Supporting Information

Metal-free Desulfurizing Radical Reductive C-C Coupling of Thiols and Alkenes

Qixue Qin,[†] Weijin Wang,[†] Cheng Zhang,[†] Song Song, *[†] Ning Jiao*,^{†,‡}

* State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China

[‡] Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China

E-mail: ssong@bjmu.edu.cn; jiaoning@pku.edu.cn;

Fax: (+86)10-82805297

Table of Contents

1.	General Information	S2
2.	General Procedure	S2
3.	Analytical Data for All Products	S3
4.	NMR Spectra for All Compounds	S19

1. General information

All manipulations were conducted with a standard Schlenk technique under argon atmosphere (1 atm). ¹H-NMR spectra were recorded with a Bruker AVIII-400 spectrometer. Chemical shifts (in ppm) were referenced to CDCl₃ (δ = 7.26 ppm) or TMS (δ = 0.00 ppm) as an internal standard. ¹³C-NMR spectra were obtained by the same NMR spectrometer and were calibrated with CDCl₃ (δ = 77.00 ppm). Mass spectra were recorded by PE SCLEX QSTAR spectrometer. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

2. General procedure of reductive C-C coupling of styrenes and thiols

General procedure A (for styrenes substrates): a 25 mL Schlenk tube was equipped with a rubber septum and magnetic stir bar and was charged with AIBN (4.5 mg, 5.0 mol %). The tube was evacuated and backfilled with Ar for 3 times. Styrene **1** (0.5 mmol, 1.0 equiv), thiol **2** (0.75 mmol, 1.5 equiv), DCE (4.0 mL), P(OEt)₃ (105 uL, 1.2 equiv) were added respectively with syringe under Ar. The mixture was stirred at 80 \mathbb{C} under Ar for 12 h. The mixture was diluted with water (10 mL) and extracted with DCM (3 × 10 mL). The combined organic extracts were washed with a saturated solution of NaCl (15 mL), dried over MgSO₄, and evaporated in vacuo. The residue was purified by chromatography on silica gel (PE/EA = 50:1) to afford product **3** or **5**.

General procedure B (for aliphatic olefins): a 25 mL Schlenk tube was equipped with a rubber septum and magnetic stir bar and was charged with AIBN (4.5 mg, 5.0 mol %) and Thiol **2b** (0.5 mmol, 1.0 equiv). The tube was evacuated and backfilled with Ar for 3 times. Then aliphatic olefins **1** (0.75 mmol, 1.5 equiv), DCE (4.0 mL), $P(OEt)_3$ (105 uL, 1.2 equiv) were added respectively with syringe under Ar. The mixture was stirred at 80 °C under Ar for 12 h. The mixture was diluted with water (10 mL) and extracted with DCM (3 × 10 mL). The combined organic extracts were washed with a saturated solution of NaCl (15 mL), dried over MgSO₄, and evaporated in vacuo. The residue was purified by chromatography on silica gel (PE/EA = 50:1) to afford product **4**.

3. Analytical Data for All Products

methyl 4-(p-tolyl)butanoate (3a)¹: According to general procedure A , a solution of 1a (0.5 mmol, 59.1 mg), Methyl thioglycolate (0.75 mmol, 65 uL), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford 3a (79.7 mg, 83%) as colorless oil after purification on silica gel (PE:EA=50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.17-7.06 (m, 4H), 3.70 (s, 3H), 2.65 (t, J = 7.6 Hz, 2H), 2.37 (t, J = 7.2 Hz, 2H), 2.36 (s, 3H), 2.05-1.92 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 138.3, 135.4, 129.1, 128.4, 51.5, 34.7, 33.4, 26.6, 21.0. MS (70 ev): m/z (%): 58.8 (85), 104.9 (100), 117.8 (55), 191.9 (M+, 15).

methyl 4-(4-methoxyphenyl)butanoate (3b): According to general procedure A, a solution of 1b (0.5 mmol, 67.1 mg), Methyl thioglycolate (0.75 mmol, 65 uL), AIBN

(0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **3b** (95.7 mg, 92%) as colorless oil after purification on silica gel (PE:EA=50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, *J* = 8.6 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 3.81 (s, 3H), 3.69 (s, 3H), 2.62 (t, *J* = 7.6 Hz, 2H), 2.34 (t, *J* = 7.5 Hz, 2H), 1.98-1.91 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 157.9, 133.5, 129.4, 113.8, 55.3, 51.5, 34.2, 33.4, 26.7. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₂H₁₇O₃: 209.1178; found: 209.1178.

methyl 4-(4-acetoxyphenyl)butanoate (**3c**): According to general procedure A , a solution of **1c** (0.5 mmol, 81.1 mg), Methyl thioglycolate (0.75 mmol, 65 uL), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **3c** (89.7 mg, 76%) as colorless oil after purification on silica gel (PE:EA=15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, J = 8.5 Hz, 2H), 7.02 (d, J = 8.5 Hz, 2H), 3.69 (s, 3H), 2.69-2.63 (m, 2H), 2.36 (t, J = 7.4 Hz, 2H), 2.31 (s, 3H), 2.05-1.92 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 169.7, 148.9, 138.9, 129.4, 121.4, 51.6, 34.5, 33.3, 26.4, 21.2. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₃H₁₇O₄: 237.1127; found: 237.1131.

methyl 4-(4-chlorophenyl)butanoate (**3d**)¹: According to general procedure A , a solution of **1d** (0.5 mmol, 69.2 mg), Methyl thioglycolate (0.75 mmol, 65 uL), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **3d** (71.1 mg, 67%) as colorless oil after purification on silica gel (PE:EA=30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 8.4 Hz, 2H), 7.13 (d, J = 8.4 Hz, 2H), 3.69 (s, 3H), 2.72-2.57 (m, 2H), 2.34 (t, J = 7.4 Hz, 2H), 1.99-1.91 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 139.8, 131.7, 129.8, 128.5, 51.6, 34.4, 33.2, 26.4. MS (70 ev): m/z (%): 58.8 (95), 88.7 (50), 124.8 (100), 211.7 (M+, 10).

methyl 4-(4-aminophenyl)butanoate (3e): According to general procedure A , a solution of **1e** (0.5 mmol, 59.6 mg), Methyl thioglycolate (0.75 mmol, 65 uL), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **3e** (72.4 mg, 75%) as colorless oil after purification on silica gel (PE:EA=3:1). ¹H NMR (400 MHz, CDCl₃) δ 6.99 (d, J = 8.3 Hz, 2H), 6.64 (d, J = 8.4 Hz, 2H), 3.68 (s, 3H), 3.54 (s, 2H), 2.56 (t, J = 7.5 Hz, 2H), 2.34 (t, J = 7.5 Hz, 2H), 1.96-1.88 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 144.5, 131.4, 129.3, 115.3, 51.5, 34.3, 33.4, 26.8. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₁H₁₆NO₂: 194.1181; found: 194.1182.

methyl 4-(2-bromophenyl)butanoate (**3f**)¹: According to general procedure A , a solution of **1f** (0.5 mmol, 91.5 mg), Methyl thioglycolate (0.75 mmol, 65 uL), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **3f** (91.0 mg, 71%) as colorless oil after purification on silica gel (PE:EA=50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.1 Hz, 1H), 7.32-7.21 (m, 2H), 7.10-7.05 (m, 1H), 3.70 (s, 3H), 2.80 (t, J = 7.6 Hz, 2H), 2.47-2.37 (m, 2H), 2.09-1.91 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 140.7, 132.9, 130.5, 127.8, 127.5, 124.5, 51.6, 35.3, 33.4, 25.0. GC-MS (EI) ([M]) Calcd. for C₁₁H₁₃ClO₂: 212.1; found: 211.7. MS (70 ev): m/z (%): 58.9 (100), 88.8 (85), 168.8 (60), 255.8 (M+, 5).

methyl 4-(m-tolyl)butanoate (3g)^2: According to general procedure A, a solution of **1g** (0.5 mmol, 59.1 mg), Methyl thioglycolate (0.75 mmol, 65 uL), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **3g** (86.4 mg, 90%) as colorless oil after purification on

silica gel (PE:EA=50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.21 (t, *J* = 7.9 Hz, 1H), 7.08-6.99 (m, 3H), 3.70 (s, 3H), 2.65 (t, *J* = 7.2 Hz, 2H), 2.37 (s, 3H), 2.36 (t, *J* = 7.4 Hz, 2H) 2.02-1.95 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 141.3, 137.9, 129.3, 128.3, 126.7, 125.5, 51.5, 35.1, 33.5, 26.5, 21.4. MS (70 ev): m/z (%): 58.8 (100), 104.9 (85), 117.8 (55), 191.9 (M+, 10).

methyl 4-(2-hydroxyphenyl)butanoate (3h): According to general procedure A , a solution of **1a** (0.5 mmol, 60.0 mg), Methyl thioglycolate (0.75 mmol, 65 uL), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **3h** (62.1 mg, 64%) as colorless oil after purification on silica gel (PE:EA=15:1). ¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.09 (m, 2H), 6.91 – 6.83 (m, 2H), 6.49 (s, 1H), 3.74 (s, 3H), 2.69 (t, *J* = 7.6 Hz, 2H), 2.43 (t, *J* = 6.9 Hz, 2H), 1.99-1.91 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 175.4, 154.3, 130.2, 127.6, 127.2, 120.4, 115.8, 51.9, 32.9, 29.4, 24.9. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₁H₁₅O₃: 195.1021; found: 195.1024.

methyl 4-(2-(hydroxymethyl)phenyl)butanoate (**3i**): According to general procedure A , a solution of **1i** (0.5 mmol, 67.1 mg), Methyl thioglycolate (0.75 mmol, 65 uL), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **3i** (55.1 mg, 53%) as colorless oil after purification on silica gel (PE:EA=5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (m, 1H), 7.31-7.17 (m, 3H), 4.72 (s, 2H), 3.68 (s, 3H), 2.74 (t, *J* = 8.0 Hz, 2H), 2.41 (t, *J* = 7.1 Hz, 2H), 2.23 (s, 1H), 2.08-1.86 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 139.7, 138.5, 129.5, 128.7, 127.9, 126.5, 63.1, 51.6, 33.5, 31.6, 26.2. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₂H₁₇O₃: 209.1178; found: 209.1176.

methyl 4-phenylpentanoate (**3j**)¹: According to general procedure A , a solution of **1j** (0.5 mmol, 59.1 mg), Methyl thioglycolate (0.75 mmol, 65 uL), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **3j** (83.5 mg, 87%) as colorless oil after purification on silica gel (PE:EA=50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.30 (m, 2H), 7.25-7.18 (m, 3H), 3.65 (s, 3H), 2.87-2.67 (m, 1H), 2.37-2.12 (m, 2H), 2.07-1.84 (m, 2H), 1.31 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 146.2, 128.4, 127.0, 126.2, 51.5, 39.4, 33.2, 32.3, 22.2. MS (70 ev): m/z (%): 58.8 (65), 76.8 (55), 104.9 (100), 191.9 (M+, 10).

3k

methyl 4-(naphthalen-2-yl)butanoate (**3k**)¹: According to general procedure A, a solution of **1k** (0.5 mmol, 77.1 mg), Methyl thioglycolate (0.75 mmol, 65 uL), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **3k** (87.8 mg, 77%) as colorless oil after purification on silica gel (PE:EA=50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.77 (m, 3H), 7.66 (s, 1H), 7.56-7.42 (m, 2H), 7.37 (dd, J = 8.4, 1.8 Hz, 1H), 3.71 (s, 3H), 2.86 (t, J = 7.5 Hz, 2H), 2.41 (t, J = 7.5 Hz, 2H), 2.18-2.04 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 174.0, 138.9, 133.6, 132.1, 128.0, 127.6, 127.5, 127.3, 126.6, 126.0, 125.3, 51.5, 35.3, 33.4, 26.4. MS (70 ev): m/z (%): 62.9 (100), 115.9 (100), 197.0 (100), 228.1 (M+, 100).

31

methyl 4-(pyridin-2-yl)butanoate (3l): According to general procedure A, a solution of **1l** (0.5 mmol, 53.1 mg), Methyl thioglycolate (0.75 mmol, 65 uL), AIBN (0.025

mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **3l** (50.1 mg, 56%) as colorless oil after purification on silica gel (PE:EA=20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.54-8.51 (m, 1H), 7.59 (td, *J* = 7.7, 1.9 Hz, 1H), 7.19-7.06 (m, 2H), 3.67 (s, 3H), 2.83 (t, *J* = 7.2 Hz, 2H), 2.38 (t, *J* = 7.5 Hz, 2H), 2.12-2.04 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 161.1, 149.3, 136.3, 122.9, 121.2, 51.5, 37.4, 33.4, 24.8. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₀H₁₄NO₂: 180.1025; found: 180.1024.

methyl

4-((S)-2,8-dimethyl-2-((4S,8S)-4,8,12-trimethyltridecyl)chroman-6-yl)butanoate

(**3m**): According to general procedure A, a solution of **1m** (0.5 mmol, 206.3 mg), Methyl thioglycolate (0.75 mmol, 65 uL), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **3m** (141.0 mg, 58%) as colorless oil after purification on silica gel (PE:EA=50:1). ¹H NMR (400 MHz, CDCl₃) δ 6.79 (s, 1H), 6.73 (s, 1H), 3.69 (s, 3H), 2.76-2.71 (m, 2H), 2.54 (t, *J* = 7.6 Hz, 2H), 2.36 (t, *J* = 7.5 Hz, 2H), 2.16 (s, 3H), 1.97-1.89 (m, 2H), 1.86-1.72 (m, 2H), 1.67-1.02 (m, 21H), 1.28 (s, 3H), 0.90-0.86 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 150.3, 131.4, 128.5, 126.6, 126.0, 120.2, 75.8, 51.5, 40.2, 39.4, 37.5, 37.4, 37.3, 34.4, 33.6, 32.8, 32.7, 31.3, 28.0, 26.8, 24.8, 24.5, 24.3, 22.74, 22.65, 22.4, 21.0, 19.8, 19.7, 16.1. HRMS (ESI) ([M+NH₄]⁺) Calcd. for C₃₂H₅₈NO₃: 504.4417; found: 504.4425.

methyl4-(3-(4-methoxyphenyl)-4-oxo-4H-chromen-7-yl)butanoate(3n):According to general procedure A, a solution of 1n (0.5 mmol, 139.2 mg), Methylthioglycolate (0.75 mmol, 65 uL), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol,

105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **3n** (87.3 mg, 50%) as white solid after purification on silica gel (PE:EA=4:1). ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.1 Hz, 1H), 7.98 (s, 1H), 7.52 (d, J = 8.8 Hz, 2H), 7.33-7.24 (m, 2H), 6.99 (d, J = 8.7 Hz, 2H), 3.86 (s, 3H), 3.70 (s, 3H), 2.81 (t, J = 7.2 Hz, 2H), 2.39 (t, J = 7.3 Hz, 2H), 2.17-1.97 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 173.6, 159.6, 156.3, 152.4, 148.2, 130.1, 126.4, 125.9, 124.9, 124.2, 122.8, 117.3, 113.9, 55.4, 51.7, 35.1, 33.2, 25.9. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₁H₂₁O₅: 353.1389; found: 353.1388.

methyl

4-((**8R**,**9S**,**13S**,**14S**)-**13**-methyl-**17**-**oxo**-**7**,**8**,**9**,**11**,**12**,**13**,**14**,**15**,**16**,**17**-**decahydro**-**6H**-**cy clopenta[a]phenanthren-3-yl)butanoate** (**30**): According to general procedure A , a solution of **10** (0.5 mmol, 140.0 mg), Methyl thioglycolate (0.75 mmol, 65 uL), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **30** (128.2 mg, 72%) as white solid after purification on silica gel (PE:EA=10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 1.0 Hz, 1H), 7.02-6.98 (m, 1H), 6.95 (s, 1H), 3.69 (s, 3H), 2.94-2.90 (m, 2H), 2.61 (t, *J* = 7.6 Hz, 2H), 2.53 (dd, *J* = 18.7, 8.6 Hz, 1H), 2.47-2.41 (m, 1H), 2.37 (t, *J* = 7.5 Hz, 2H), 2.33-2.26 (m, 1H), 2.21-2.11 (m, 1H), 2.12-2.01 (m, 2H), 2.01-1.91 (m, 3H), 1.76-1.38 (m, 6H), 0.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 220.9, 174.0, 138.9, 137.4, 136.4, 129.1, 125.9, 125.4, 51.5, 50.5, 48.0, 44.3, 38.2, 35.9, 34.6, 33.5, 31.6, 29.4, 26.6, 26.5, 25.8, 21.6, 13.9. HRMS (ESI) ([M+Na]⁺) Calcd. for C₂₃H₃₀NaO₃: 377.2093; found: 377.2094.

(3S,5S,8R,9S,10S,13S,14S)-10,13-dimethyl-17-oxohexadecahydro-1H-cyclopenta[a]phenanthren-3-yl 4-(4-methoxy-4-oxobutyl)benzoate (3p): According to general procedure A , a solution of 1p (0.5 mmol, 210.0 mg), Methyl thioglycolate (0.75 mmol, 65 uL), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford 3p (137.1 mg, 55%) as white solid after purification on silica gel (PE:EA=5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.3 Hz, 2H), 7.24 (d, *J* = 8.3 Hz, 2H), 4.98-4.89 (m, 1H), 3.67 (s, 3H), 2.70 (t, *J* = 7.6 Hz, 2H), 2.54 – 2.40 (m, 1H), 2.33 (t, *J* = 7.4 Hz, 2H), 2.13-2.03 (m, 1H), 2.02-1.89 (m, 4H), 1.86-1.21 (m, 16H), 1.18-0.95 (m, 2H), 0.91 (s, 3H), 0.87 (s, 3H), 0.82-0.70 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 221.2, 173.7, 166.1, 146.7, 129.7, 128.8, 128.4, 73.9, 54.3, 51.6, 51.4, 47.8, 44.7, 36.8, 35.9, 35.7, 35.2, 35.1, 34.1, 33.2, 31.5, 30.8, 28.3, 27.5, 26.2, 21.8, 20.5, 13.8, 12.3. HRMS (ESI) ([M+Na]⁺) Calcd. for C₃₁H₄₃O₅: 495.3110; found: 495.3121.

2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl 4-(4-methoxy-4-oxobutyl)benzoate (**3q**): According to general procedure A , a solution of **1q** (0.5 mmol, 150.0 mg), Methyl thioglycolate (0.75 mmol, 65 uL), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **3q** (92.1 mg, 50%) as white solid after purification on silica gel (PE:EA=1:1). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.86 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 9.7 Hz, 2H), 4.73-4.69 (m, 2H), 4.68-4.65 (m, 2H), 3.69 (s, 3H), 2.73 (t, *J* = 7.6 Hz, 2H), 2.50 (s, 3H), 2.35 (t, *J* = 7.4 Hz, 2H), 1.99 (p, *J* = 7.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ

173.6, 166.0, 150.9, 147.8, 133.3, 129.8, 128.8, 126.9, 62.7, 51.6, 45.3, 35.1, 33.2, 26.0, 14.4. HRMS (ESI) ($[M+H]^+$) Calcd. for $C_{18}H_{22}N_3O_6$: 376.1509; found: 376.1506.

1-(4-methoxyphenyl)-2-(tetrahydrofuran-3-yl)ethan-1-one (**4a**): According to general procedure B, a solution of **1r** (1.5 mmol, 105.1 mg), **2b** (0.5 mmol, 92.1 mg), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **4a** (69.3 mg, 63%) as colorless oil after purification on silica gel (PE:EA=5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.9 Hz, 2H), 6.94 (d, *J* = 8.9 Hz, 2H), 4.03 (dd, *J* = 8.6, 7.1 Hz, 1H), 3.91-3.86 (m, 1H), 3.88 (s, 3H), 3.83-3.72 (m, 1H), 3.45 (dd, *J* = 8.6, 6.3 Hz, 1H), 3.14-2.98 (m, 2H), 2.86-2.76 (m, 1H), 2.23-2.15 (m, 1H), 1.64-1.56 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 163.5, 130.3, 130.0, 113.8, 73.3, 67.7, 55.5, 42.1, 34.8, 32.3. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₃H₁₇O₃: 221.1178; found: 221.1178.

1-(4-(4-methoxyphenyl)-4-oxobutyl)pyrrolidin-2-one (4b): According to general procedure B, a solution of **1s** (0.75 mmol, 83.5 mg), **2b** (0.5 mmol, 92.1 mg), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **4b** (106.3 mg, 82%) as colorless oil after purification on silica gel (PE:EA=50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.9 Hz, 2H), 6.90 (d, J = 8.9 Hz, 2H), 3.84 (s, 3H), 3.40-3.33 (m, 4H), 2.91 (t, J = 7.2 Hz, 2H), 2.30 (t, J = 8.1 Hz, 2H), 2.09-1.87 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 175.1, 163.5, 130.3, 129.8, 113.7, 55.4, 47.0, 42.0, 35.2, 31.0, 21.9, 17.9. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₅H₂₀NO₃: 262.1443; found: 262.1441.

1-(4-methoxyphenyl)-6-phenylhexan-1-one (4c): According to general procedure B, a solution of **1t** (1.5 mmol, 198.1 mg), **2b** (0.5 mmol, 92.1 mg), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **4c** (70.4 mg, 50%) as colorless oil after purification on silica gel (PE:EA=10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.9 Hz, 2H), 7.38 – 7.26 (m, 2H), 7.22-7.18 (m, 3H), 6.96 (d, *J* = 8.9 Hz, 2H), 3.89 (s, 3H), 2.94 (t, *J* = 7.2 Hz, 2H), 2.66 (t, *J* = 7.6 Hz, 2H), 1.79 (p, *J* = 7.5 Hz, 2H), 1.75-1.65 (m, 2H), 1.53-1.40 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 199.1, 163.3, 142.6, 130.3, 130.2, 128.4, 128.3, 125.7, 113.7, 55.5, 38.2, 35.8, 31.4, 29.1, 24.4. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₉H₂₃O₂: 283.1698; found: 283.1696.

2-cyclohexyl-1-(4-methoxyphenyl)ethan-1-one (**4d**): According to general procedure B , a solution of **1u** (3.0 mmol, 246.4 mg), **2b** (0.5 mmol, 92.1 mg), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **4d** (30.1 mg, 25%) as colorless oil after purification on silica gel (PE:EA=20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 9.1 Hz, 2H), 6.95 (d, *J* = 9.1 Hz, 2H), 3.89 (s, 3H), 2.78 (d, *J* = 6.9 Hz, 2H), 2.02-1.94 (m, 1H), 1.84-1.61 (m, 5H), 1.39-1.11 (m, 3H), 1.08-0.94 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 163.3, 130.6, 130.4, 113.6, 55.5, 45.9, 34.8, 33.5, 26.3, 26.2. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₅H₂₁O₂: 233.1542; found: 233.1543.

7-hydroxy-1-(4-methoxyphenyl)heptan-1-one (4e): According to general procedure

B , a solution of **1v** (0.75 mmol, 64.6 mg), **2b** (0.5 mmol, 92.1 mg), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **4e** (33.3 mg, 28%) as white solid after purification on silica gel (PE:EA=5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.9 Hz, 2H), 6.94 (d, J = 8.9 Hz, 2H), 3.87 (s, 3H), 3.65 (t, J = 6.5 Hz, 2H), 2.93 (t, J = 7.4 Hz, 2H), 1.78-1.70 (m, 2H), 1.64-1.56 (m, 3H), 1.46-1.40 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.1, 163.3, 130.3, 130.1, 113.7, 62.9, 55.5, 38.1, 32.6, 29.1, 25.6, 24.5. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₄H₂₁O₃: 237.1491; found: 237.1484.

7-bromo-1-(4-methoxyphenyl)heptan-1-one (4f): According to general procedure B , a solution of **1w** (0.75 mmol, 111.8 mg), **2b** (0.5 mmol, 92.1 mg), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **4f** (77.5 mg, 52%) as white solid after purification on silica gel (PE:EA=10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.9 Hz, 2H), 6.95 (d, *J* = 8.9 Hz, 2H), 3.89 (s, 3H), 3.43 (t, *J* = 6.8 Hz, 2H), 2.94 (t, *J* = 7.3 Hz, 2H), 1.93-1.86 (m, 2H), 1.76 (p, *J* = 7.4 Hz, 2H), 1.59-1.37 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 163.4, 130.3, 130.1, 113.7, 55.5, 38.0, 33.9, 32.6, 28.5, 28.0, 24.3. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₄H₂₀BrO₂: 299.0647; found: 299.0637.

4g

methyl 7-(4-methoxyphenyl)-7-oxoheptanoate (4g): According to general procedure B, a solution of **1x** (2.0 mmol, 228.2 mg), **2b** (0.5 mmol, 92.1 mg), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **4g** (59.7 mg, 45%) as white solid after purification on silica gel (PE:EA=10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.9 Hz, 2H), 6.94 (d, *J* = 8.9 Hz, 2H), 3.88 (s, 3H), 3.68 (s, 3H), 2.93 (t, *J* = 7.4 Hz, 2H), 2.34 (t, *J* = 7.5

Hz, 2H), 1.80-1.66 (m, 4H), 1.49-1.35 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 198.8, 174.1, 163.4, 130.3, 130.1, 113.7, 55.5, 51.5, 37.9, 33.9, 28.9, 24.8, 24.1. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₅H₂₁O₄: 265.1440; found: 265.1434.

1-(4-methoxyphenyl)-5-(triisopropylsilyl)pentan-1-one (4h): According to general procedure B , a solution of **1y** (1.0 mmol, 198.0 mg), **2b** (0.5 mmol, 92.1 mg), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **4h** (103.1 mg, 59%) as colorless oil after purification on silica gel (PE:EA=50:1). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.8 Hz, 2H), 6.95 (d, J = 8.7 Hz, 2H), 3.89 (s, 3H), 2.94 (t, J = 7.5 Hz, 2H), 1.77 (p, J = 7.5 Hz, 2H), 1.50-1.42 (m, 2H), 1.05 (s, 21H), 0.78-0.55 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 199.3, 163.3, 130.3, 130.2, 113.7, 55.4, 38.0, 29.3, 24.3, 18.9, 10.9, 9.4. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₁H₃₇O₂Si: 349.2563; found: 349.2557.

4-(4-methoxyphenyl)-1-phenylbutan-1-one (5a): According to general procedure A, a solution of **1b** (0.5 mmol, 67.1 mg), **2c** (0.75 mmol, 112.5 mg), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **5a** (112.1 mg, 88%) as white solid after purification on silica gel (PE:EA=40:1). ¹H NMR (400 MHz, CDCl₃) δ 8.03-7.89 (m, 2H), 7.64-7.53 (m, 1H), 7.49-7.45 (m, 2H), 7.16 (d, *J* = 8.6 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 3.82 (s, 3H), 3.00 (t, *J* = 7.3 Hz, 2H), 2.70 (t, *J* = 7.5 Hz, 2H), 2.12-2.04(m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 200.2, 157.9, 137.1, 133.8, 132.9, 129.4, 128.6, 128.0, 113.9, 55.3, 37.7, 34.3, 25.9. MS (70 ev): m/z (%): 76.8 (100), 120.9 (50), 253.9 (M+, 3).

4-(4-oxo-4-phenylbutyl)phenyl acetate (5b): According to general procedure A , a solution of **1c** (0.5 mmol, 81.1 mg), **2c** (0.75 mmol, 112.5 mg), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **5b** (117.0 mg, 83%) as white solid after purification on silica gel (PE:EA=15:1). ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.90 (m, 2H), 7.63-7.53 (m, 1H), 7.51-7.42 (m, 2H), 7.23 (d, *J* = 8.5 Hz, 2H), 7.03 (d, *J* = 8.5 Hz, 2H), 3.00 (t, *J* = 7.2 Hz, 2H), 2.73 (t, *J* = 7.6 Hz, 2H), 2.30 (s, 3H), 2.18-2.02 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 199.9, 169.6, 148.9, 139.3, 136.9, 133.0, 129.4, 128.6, 128.0, 121.4, 37.6, 34.6, 25.6, 21.1. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₈H₁₉O₃: 283.1334; found: 283.1334.

1-(4-fluorophenyl)-4-(4-methoxyphenyl)butan-1-one (**5c**)³: According to general procedure A , a solution of **1b** (0.5 mmol, 67.1 mg), **2d** (0.6 mmol, 102.6 mg), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **5c** (113.2 mg, 83%) as white solid after purification on silica gel (PE:EA=30:1). ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.92 (m, 2H), 7.20-7.06 (m, 4H), 6.86 (d, J = 8.6 Hz, 2H), 3.81 (s, 3H), 2.96 (t, J = 7.3 Hz, 2H), 2.69 (t, J = 7.5 Hz, 2H), 2.18-1.97 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 198.6, 165.7 (d, $J_{C-F} = 255.2$ Hz), 157.9, 133.7, 133.4 (d, $J_{C-F} = 3.0$ Hz), 130.6 (d, $J_{C-F} = 9.2$ Hz), 129.3, 115.7 (d, $J_{C-F} = 21.8$ Hz), 113.9, 55.3, 37.6, 34.3, 26.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.6. MS (70 ev): m/z (%): 94.8 (88), 122.8 (100), 271.9 (M+, 1).

1,4-bis(4-methoxyphenyl)butan-1-one $(5d)^3$: According to general procedure A, a solution of **1b** (0.5 mmol, 67.1 mg), **2b** (0.6 mmol, 109.8 mg), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **5d** (121.3 mg, 85%) as white solid after purification on silica gel (PE:EA=20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.9 Hz, 2H), 7.15 (d, *J* = 8.6 Hz, 2H), 6.94 (d, *J* = 8.9 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 3.87 (s, 3H), 3.80 (s, 3H), 2.93 (t, *J* = 7.3 Hz, 2H), 2.68 (t, *J* = 7.5 Hz, 2H), 2.13-2.01 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 198.8, 163.4, 157.9, 133.9, 130.3, 130.1, 129.4, 113.8, 113.7, 55.5, 55.3, 37.3, 34.4, 26.2. MS (70 ev): m/z (%): 76.8 (60), 134.8 (100), 284.1 (M+, 3).

5e

5-(4-methoxyphenyl)-3-methylpentan-2-one (**5e**)⁴: According to general procedure A, a solution of **1b** (0.5 mmol, 67.1 mg), **2e** (0.75 mmol, 78.1 mg), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **5e** (63.9 mg, 62%) as colorless oil after purification on silica gel (PE:EA=20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.10 (d, *J* = 8.6 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 3.81 (s, 3H), 2.67-2.45 (m, 3H), 2.14 (s, 3H), 2.04-1.95 (m, 1H), 1.67-1.58 (m, 1H), 1.15 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 212.5, 157.9, 133.7, 129.3, 113.9, 55.3, 46.4, 34.6, 32.5, 28.1, 16.3. MS (70 ev): m/z (%): 77.8 (60), 120.8 (90), 133.8 (100), 206.0 (M+, 5).

5f

4-(4-methoxyphenyl)butanoic acid (5f)⁵: According to general procedure A, a

solution of **1a** (0.5 mmol, 59.1 mg), **2f** (0.75 mmol, 69.1 mg), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **5f** (55.7 mg, 57%) as white solid after purification on silica gel (PE:EA=4:1). ¹H NMR (400 MHz, CDCl₃) δ 11.12 (s, 1H), 7.13 (d, *J* = 8.6 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 3.82 (s, 3H), 2.65 (t, *J* = 7.5 Hz, 2H), 2.39 (t, *J* = 7.5 Hz, 2H), 1.96 (p, *J* = 7.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 180.0, 157.9, 133.3, 129.4, 113.9, 55.3, 34.1, 33.3, 26.5. MS (70 ev): m/z (%): 77.9 (82), 120.8 (100), 194.0 (M+, 15).

ethyl 2-methyl-4-(p-tolyl)butanoate (5g): According to general procedure A, a solution of 1a (0.5 mmol, 59.1 mg), 2g (0.75 mmol, 101.2 mg), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford 5g (69.3 mg, 63%) as colorless oil after purification on silica gel (PE:EA=100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.12-7.08 (m, 4H), 4.17 (q, J = 7.2 Hz, 2H), 2.60 (t, J = 8.0 Hz, 2H), 2.52-2.43 (m, 1H), 2.34 (s, 3H), 2.06-1.96 (m,1H), 1.80-1.64 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H), 1.21 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.6, 138.7, 135.3, 129.1, 128.3, 60.2, 39.1, 35.6, 33.0, 20.9, 17.1, 14.3. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₄H₂₁O₂: 221.1542; found: 221.1543.

5h

3-methoxybutyl 4-(p-tolyl)butanoate (5h): According to general procedure A, a solution of **1a** (0.5 mmol, 59.1 mg), **2h** (0.75 mmol, 133.7 mg), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **5h** (110.9 mg, 84%) as colorless oil after purification on silica gel (PE:EA=20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, *J* = 8.2 Hz, 2H), 7.09 (d, *J* = 8.3 Hz, 2H), 4.19 (t, *J* = 6.8 Hz, 2H), 3.47-3.39 (m, 1H), 3.34 (s, 3H), 2.64 (t, *J* = 7.6 Hz, 2H), 2.35 (s, 3H), 2.34 (t, *J* = 7.4 Hz, 2H), 1.96 (p, *J* = 7.6 Hz, 2H), 1.90-1.69 (m,

2H), 1.19 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 138.3, 135.4, 129.1, 128.4, 73.7, 61.4, 56.1, 35.6, 34.7, 33.7, 26.7, 21.0, 19.1. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₆H₂₅O₃: 265.1804; found: 265.1796.

5i

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4-(p-tolyl)butanoate (5i): According to general procedure A, a solution of 1a (0.5 mmol, 59.1 mg), 2i (0.75 mmol, 172.5 mg), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford 5i (120.1 mg, 76%) as colorless oil after purification on silica gel (PE:EA=100:1). ¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, *J* = 8.3 Hz, 2H), 7.10 (d, *J* = 8.3 Hz, 2H), 4.73 (td, *J* = 10.9, 4.4 Hz, 1H), 2.64 (t, *J* = 7.6 Hz, 2H), 2.35 (s, 3H), 2.34 (t, *J* = 7.6 Hz, 2H), 2.12-1.84 (m, 4H), 1.74-1.67 (m, 2H), 1.57-1.47 (m, 1H), 1.45-1.33 (m, 1H), 1.18-1.02 (m, 1H), 0.94 (d, *J* = 2.8 Hz, 3H), 0.92 (d, *J* = 3.3 Hz, 3H), 1.02-0.84 (m, 2H), 0.80 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 138.5, 135.4, 129.1, 128.4, 74.0, 47.1, 41.0, 34.8, 34.3, 34.1, 31.4, 26.9, 26.3, 23.4, 22.1, 21.0, 20.8, 16.3. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₁H₃₃O₂: 317.2481; found: 317.2476.

E/Z = 3:1

methyl 4-phenylhept-4-enoate (6): According to general procedure A, a solution of **1z** (0.5 mmol, 72.0 mg), **1b** (0.75 mmol, 65 uL), AIBN (0.025 mmol, 4.5 mg), P(OEt)₃ (0.6 mmol, 105 uL) in DCE (4.0 mL) were stirred at 80 °C under Ar for 12 h to afford **6** (68.4 mg, 63%, a mixture of E/Z) as colorless oil after purification on silica gel (PE:EA=150:1). *E*: ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.21 (m, 5H), 5.72

(t, J = 7.3 Hz, 1H), 3.65 (s, 3H), 2.87 (t, J = 8.0 Hz, 2H), 2.35 (t, J = 8.4 Hz, 2H), 2.26 (p, J = 7.4 Hz, 2H), 1.09 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 142.2, 137.6, 132.0, 128.3, 128.1, 126.8, 126.4, 51.5, 33.3, 25.1, 21.8, 14.4. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₄H₁₉O₂: 219.1385; found: 219.1385.

References:

- K. Zhang, L.; Si, X.; Yang, Y.; Witzel, S.; Sekine, K.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. ACS Catal. 2019, 9, 6118.
- 2. Amriev, R.A.; Velichko, F.K. Russ. Chem. Bull. 1977, 26, 2194.
- 3. Liu, X.-Q.; Hsiao, C.-C.; Guo, L.; Rueping, M. Org. Lett. 2018, 20, 2976.
- Lu, X.-Y.; Liu, J.-H.; Lu, X.; Zhang, Z.-Q.; Gong, T.-J.; Xiao, B.; Fu, Y. Chem. Commun. 2016, 52, 5324.
- 5. Mahmoodi, N. O.; Jazayri, M. Synth. Commun. 2001, 31, 1467.

4. NMR Spectra for All Compound

