = 7.6 Hz, 1H), 6.93 (t, *J* = 7.5 Hz, 1H), 6.78 – 6.68 (m, 4H), 6.62 (d, *J* = 7.8 Hz, 1H), 5.36 (d, *J* = 11.8 Hz, 1H), 4.06 – 3.88 (m, 1H), 3.72 (s, 3H), 3.47 – 3.33 (m, 1H), 2.81 – 2.68 (m, 1H), 2.60 – 2.50 (m, 1H).¹³C NMR (101 MHz, Chloroform-d) δ 154.08, 144.65 (d, *J*_{C-P} = 10.2 Hz), 137.04 (d, *J*_{C-P} = 4.8 Hz), 132.49 (d, *J*_{C-P} = 96.43 Hz), 132.18 (d, *J*_{C-P} = 8.7 Hz), 131.93 (d, *J*_{C-P} = 92.43 Hz), 131.80 (d, *J*_{C-P} = 9.2 Hz), 131.79 (d, *J*_{C-P} = 2.9 Hz), 131.54 (d, *J*_{C-P} = 3.1 Hz), 129.75, 129.36 (d, *J*_{C-P} = 2.5 Hz), 128.39 (d, *J*_{C-P} = 11.2 Hz), 128.22 (d, *J*_{C-P} = 11.4 Hz), 127.80 (d, *J*_{C-P} = 3.6 Hz), 127.23 (d, *J*_{C-P} = 3.4 Hz), 125.46 (d, *J*_{C-P} = 3.0 Hz), 120.38, 114.47, 62.18 (d, *J*_{C-P} = 81.5 Hz), 55.53, 46.81, 24.82. ³¹P NMR (162 MHz, Chloroform-d) δ 32.64. HRMS (ESI) calcd. for C₂₈H₂₆NNaO₂P [M+Na]⁺: 462.1593. Found: 462.1577

diphenyl(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphine oxide (3ca)

Reaction was proceeded according to General Method A with 0.1 V vs. Ag/AgCl constant potential electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3ca**. (white solid, mp 184.6–186.3 °C, yield: 90%).

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3ca**. (white solid, mp 184.6–186.3 °C, yield: 87%).

¹H NMR (400 MHz, Chloroform-d) δ 7.83 – 7.75 (m, 2H), 7.74 – 7.65 (m, 2H), 7.55 - 7.51 (m,

1H), 7.48 – 7.41 (m, 3H), 7.38 – 7.30 (m, 2H), 7.13 (t, J = 7.5 Hz, 1H), 7.06 (d, J = 7.6 Hz, 1H), 6.96 -6.90 (m, 3H), 6.71 (d, J = 8.1 Hz, 2H), 6.64 (d, J = 7.8 Hz, 1H), 5.47 (d, J = 11.4 Hz, 1H), 4.14 – 3.83 (m, 1H), 3.62 – 3.45 (m, 1H), 2.93 – 2.70 (m, 1H), 2.66 – 2.52 (m, 1H), 2.22 (s, 3H).¹³C NMR (101 MHz, Chloroform-d) δ 148.01 (d, $J_{C-P} = 9.3$ Hz), 136.93 (d, $J_{C-P} = 4.5$ Hz), 132.43 (d, $J_{C-P} = 95.8$ Hz), 132.24 (d, $J_{C-P} = 8.6$ Hz), 131.83 (d, $J_{C-P} = 3.0$ Hz), 131.82 (d, $J_{C-P} = 110.2$ Hz), 131.75 (d, $J_{C-P} = 8.8$ Hz), 131.57 (d, $J_{C-P} = 3.2$ Hz), 129.86, 129.68, 129.31 (d, $J_{C-P} = 2.5$ Hz), 128.41 (d, $J_{C-P} = 11.1$ Hz), 128.24 (d, $J_{C-P} = 11.4$ Hz), 127.82 (d, $J_{C-P} = 3.6$ Hz), 127.28 (d, $J_{C-P} = 3.4$ Hz), 125.44 (d, $J_{C-P} = 3.1$ Hz), 117.69, 61.98 (d, $J_{C-P} = 80.6$ Hz), 45.71, 25.14, 20.42.³¹P NMR (162 MHz, Chloroform-d) δ 32.45. HRMS (ESI) calcd. for C₂₈H₂₆NNaOP [M+Na]⁺: 446.1644. Found: 446.1629.

diphenyl(2-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphine oxide (3da)

Reaction was proceeded according to General Method A with 0.1 V vs. Ag/AgCl constant potential electrolysis . The reaction mixture was purified by silica gel column chromatography to afford the product **3da**. (white solid, mp 204.7–206.5 °C, yield: 85%).

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis . The reaction mixture was purified by silica gel column chromatography to afford the product **3da**. (white solid, mp 204.7–206.5 °C, yield: 95%).

¹H NMR (400 MHz, Chloroform-d) δ 7.80 – 7.65 (m, 4H), 7.58 -7.54 (m, 1H), 7.50 – 7.41 (m, 3H), 7.37 – 7.31 (m, 4H), 7.17 (t, J = 7.5 Hz, 1H), 7.10 (d, J = 7.6 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.80 (d, J = 8.5 Hz, 2H), 6.66 (d, J = 7.8 Hz, 1H), 5.65 (d, J = 8.6 Hz, 1H), 4.12 – 4.00 (m, 1H), 3.66 – 3.55 (m, 1H), 2.96 – 2.74 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 151.77 (d, $J_{C-P} = 5.0$ Hz), 136.50 (d, $J_{C-P} = 4.0$ Hz), 132.27 (d, $J_{C-P} = 8.7$ Hz), 132.21 (d, $J_{C-P} = 4.0$ Hz), 131.99 (d, $J_{C-P} = 2.8$ Hz), 131.56 (d, $J_{C-P} = 9.0$ Hz), 129.82, 129.04 (d, $J_{C-P} = 2.4$ Hz), 128.53 (d, $J_{C-P} = 11.0$ Hz), 128.47, 128.42 (d, $J_{C-P} = 11.2$ Hz), 127.85 (d, $J_{C-P} = 3.0$ Hz), 127.72 (d, $J_{C-P} = 3.4$

Hz), 126.33 (d, $J_{C-P} = 3.7$ Hz), 125.82 (d, $J_{C-P} = 2.4$ Hz), 123.33, 124.67 (d, $J_{C-F} = 271.6$ Hz), 114.24, 62.23 (d, $J_{C-P} = 76.9$ Hz), 44.29, 26.53. ³¹P NMR (162 MHz, Chloroform-d) δ 31.83.¹⁹F NMR (377 MHz, Chloroform-d) δ -61.35. HRMS (ESI) calcd. for C₂₈H₂₃F₃NNaOP [M+Na]⁺: 500.1362. Found: 500.1342.

(2-(2-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)diphenylphosphine oxide (3ea)

Reaction was proceeded according to General Method A with 0.1 V vs. Ag/AgCl constant potential electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3ea**. (white solid, mp 188.5–190.6 °C, yield: 91%).

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3ea**. (white solid, mp 188.5–190.6 °C, yield: 84%).

¹H NMR (400 MHz, Chloroform-d) δ 7.89 – 7.82 (m, 2H), 7.77 – 7.70 (m, 2H), 7.52 – 7.46 (m, 1H), 7.44 – 7.35 (m, 3H), 7.33 – 7.26 (m, 2H), 7.20 – 7.13 (m, 1H), 7.07 (d, *J* = 7.7 Hz, 1H), 7.00 (t, *J* = 7.6 Hz, 1H), 6.96 – 6.85 (m, 2H), 6.79 (d, *J* = 8.1 Hz, 1H), 6.74 – 6.64 (m, 2H), 5.42 (d, *J* = 12.4 Hz, 1H), 3.73 – 3.60 (m, 4H), 3.43 – 3.32 (m, 1H), 2.77 – 2.62 (m, 1H), 2.62 – 2.50 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 153.86, 141.16 (d, *J*_{C-P} = 8.9 Hz), 137.61 (d, *J*_{C-P} = 4.6 Hz), 133.70, 132.82 (d, *J*_{C-P} = 4.6 Hz), 132.74 (d, *J*_{C-P} = 4.6 Hz), 132.09 (d, *J*_{C-P} = 2.8 Hz), 131.87 (d, *J*_{C-P} = 2.7 Hz), 131.12, 129.79 (d, *J*_{C-P} = 2.2 Hz), 128.76 (d, *J*_{C-P} = 11.1 Hz), 128.53 (d, *J*_{C-P} = 11.4 Hz), 128.56, 127.62 (d, *J*_{C-P} = 3.1 Hz), 125.97 (d, *J*_{C-P} = 2.8 Hz), 124.36, 123.47, 121.71, 113.08, 63.52 (d, *J*_{C-P} = 80.9 Hz), 56.17, 46.32, 26.37. ³¹P NMR (162 MHz, Chloroform-d) δ 31.82. HRMS (ESI) calcd. for C₂₈H₂₆NNaO₂P [M+Na]⁺: 462.1593. Found: 462.1574.

(2-(3-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)diphenylphosphine oxide (3fa)

Reaction was proceeded according to General Method A with 0.1 V vs. Ag/AgCl constant potential electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3fa**. (white solid, mp 176.1–178.5 °C, yield: 86%).

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3fa**. (white solid, mp 176.1–178.5 °C, yield: 99%).

¹H NMR (400 MHz, Chloroform-d) δ 7.83 – 7.76 (m, 2H), 7.74 – 7.67 (m, 2H), 7.57 – 7.50 (m, 1H), 7.48 – 7.39 (m, 3H), 7.37 – 7.28 (m, 2H), 7.17 – 7.09 (m, 1H), 7.09 – 7.00 (m, 2H), 6.92 (t, *J* = 7.5 Hz, 1H), 6.62 (d, *J* = 7.7 Hz, 1H), 6.44 – 6.39 (m, 1H), 6.35 – 6.29 (m, 2H), 5.55 (d, *J* = 10.4 Hz, 1H), 4.10 – 3.98 (m, 1H), 3.68 (s, 3H), 3.62 – 3.52 (m, 1H), 2.93 – 2.76 (m, 1H), 2.74 – 2.61 (m, 1H).¹³C NMR (101 MHz, Chloroform-d) δ 160.71, 151.47 (d, *J*_{C-P} = 7.5 Hz), 136.91 (d, *J*_{C-P} = 4.2 Hz), 132.52 (d, *J*_{C-P} = 83.0 Hz), 132.34 (d, *J*_{C-P} = 8.3 Hz), 131.96 (d, *J*_{C-P} = 2.9 Hz), 131.79 (d, *J*_{C-P} = 8.7 Hz), 131.71 (d, *J*_{C-P} = 3.2 Hz), 131.66 (d, *J*_{C-P} = 91.2 Hz), 130.10, 129.87, 129.28 (d, *J*_{C-P} = 2.2 Hz), 128.51 (d, *J*_{C-P} = 11.0 Hz), 128.34 (d, *J*_{C-P} = 11.3 Hz), 127.89 (d, *J*_{C-P} = 3.4 Hz), 127.50 (d, *J*_{C-P} = 3.0 Hz), 125.57 (d, *J*_{C-P} = 2.7 Hz), 109.49, 104.44, 103.35, 62.28 (d, *J*_{C-P} = 78.9 Hz), 55.21, 45.15, 25.91. ³¹P NMR (162 MHz, Chloroform-d) δ 32.23. HRMS (ESI) calcd. for C₂₈H₂₆NNaO₂P [M+Na]⁺: 462.1593. Found: 462.1576.

(2-(4-ethylphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)diphenylphosphine oxide (3ga)

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis . The reaction mixture was purified by silica gel column chromatography to afford the product **3ga**. (white solid, mp 156.6–158.9 °C, yield: 84%).

¹H NMR (400 MHz, Chloroform-d) δ 7.83 – 7.76 (m, 2H), 7.75 – 7.69 (m, 2H), 7.57 – 7.50 (m, 1H), 7.47 – 7.40 (m, 3H), 7.37 – 7.30 (m, 2H), 7.13 (t, *J* = 7.5 Hz, 1H), 7.05 (d, *J* = 7.6 Hz, 1H),

7.01 – 6.90 (m, 3H), 6.74 (d, *J* = 8.3 Hz, 2H), 6.65 (d, *J* = 7.8 Hz, 1H), 5.50 (d, *J* = 11.2 Hz, 1H), 4.07 – 3.94 (m, 1H), 3.59 – 3.46 (m, 1H), 2.88 – 2.75 (m, 1H), 2.66 – 2.58 (m, 1H), 2.52 (q, *J* = 7.6 Hz, 2H), 1.17 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 148.17 (d, $J_{C-P} = 8.8$ Hz), 136.93 (d, $J_{C-P} = 4.3$ Hz), 135.75, 132.46 (d, $J_{C-P} = 95.4$ Hz), 132.26 (d, $J_{C-P} = 8.4$ Hz), 131.82 (d, $J_{C-P} = 2.4$ Hz), 131.77 (d, $J_{C-P} = 8.6$ Hz), 131.71 (d, $J_{C-P} = 90.9$ Hz), 131.57 (d, $J_{C-P} = 2.7$ Hz), 129.95, 129.29 (d, $J_{C-P} = 2.2$ Hz), 128.45, 128.40 (d, J = 11.0 Hz), 128.24 (d, J = 11.2 Hz), 127.83 (d, $J_{C-P} = 3.3$ Hz), 127.29 (d, $J_{C-P} = 2.9$ Hz), 125.44 (d, $J_{C-P} = 2.6$ Hz), 117.57, 62.13 (d, $J_{C-P} = 80.3$ Hz), 45.59, 27.88, 25.28, 15.66. ³¹P NMR (162 MHz, Chloroform-d) δ 32.30. HRMS (ESI) calcd. for C₂₉H₂₈NNaOP [M+Na]⁺: 460.1801. Found: 460.1785.

(2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)diphenylphosphine oxide (3ha)

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3ha**. (white solid, mp 195.3–198.1 °C, yield: 84%).

¹H NMR (400 MHz, Chloroform-d) δ 7.81 – 7.65 (m, 4H), 7.56 -7.52 (m, 1H), 7.50 – 7.41 (m, 3H), 7.39 – 7.31 (m, 2H), 7.16 (t, J = 7.6 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 6.94 (t, J = 7.6 Hz, 1H), 6.83 (t, J = 8.5 Hz, 2H), 6.77 – 6.71 (m, 2H), 6.60 (d, J = 7.8 Hz, 1H), 5.40 (d, J = 10.9 Hz, 1H), 4.10 – 3.95 (m, 1H), 3.49 – 3.37 (m, 1H), 2.87 – 2.71 (m, 1H), 2.68 – 2.54 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 157.15 (d, $J_{C-F} = 239.3$ Hz), 146.83 (dd, J = 9.0, 2.8 Hz), 136.85 (d, $J_{C-P} = 4.5$ Hz), 132.26 (d, $J_{C-P} = 95.9$ Hz), 132.20 (d, $J_{C-P} = 8.7$ Hz), 131.93 (d, $J_{C-P} = 3.0$ Hz), 131.68 (d, $J_{C-P} = 9.0$ Hz), 131.67 (d, $J_{C-P} = 2.7$ Hz), 131.42 (d, $J_{C-P} = 91.2$ Hz), 129.62, 129.31 (d, $J_{C-P} = 3.4$ Hz), 125.59 (d, $J_{C-P} = 3.0$ Hz), 119.24 (d, $J_{C-F} = 7.8$ Hz), 115.60 (d, $J_{C-F} = 22.4$ Hz), 62.33 (d, $J_{C-P} = 80.1$ Hz), 46.28, 25.28. ³¹P NMR (162 MHz, Chloroform-d) δ 32.40. ¹⁹F NMR (377 MHz, Chloroform-d) δ -124.09. HRMS (ESI) calcd. for C₂₇H₂₃FNNaOP

[M+Na]⁺: 450.1394. Found: 450.1378.

(2-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)diphenylphosphine oxide (3ia)

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3ia**. (white solid, mp 180.2–181.8 °C, yield: 58%).

¹H NMR (400 MHz, Chloroform-d) δ 7.80 – 7.73 (m, 2H), 7.71 – 7.64 (m, 2H), 7.58 – 7.51 (m, 1H), 7.49 – 7.41 (m, 3H), 7.39 – 7.31 (m, 2H), 7.15 (t, J = 7.5 Hz, 1H), 7.10 – 7.03 (m, 3H), 6.94 (t, J = 7.5 Hz, 1H), 6.73 – 6.67 (m, 2H), 6.63 (d, J = 7.8 Hz, 1H), 5.48 (d, J = 10.1 Hz, 1H), 4.11 – 3.92 (m, 1H), 3.57 – 3.38 (m, 1H), 2.87 – 2.74 (m, 1H), 2.73 – 2.61 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 148.56 (d, $J_{C-P} = 7.2$ Hz), 136.68 (d, $J_{C-P} = 4.2$ Hz), 132.23 (d, $J_{C-P} = 8.5$ Hz), 132.06 (d, $J_{C-P} = 2.8$ Hz), 131.87 (d, $J_{C-P} = 107.2$ Hz), 131.82 (d, $J_{C-P} = 2.8$ Hz), 131.63 (d, $J_{C-P} = 8.8$ Hz), 130.95 (d, $J_{C-P} = 102.3$ Hz), 129.63, 129.20 (d, $J_{C-P} = 2.3$ Hz), 128.97, 128.49 (d, $J_{C-P} = 11.1$ Hz), 128.35 (d, $J_{C-P} = 11.3$ Hz), 127.76 (d, $J_{C-P} = 3.3$ Hz), 127.60 (d, $J_{C-P} = 2.9$ Hz), 125.67 (d, $J_{C-P} = 2.6$ Hz), 124.30, 117.75, 62.17 (d, $J_{C-P} = 78.9$ Hz), 45.25, 25.76. ³¹P NMR (162 MHz, Chloroform-d) δ 32.34. HRMS (ESI) calcd. for C₂₇H₂₃ClNNaOP [M+Na]⁺: 466.1098. Found: 466.1082.

(2-(4-bromophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)diphenylphosphine oxide (3ja)

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3ja**. (white solid, mp 197.6–200.4 °C, yield: 76%). ¹H NMR (400 MHz, Chloroform-d) δ 7.80 – 7.73 (m, 2H), 7.72 – 7.65 (m, 2H), 7.59 – 7.53 (m, 1H), 7.50 – 7.42 (m, 3H), 7.39 – 7.31 (m, 2H), 7.23 – 7.12 (m, 3H), 7.08 (d, *J* = 7.6 Hz, 1H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.69 – 6.56 (m, 3H), 5.48 (d, *J* = 10.0 Hz, 1H), 4.09 – 3.97 (m, 1H), 3.56 – 3.45 (m, 1H), 2.88 – 2.76 (m, 1H), 2.74 – 2.66 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 149.64 (d, *J*_{C-P} = 7.0 Hz), 137.27 (d, *J*_{C-P} = 4.2 Hz), 132.85 (d, *J*_{C-P} = 8.6 Hz), 132.61 (d, *J*_{C-P} = 2.8 Hz), 132.50, 132.38 (d, *J*_{C-P} = 2.8 Hz), 132.26 (d, *J*_{C-P} = 8.8 Hz), 130.37, 129.78 (d, *J*_{C-P} = 2.2 Hz), 129.08 (d, *J*_{C-P} = 11.0 Hz), 128.95 (d, *J*_{C-P} = 11.4 Hz), 128.40 (d, *J*_{C-P} = 3.5 Hz), 128.21 (d, *J*_{C-P} = 3.0 Hz), 126.26 (d, *J*_{C-P} = 2.6 Hz), 118.73, 112.17, 62.86 (d, *J*_{C-P} = 78.4 Hz), 45.75, 26.49. ³¹P NMR (162 MHz, Chloroform-d) δ 32.16. HRMS (ESI) calcd. for C₂₇H₂₃BrNNaOP [M+Na]⁺: 510.0593. Found: 510.0578.

diphenyl(2-(m-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphine oxide (3ka)

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3ka**. (white solid, mp 186.2–188.7 °C, yield: 99%).

¹H NMR (400 MHz, Chloroform-d) δ 7.85 – 7.77 (m, 2H), 7.73 – 7.66 (m, 2H), 7.55 -7.51 (m, 1H), 7.49 – 7.39 (m, 3H), 7.38 – 7.29 (m, 2H), 7.18 – 7.10 (m, 1H), 7.09 – 6.99 (m, 2H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.68 (d, *J* = 7.8 Hz, 1H), 6.63 – 6.53 (m, 3H), 5.55 (d, *J* = 10.6 Hz, 1H), 4.04 – 3.93 (m, 1H), 3.61 – 3.50 (m, 1H), 2.92 – 2.75 (m, 1H), 2.72 – 2.59 (m, 1H), 2.20 (s, 3H).¹³C NMR (101 MHz, Chloroform-d) δ 150.02 (d, *J*_{*C*-*P*} = 7.6 Hz), 138.78, 136.90 (d, *J*_{*C*-*P*} = 4.2 Hz), 132.35 (d, *J*_{*C*-*P*} = 86.0 Hz), 132.28 (d, *J*_{*C*-*P*} = 8.4 Hz), 131.86 (d, *J*_{*C*-*P*} = 2.9 Hz), 131.74 (d, *J*_{*C*-*P*} = 8.8 Hz), 131.62 (d, *J*_{*C*-*P*} = 1.8 Hz), 130.04, 129.20 (d, *J*_{*C*-*P*} = 2.2 Hz), 128.90, 128.41 (d, *J*_{*C*-*P*} = 11.1 Hz), 128.23 (d, *J*_{*C*-*P*} = 11.3 Hz), 127.82 (d, *J*_{*C*-*P*} = 79.6 Hz), 45.10, 25.70, 21.75. ³¹P NMR (162 MHz, Chloroform-d) δ 32.19. HRMS (ESI) calcd. for C₂₈H₂₆NNaOP [M+Na]⁺: 446.1644. Found: 446.1627.

(2-(3,4-dimethylphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)diphenylphosphine oxide (3la)

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3la**. (white solid, mp 168.9–171.7 °C, yield: 90%).

¹H NMR (400 MHz, Chloroform-d) δ 7.85 – 7.77 (m, 2H), 7.74 – 7.66 (m, 2H), 7.55 -7.51 (m, 1H), 7.48 – 7.40 (m, 3H), 7.38 – 7.29 (m, 2H), 7.13 (t, *J* = 7.5 Hz, 1H), 7.05 (d, *J* = 7.6 Hz, 1H), 6.98 – 6.86 (m, 2H), 6.67 (d, *J* = 7.8 Hz, 1H), 6.61 – 6.51 (m, 2H), 5.48 (d, *J* = 11.4 Hz, 1H), 4.05 – 3.89 (m, 1H), 3.55 – 3.47 (m, 1H), 2.89 – 2.73 (m, 1H), 2.67 – 2.53 (m, 1H), 2.12 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 148.34 (d, *J*_{C-P} = 8.9 Hz), 137.13, 136.92 (d, *J*_{C-P} = 4.4 Hz), 132.89, 132.42 (d, *J*_{C-P} = 95.5 Hz), 132.25 (d, *J*_{C-P} = 8.3 Hz), 131.80 (d, *J*_{C-P} = 98.3 Hz), 131.79 (d, *J*_{C-P} = 2.7 Hz), 131.78 (d, *J*_{C-P} = 8.8 Hz), 131.55 (d, *J*_{C-P} = 2.8 Hz), 130.12, 129.93, 129.28 (d, *J*_{C-P} = 2.2 Hz), 128.40 (d, *J*_{C-P} = 11.1 Hz), 128.22 (d, *J*_{C-P} = 11.1 Hz), 128.09, 127.85 (d, *J*_{C-P} = 3.2 Hz), 127.25 (d, *J*_{C-P} = 2.9 Hz), 125.41 (d, *J*_{C-P} = 2.6 Hz), 119.18, 114.96, 62.09 (d, *J*_{C-P} = 80.4 Hz), 45.58, 25.22, 20.18, 18.75. ³¹P NMR (162 MHz, Chloroform-d) δ 32.44. HRMS (ESI) calcd. for C₂₉H₂₈NNaOP [M+Na]⁺: 460.1801. Found: 460.1785.

(2-Phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)di-p-tolylphosphine oxide (3ab)

Reaction was proceeded according to General Method A with 0.1 V vs. Ag/AgCl constant potential electrolysis . The reaction mixture was purified by silica gel column chromatography to afford the product **3ab**. (white solid, mp 191.2–193.6 °C, yield: 85%).

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3ab**. (white solid, mp 191.2–193.6 °C, yield: 76%).

¹H NMR (400 MHz, Chloroform-d) δ 7.71 – 7.50 (m, 4H), 7.28 – 7.21 (m, 2H), 7.17 – 7.11 (m, 5H), 7.06 (d, *J* = 7.6 Hz, 1H), 6.95 (t, *J* = 7.5 Hz, 1H), 6.84 – 6.73 (m, 3H), 6.69 (d, *J* = 7.8 Hz, 1H), 5.52 (d, *J* = 11.1 Hz, 1H), 4.08 – 3.91 (m, 1H), 3.68 – 3.49 (m, 1H), 2.93 – 2.76 (m, 1H), 2.69 – 2.57 (m, 1H), 2.41 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 150.06 (d, *J*_{C-P} = 8.2 Hz), 142.26 (d, *J*_{C-P} = 3.2 Hz), 141.99 (d, *J*_{C-P} = 3.2 Hz), 136.79 (d, *J*_{C-P} = 4.3 Hz), 132.26 (d, *J*_{C-P} = 9.0 Hz), 131.69 (d, *J*_{C-P} = 9.3 Hz), 130.21, 129.21, 129.17 (d, *J*_{C-P} = 2.2 Hz), 129.09 (d, *J*_{C-P} = 2.1 Hz), 129.07, 128.94, 127.91 (d, *J*_{C-P} = 3.7 Hz), 127.27 (d, *J*_{C-P} = 3.3 Hz), 125.46 (d, *J*_{C-P} = 1.4 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ 32.70. HRMS (ESI) calcd. for C₂₉H₂₈NNaOP [M+Na]⁺: 460.1801. Found: 460.1782.

Bis(4-methoxyphenyl)(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphine oxide (3ac)

Reaction was proceeded according to General Method A with 0.1 V vs. Ag/AgCl constant potential electrolysis . The reaction mixture was purified by silica gel column chromatography to afford the product **3ac**. (white solid, mp 192.7–194.6 °C, yield: 80%).

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3ac**. (white solid, mp 192.7–194.6 °C, yield: 84%).

¹H NMR (400 MHz, Chloroform-d) δ 7.75 – 7.64 (m, 2H), 7.63 – 7.48 (m, 2H), 7.17 – 7.09 (m, 3H), 7.06 (d, *J* = 7.6 Hz, 1H), 7.01 – 6.90 (m, 3H), 6.88 – 6.72 (m, 6H), 5.49 (d, *J* = 11.6 Hz, 1H),

3.98 – 3.88 (m, 1H), 3.84 (s, 3H), 3.78 (s, 3H), 3.63 – 3.49 (m, 1H), 2.83 (m, 1H), 2.68 – 2.58 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 162.45 (d, J_{C-P} = 3.3 Hz), 162.23 (d, J_{C-P} = 3.2 Hz), 150.03 (d, J_{C-P} = 7.8 Hz), 136.75 (d, J_{C-P} = 4.5 Hz), 134.19 (d, J_{C-P} = 9.8 Hz), 133.55 (d, J_{C-P} = 10.4 Hz), 130.36, 129.10, 128.03 (d, J_{C-P} = 3.8 Hz), 127.29 (d, J_{C-P} = 3.5 Hz), 127.05, 125.51 (d, J_{C-P} = 3.1 Hz), 124.27 (d, J_{C-P} = 1.8 Hz), 123.78 (d, J_{C-P} = 101.5 Hz), 122.28 (d, J_{C-P} = 97.9 Hz), 116.47, 114.04, 113.92, 113.80, 62.42 (d, J_{C-P} = 80.8 Hz), 55.33, 55.26, 44.77, 25.71. ³¹P NMR (162 MHz, Chloroform-d) δ 32.15. HRMS (ESI) calcd. for C₂₉H₂₈NNaO₃P [M+Na]⁺: 492.1699. Found: 492.1682.

bis(4-fluorophenyl)(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphine oxide (3ad)

Reaction was proceeded according to General Method A with 0.1 V vs. Ag/AgCl constant potential electrolysis . The reaction mixture was purified by silica gel column chromatography to afford the product **3ad**. (white solid, mp 208.6–210.0 °C, yield: 72%).

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3ad**. (white solid, mp 208.6–210.0 °C, yield: 78%).

¹H NMR (400 MHz, Chloroform-d) δ 7.84 – 7.74 (m, 2H), 7.69 – 7.58 (m, 2H), 7.21 – 7.11 (m, 5H), 7.08 (d, *J* = 7.6 Hz, 1H), 7.06 – 6.96 (m, 3H), 6.84 – 6.76 (m, 3H), 6.73 (d, *J* = 7.8 Hz, 1H), 5.50 (d, *J* = 11.0 Hz, 1H), 4.01 – 3.87 (m, 1H), 3.62 – 3.51 (m, 1H), 2.90 – 2.74 (m, 1H), 2.71 – 2.58 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.22 (dd, *J* = 254.8, 3.5 Hz), 164.99 (dd, *J* = 254.5, 3.3 Hz), 149.86 (d, *J*_{C-P} = 7.9 Hz), 136.82 (d, *J*_{C-P} = 4.4 Hz), 134.73 (dd, *J* = 9.2, 9.2Hz), 134.15 (dd, *J* = 10.1, 8.7 Hz), 129.49, 129.32 (d, *J*_{C-P} = 2.2 Hz), 129.24, 127.95 (d, *J*_{C-P} = 98.4 Hz), 127.78 (d, *J*_{C-P} = 3.3 Hz), 127.65 (dd, *J* = 13.6, 3.0 Hz), 126.99 (d, *J* = 96.0 Hz), 125.70 (d, *J*_{C-P} = 2.6 Hz), 120.00, 117.00, 116.00 (dd, *J* = 21.0, 12.1 Hz), 115.67 (dd, *J* = 21.2, 12.4 Hz), 62.19 (d,

 $J_{C-P} = 81.4$ Hz), 45.29, 25.60. ³¹P NMR (162 MHz, Chloroform-d) δ 31.05. ¹⁹F NMR (377 MHz, Chloroform-d) δ -106.32, -106.62. HRMS (ESI) calcd. for C₂₇H₂₂F₂NNaOP [M+Na]⁺: 468.1299. Found: 468.1282.

bis(3,5-dimethylphenyl)(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphine oxide (3ae)

Reaction was proceeded according to General Method A with 0.1 V vs. Ag/AgCl constant potential electrolysis . The reaction mixture was purified by silica gel column chromatography to afford the product **3ae**. (white solid, mp 179.9–182.2 °C, yield: 84%).

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3ae**. (white solid, mp 179.9–182.2 °C, yield: 92%).

¹H NMR (400 MHz, Chloroform-d) δ 7.35 – 7.24 (m, 4H), 7.19 – 7.11 (m, 4H), 7.09 – 7.03 (m, 2H), 6.94 (t, J = 7.5 Hz, 1H), 6.83 (d, J = 8.2 Hz, 2H), 6.77 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 7.8 Hz, 1H), 5.53 (d, J = 10.6 Hz, 1H), 4.10 – 3.96 (m, 1H), 3.63 – 3.47 (m, 1H), 2.88 – 2.74 (m, 1H), 2.70 – 2.58 (m, 1H), 2.29 (s, 6H), 2.20 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 150.19 (d, J_{C-P} = 7.3 Hz), 137.98 (d, J_{C-P} = 11.7 Hz), 137.76 (d, J_{C-P} = 11.9 Hz), 137.02 (d, J_{C-P} = 4.2 Hz), 133.48 (d, J_{C-P} = 2.9 Hz), 133.27 (d, J_{C-P} = 2.9 Hz), 131.97 (d, J_{C-P} = 94.8 Hz), 131.21 (d, J_{C-P} = 89.9 Hz), 130.25, 129.79 (d, J_{C-P} = 8.5 Hz), 129.37 (d, J_{C-P} = 8.8 Hz), 129.08 (d, J_{C-P} = 2.3 Hz), 129.02, 127.93 (d, J_{C-P} = 7.3 Hz), 127.27 (d, J_{C-P} = 2.9 Hz), 125.33 (d, J_{C-P} = 2.6 Hz), 119.41, 117.00, 61.69 (d, J_{C-P} = 78.6 Hz), 45.21, 25.84, 21.29, 21.24. ³¹P NMR (162 MHz, Chloroform-d) δ 33.37. HRMS (ESI) calcd. for C₃₁H₃₂NNaOP [M+Na]⁺: 488.2114. Found: 488.2097.

di(naphthalen-2-yl)(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphine oxide (3af)

Reaction was proceeded according to General Method A with 0.1 V vs. Ag/AgCl constant potential electrolysis . The reaction mixture was purified by silica gel column chromatography to afford the product **3af**. (white solid, mp 197.4–200.1 °C, yield: 79%).

¹H NMR (400 MHz, Chloroform-d) δ 8.47 (d, J = 12.6 Hz, 1H), 8.35 (d, J = 12.7 Hz, 1H), 7.91 – 7.83 (m, 3H), 7.81 – 7.68 (m, 5H), 7.62 – 7.41 (m, 4H), 7.13 (t, J = 7.7 Hz, 3H), 7.06 (d, J = 7.7 Hz, 1H), 6.91 – 6.84 (m, 3H), 6.78 (t, J = 7.3 Hz, 1H), 6.69 (d, J = 7.8 Hz, 1H), 5.78 (d, J = 11.1 Hz, 1H), 4.17 – 4.03 (m, 1H), 3.67 – 3.53 (m, 1H), 2.90 – 2.75 (m, 1H), 2.68 – 2.58 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 150.16 (d, $J_{C-P} = 8.5$ Hz), 136.89 (d, $J_{C-P} = 4.6$ Hz), 134.76, 134.69 (d, $J_{C-P} = 2.3$ Hz), 134.60 (d, $J_{C-P} = 2.7$ Hz), 133.81 (d, $J_{C-P} = 8.4$ Hz), 132.60 (d, $J_{C-P} = 10.9$ Hz), 129.92, 129.76 (d, $J_{C-P} = 89.9$ Hz), 129.40 (d, $J_{C-P} = 2.5$ Hz), 129.22, 129.03 (d, $J_{C-P} = 14.8$ Hz), 128.29, 128.16 (d, $J_{C-P} = 10.8$ Hz), 126.94, 126.76 (d, $J_{C-P} = 4.1$ Hz), 126.68, 126.66 (d, $J_{C-P} = 4.7$ Hz), 125.65 (d, $J_{C-P} = 3.1$ Hz), 125.36 (d, $J_{C-P} = 91.0$ Hz), 119.90, 117.34, 61.85 (d, $J_{C-P} = 80.1$ Hz), 45.53, 25.49. ³¹P NMR (162 MHz, Chloroform-d) δ 32.89. HRMS (ESI) calcd. for C₃₅H₂₈NNaOP [M+Na]⁺: 532.1801. Found: 532.1783.

Diphenyl (2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (3ag)

Reaction was proceeded according to General Method A with 0.1 V vs. Ag/AgCl constant potential electrolysis. The reaction mixture was purified by silica gel column chromatography to

afford the product 3ag. (white solid, mp 105.6-108.3 °C, yield: 75%).

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3ag**. (white solid, mp 105.6–108.3 °C, yield: 78%).

¹H NMR (400 MHz, Chloroform-d) δ 7.53- 7.50 (m, 1H), 7.28- 7.09 (m, 10H), 7.07- 7.00 (m, 5H), 6.89 – 6.79 (m, 3H), 5.59 (d, *J* = 19.9 Hz, 1H), 4.14 – 3.96 (m, 1H), 3.69- 3.63 (m, 1H), 3.12 – 2.94 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 150.82 (d, *J*_{C-P} = 10.6 Hz), 150.37 (d, *J*_{C-P} = 11.5 Hz), 149.28 (d, *J*_{C-P} = 7.0 Hz), 136.77 (d, *J*_{C-P} = 6.2 Hz), 129.64, 129.57 (d, *J*_{C-P} = 1.1 Hz) ,129.45, 129.28, 129.05 (d, *J*_{C-P} = 3.1 Hz), 128.43 (d, *J*_{C-P} = 5.4 Hz), 127.97 (d, *J*_{C-P} = 4.2 Hz), 126.24 (d, *J*_{C-P} = 3.4 Hz), 125.07 (d, *J*_{C-P} = 1.6 Hz), 124.86 (d, *J*_{C-P} = 1.3 Hz), 120.67 (d, *J*_{C-P} = 4.5 Hz), 120.41 (d, *J*_{C-P} = 4.4 Hz), 119.17, 115.51, 59.19 (d, *J*_{C-P} = 160.6 Hz), 44.03, 26.65. ³¹P NMR (162 MHz, Chloroform-d) δ 16.37. HRMS (ESI) calcd. for C₂₇H₂₄NNaO₃P [M+Na]⁺: 464.1386. Found: 464.1371.

Bis(4-chlorophenyl)(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphine oxide (3ah)

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis . The reaction mixture was purified by silica gel column chromatography to afford the product **3ah**. (white solid, mp 196.2–199.4 °C, yield: 48%).

¹H NMR (400 MHz, Chloroform-d) δ 7.73 - 7.68 (m, 2H), 7.59 - 7.55 (m, 2H), 7.47 - 7.41 (m, 2H), 7.36 - 7.29 (m, 2H), 7.21 - 7.13 (m, 3H), 7.09 (d, *J* = 7.6 Hz, 1H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.86 - 6.77 (m, 3H), 6.72 (d, *J* = 7.7 Hz, 1H), 5.50 (d, *J* = 11.0 Hz, 1H), 4.00 - 3.87 (m, 1H), 3.62 - 3.51 (m, 1H), 2.90 - 2.75 (m, 1H), 2.70 - 2.59 (m, 1H).¹³C NMR (101 MHz, Chloroform-d) δ 149.87 (d, *J*_{C-P} = 8.5 Hz), 138.85 (d, *J*_{C-P} = 3.8 Hz), 138.52 (d, *J*_{C-P} = 3.7 Hz), 136.80 (d, *J*_{C-P} = 4.8

Hz), 133.54 (d, $J_{C-P} = 9.4$ Hz), 133.01 (d, $J_{C-P} = 9.9$ Hz), 130.43 (d, $J_{C-P} = 96.3$ Hz), 129.64 (d, $J_{C-P} = 103.1$ Hz), 129.43 (d, $J_{C-P} = 2.7$ Hz), 129.29, 129.25, 128.93 (d, $J_{C-P} = 11.7$ Hz), 128.72 (d, $J_{C-P} = 11.9$ Hz), 127.70 (d, $J_{C-P} = 3.9$ Hz), 125.76 (d, $J_{C-P} = 3.1$ Hz), 120.22, 117.28, 61.99 (d, $J_{C-P} = 81.1$ Hz), 45.49, 25.47. ³¹P NMR (162 MHz, Chloroform-d) δ 31.22. HRMS (ESI) calcd. for C₂₇H₂₂C₁₂NNaOP [M+Na]⁺: 500.0708. Found: 500.0691.

dimethyl (2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (3ai)

Reaction was proceeded according to General Method A with 0.1 V vs. Ag/AgCl constant potential electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3ai**. (white solid, mp 85.9–87.9 °C, yield: 81%).

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis . The reaction mixture was purified by silica gel column chromatography to afford the product **3ai**. (white solid, mp 85.9–87.9 °C, yield: 89%).

¹H NMR (400 MHz, Chloroform-d) δ 7.38 – 7.32 (m, 1H), 7.29 – 7.23 (m, 2H), 7.21 – 7.12 (m, 3H), 6.97 (d, J = 8.3 Hz, 2H), 6.80 (t, J = 7.3 Hz, 1H), 5.20 (d, J = 19.9 Hz, 1H), 4.09 – 3.94 (m, 1H), 3.79 – 3.53 (m, 7H), 3.17 – 2.86 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 149.27 (d, $J_{C-P} = 6.2$ Hz), 136.44 (d, $J_{C-P} = 5.9$ Hz), 130.43, 129.27, 128.86 (d, $J_{C-P} = 3.0$ Hz), 127.97 (d, $J_{C-P} = 4.8$ Hz), 127.57 (d, $J_{C-P} = 4.0$ Hz), 126.08 (d, $J_{C-P} = 3.2$ Hz), 118.71, 114.81, 58.78 (d, $J_{C-P} = 159.4$ Hz), 53.95 (d, $J_{C-P} = 7.4$ Hz), 52.97 (d, $J_{C-P} = 7.9$ Hz), 43.59, 26.71. ³¹P NMR (162 MHz, Chloroform-d) δ 26.01. HRMS (ESI) calcd. for C₁₇H₂₀NNaO₃P [M+Na]⁺: 340.1073. Found: 340.1060.

diethyl (2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (3aj)

Reaction was proceeded according to General Method A with 0.1 V vs. Ag/AgCl constant potential electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3aj**. (white solid, mp 61.4–63.8 °C, yield: 70%).

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3aj**. (white solid, mp 61.4–63.8 °C, yield: 62%).

¹H NMR (400 MHz, Chloroform-d) δ 7.41 – 7.34 (m, 1H), 7.27 – 7.21 (m, 2H), 7.20 – 7.12 (m, 3H), 6.97 (d, J = 8.3 Hz, 2H), 6.79 (t, J = 7.2 Hz, 1H), 5.18 (d, J = 20.0 Hz, 1H), 4.14 – 3.93 (m, 4H), 3.93 – 3.82 (m, 1H), 3.65-3.59 (m, 1H), 3.15 – 2.91 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 1.13 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 149.42 (d, $J_{C-P} = 6.1$ Hz), 136.46 (d, $J_{C-P} = 5.8$ Hz), 130.69, 129.14, 128.75 (d, $J_{C-P} = 3.0$ Hz), 128.14 (d, $J_{C-P} = 5.1$ Hz), 127.43 (d, $J_{C-P} = 3.8$ Hz), 125.87 (d, $J_{C-P} = 2.9$ Hz), 118.47, 114.81, 63.32 (d, $J_{C-P} = 7.7$ Hz), 62.34 (d, $J_{C-P} = 8.1$ Hz), 58.83 (d, $J_{C-P} = 159.2$ Hz), 43.50, 26.79, 16.47 (d, $J_{C-P} = 5.6$ Hz), 16.38 (d, $J_{C-P} = 6.0$ Hz). ³¹P NMR (162 MHz, Chloroform-d) δ 23.79. HRMS (ESI) calcd. for C₁₉H₂₄NNaO₃P [M+Na]⁺: 368.1386. Found: 368.1373.

Dibutyl (2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (3ak)

Reaction was proceeded according to General Method A with 0.1 V vs. Ag/AgCl constant potential electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3ak**. (white solid, mp 46.3–49.0 °C, yield: 64%).

Reaction was proceeded according to General Method B with 10 mA constant current electrolysis. The reaction mixture was purified by silica gel column chromatography to afford the product **3ak**. (white solid, mp 46.3–49.0 °C, yield: 43%).

¹H NMR (400 MHz, Chloroform-d) δ 7.40 – 7.34 (m, 1H), 7.27 – 7.21 (m, 2H), 7.21 – 7.11 (m, 3H), 6.97 (d, *J* = 8.3 Hz, 2H), 6.78 (t, *J* = 7.2 Hz, 1H), 5.20 (d, *J* = 19.9 Hz, 1H), 4.09 – 3.74 (m,

5H), 3.66-3.60 (m, 1H), 3.16 – 2.89 (m, 2H), 1.62 – 1.51 (m, 2H), 1.49 – 1.40 (m, 2H), 1.39 – 1.16 (m, 4H), 0.88 (t, J = 7.3 Hz, 3H), 0.81 (t, J = 7.4 Hz, 3H).¹³C NMR (101 MHz, Chloroform-d) δ 149.36 (d, $J_{C-P} = 5.8$ Hz), 136.41 (d, $J_{C-P} = 5.9$ Hz), 130.79, 129.12, 128.73 (d, $J_{C-P} = 3.0$ Hz), 128.13 (d, $J_{C-P} = 5.0$ Hz), 127.40 (d, $J_{C-P} = 3.9$ Hz), 125.85 (d, $J_{C-P} = 3.3$ Hz), 118.41, 114.77, 66.92 (d, $J_{C-P} = 7.8$ Hz), 65.98 (d, $J_{C-P} = 8.5$ Hz), 58.75 (d, $J_{C-P} = 158.5$ Hz), 43.46, 32.58 (dd, $J_{C-P} = 6.2$, 6.4 Hz), 26.84, 18.68 (d, $J_{C-P} = 6.6$ Hz), 13.57 (d, $J_{C-P} = 4.5$ Hz). ³¹P NMR (162 MHz, Chloroform-d) δ 23.93. HRMS (ESI) calcd. for C₂₃H₃₂NNaO₃P [M+Na]⁺: 424.2012. Found: 424.1997.

5. ¹H and ¹³C spectra of products

