Supporting Information

Low valent lead hydride chemistry: hydroplumbylation of phenylacetylene and 1,1-dimethylallene

Sebastian Weiß, Hartmut Schubert, Lars Wesemann*

Content

Experimental section	2
Syntheses	2
Crystal structure analyses	3
NMR spectroscopy	5
NMR spectra of compound 2	5
NMR spectra of compound 3	8
References1	12

Experimental section

All manipulations were carried out under an argon atmosphere using standard Schlenk techniques or an MBraun Glovebox. Toluene was distilled from potassium, while *n*-hexane was obtained from an MBRAUN solvent purification system. In addition, all solvents were repeatedly degassed by several freeze-pump-thaw cycles and stored in a glovebox. $[(Ar*PbH)_2]$ and $(Ar*PbBr)_2$ (Ar* = 2,6-Trip₂C₆H₃, Trip = 2,4,6-triisopropylphenyl) were synthesized following literature procedures.^{1, 2} All other compounds were purchased commercially (Aldrich) and used without further purification. Elemental analysis was performed by the Institut für Anorganische Chemie, Universität Tübingen using a Vario MICRO EL analyzer.

NMR spectra were recorded on a Bruker DRX-250 NMR spectrometer (¹H, 250.13 MHz; ¹³C, 62.90 MHz; ²⁰⁷Pb, 52.29 Hz) equipped with a 5 mm ATM probe head, a Bruker AvancelI+400 NMR spectrometer (¹H, 400.11 MHz; ¹³C, 100.61 MHz) equipped with a 5 mm QNP (quad nucleus probe) head and a Bruker AvancelI+500 NMR-spectrometer (¹H, 500.13 MHz; ¹³C, 125.76 MHz, ²⁰⁷Pb, 104.63 MHz) equipped with a 5 mm ATM probe head and a setup for variable temperature. The chemical shifts are reported in δ values in ppm relative to external SiMe₄ (¹H, ¹³C) or PbMe₄ (²⁰⁷Pb) using the chemical shift of the solvent ²H resonance frequency and Ξ = 25.145020 % for ¹³C and Ξ = 20.920599% for ²⁰⁷Pb.³ The multiplicity of the signals is abbreviated as s = singlet, d = doublet, t = triplet, sept = septet and m = multiplet or unresolved. The proton and carbon signals were assigned by detailed analysis of ¹H, ¹³C{¹H}, ¹H-¹H COSY, ¹H-¹³C HSQC, ¹H-¹³C HMBC and ¹³C{¹H} DEPT 135 spectra.

Syntheses

Improved synthesis of (Ar*PbH)₂

To a solution of $(Ar*PbBr)_2$ (150 mg, 0.0974 mmol, 1.0 eq.) in hexane (6 mL) at -40°C a solution of DIBAL-H (1.0 M in hexane, 195 µL, 0.195 mmol, 2.0 eq.) was added. The solution turns slightly orange. After 16 h at -40°C (Ar*PbH)₂ as yellow crystals could be obtained (128 mg, 95%).

Synthesis of Ar*PbCHCHPh (2)

To a solution of $(Ar*PbH)_2$ (50 mg, 0.0362 mmol, 1.0 eq.) in toluene (1 mL) at room temperature phenylacetylene (8.12 μ L, 0.0725 mmol, 2.0 eq.) was added. After 30 min the colour of the solution turns deep red. All volatiles were removed under reduced pressure. The residue was solved in hexane (1.5 mL) and filtered. After few days at -40°C red crystals can be obtained (36 mg, 63%).

¹**H-NMR** (500.13 MHz, C₆D₆): δ (ppm) δ 1.13 (d, 12 H, *p*-CH*Me*₂, ³*J*_{H,H}= 7.0 Hz), 1.16 (d, 12 H, *o*-CH*Me*₂, ³*J*_{H,H}= 7.0 Hz), 1.38 (d, 12 H, *o*-CH*Me*₂, ³*J*_{H,H}= 6.8 Hz), 2.72 (sept, 2 H, *p*-CHMe₂, ³*J*_{H,H}= 7.0 Hz), 3.39 (sept, 4 H, *o*-CHMe₂, ³*J*_{H,H}= 6.8 Hz), 7.02 (m, 1H, p-C₆H₅), 7.13 (s, 4 H, *m*-C₆H₂), 7.22 (m, 2H, m-C₆H₅), 7.42 (m, 2H, o-C₆H₅), 7.44 (t, 1 H, p-C₆H_{3'}, ³*J*_{H,H}= 7.7 Hz), 7.82 (d, 2 H, m-C₆H₃, ³*J*_{H,H}= 7.4 Hz), 7.93 (d, 1H, PbCHC*H*, ³*J*_{H,H}= 19.1 Hz), 12.56 (d, 1H, PbCHCH, ³*J*_{H,H}= 19.1 Hz); ¹³C{¹H}-NMR (100.61 MHz, C₆D₆): δ (ppm) 23.6 (*o*-CH*Me*₂), 24.2 (*p*-CH*Me*₂), 26.5 (*o*-CH*Me*₂), 31.0 (*o*-CHMe₂), 34.7 (p-CHMe₂), 121.4 (*m*-C₆H₂), 125.0 (p-C₆H₃), 127.1 (o-C₆H₅), 128.4 (p-C₆H₅), 128.9 (m-C₆H₅), 134.8 (i-C₆H₂), 137.0 (*m*-C₆H₃), 144.1 (i-C₆H₅), 146.1 (PbCHCH), 146.2 (o-C₆H₃), 147.5 (*o*-C₆H₂), 148.9 (*p*-C₆H₂), 257.7 (*i*-C₆H₃), 264.5 (PbCHCH); ²⁰⁷Pb-NMR (52.33 MHz, C₆D₆): δ (ppm) 6543. **Anal. Calcd.** (%) C₄₄H₅₆Pb: C, 66.72; H, 7.13. Found: C, 66.15; H, 7.11.

Synthesis of Ar*PbC(H)₂C(H)C(CH₃)₂ (3)

To a solution of $(Ar*PbH)_2$ (100 mg, 0.0725 mmol, 1.0 eq.) in toluene (3 mL) at room temperature 1,1dimethylallene (14.2 µL, 0.145 mmol, 2.0 eq.) was added. Immediately the colour of the solution turns dark brown. All volatiles were removed under reduced pressure. The residue was solved in hexane (1 mL) and filtered. All volatiles were removed under reduced pressure (103 mg, 94%). From a concentrated hexane solution at -40°C red crystals can be obtained (37 mg, 34%).

¹**H-NMR** (298 K, 400.11 MHz, Tol-d₈): δ (ppm) 1.13 (d, 12 H, *o*-CH*Me*₂, ³*J*_{H,H}= 6.8 Hz), 1.25 (d, 12 H, *p*-CH*Me*₂, ³*J*_{H,H}= 7.2 Hz), 1.35 (d, 2 H, C(CH₃)₂C(H)C(H)₂, ³*J*_{H,H}= 9.4 Hz), 1.40 (d, 12 H, *o*-CH*Me*₂, ³*J*_{H,H}= 7.2 Hz), 1.49 (br s, 3 H, C(CH₃)₂C(H)C(H)₂), 1.93 (br s, 3 H, C(CH₃)₂C(H)C(H)₂), 2.83 (sept, 2 H, *p*-CHMe₂, ³*J*_{H,H}= 6.9 Hz), 3.24 (sept, 4 H, *o*-CHMe₂, ³*J*_{H,H}= 6.9 Hz), 4.27 (br t, 1 H, C(CH₃)₂C(H)C(H)₂, ³*J*_{H,H}= 9.8 Hz), 7.18 (s, 4 H, *m*-C₆H₂), 7.27 (t, 1 H, p-C₆H₃, ³*J*_{H,H}= 7.4 Hz), 7.49 (d, 2 H, m-C₆H₃, ³*J*_{H,H}= 7.5 Hz); ¹**H-NMR** (233 K, 500.13 MHz, Tol-d₈): δ (ppm) 1.17 (d, 12 H, *o*-CH*Me*₂, ³*J*_{H,H}= 6.7 Hz), 1.24 (s, 3 H, C(CH₃)₂C(H)C(H)₂), 1.27 (d, 12 H, *p*-CH*Me*₂, ³*J*_{H,H}= 6.7 Hz), 1.26 (d, 2 H, C(CH₃)₂C(H)C(H)₂, ³*J*_{H,H}= 9.7 Hz), 1.73 (s, 3 H, C(CH₃)₂C(H)C(H)₂), 2.81 (sept, 2 H, *p*-CH*Me*₂, ³*J*_{H,H}= 6.9 Hz), 3.31 (sept, 4 H, *o*-CHMe₂, ³*J*_{H,H}= 6.8 Hz), 4.14 (br t, 1 H, C(CH₃)₂C(H)C(H)₂), ³*J*_{H,H}= 7.4 Hz); ¹³C**{**¹**H**-**NMR** (298 K, 100.61 MHz, Tol-d₈): δ (ppm) 23.6 (*o*-CH*Me*₂), 24.3 (*p*-CH*Me*₂), 24.4 (C(CH₃)₂C(H)C(H)₂), 113.2 (C(CH₃)₂C(H)C(H)₂), 121.3 (*m*-C₆H₂), 124.6 (p-C₆H₃), 129.5 (*C*(CH₃)₂C(H)C(H)₂), 134.7 (*m*-C₆H₃), 136.7 (*i*-C₆H₂), 146.5 (*o*-C₆H₃), 147.8 (*o*-C₆H₂), 148.8 (*p*-C₆H₂), 237.9 (*i*-C₆H₃); ²⁰⁷**Pb-NMR** (298 K, 104.63 MHz, Tol-d₈): δ (ppm) 3773 ppm. **Anal. Calcd.** (%) C₄₁H₅₈Pb: C, 64.96; H, 7.71. Found: C 64.18, H 7.05.

Crystal structure analyses

X-ray crystal structure analysis: X-ray data were collected with a Bruker Smart APEX II diffractometer with graphite monochromated Mo K α radiation or a Bruker APEX II Duo diffractometer with a Mo I μ S microfocus tube. The programs used were Bruker's APEX2 v2011.8-0 including SAINT for data reduction and SHELXS for structure solution and SADABS for multiscan absorption correction, as well as WinGX suite of programs v1.70.01 including SHELXL for structure refinement.⁴⁻⁷

	2	3
empirical formula	C44H56Pb	C ₄₁ H ₅₈ Pb
M [g/mol]	792.07	758.06
λ [Å]	0.71073	0.71073
Т [К]	100(2)	100(2)
crystal system	triclinic	triclinic
space group	P -1	P -1
Ζ	2	4
a [Å]	10.7640(2)	14.0970(3)
<i>b</i> [Å]	13.1364(2)	16.7228(4)
<i>c</i> [Å]	14.7038(3)	17.7335(4)
α [°]	87.2140(10)	104.0660(10)
β [°]	89.7630(10)	102.0580(10)
γ [°]	66.5670(10)	108.9560(10)
V [Å ³]	1905.13(6)	3641.57(15)
$D_c [g/cm^3]$	1.381	1.383
μ [mm ⁻¹]	4.455	4.658
F(000)	804	1544
crystal size [mm]	0.218x0.201x0.163	0.17x0.13x0.10
heta range [°]	1.692 – 27.139	1.247 – 27.932
imiting indices	–13≤h≥13	–18≤h≥18
	− 16≤k≥16	–21≤k≥22
	− 18≤l≥18	–23≤l≥23
reflections collected	36187	99884
independent reflections	8401	17385
R _{int}	0.0335	0.0339
completeness	99.7	99.5
absorption correction	numerical	multi-scan
max., min. transmisson	0.85, 0.71	0.75, 0.57
parameter/restraints	418/0	852/55
R1, wR2 $[I > 2\sigma(I)]$	0.0231, 0.0484	0.0389, 0.0984
R1, w $R2$ (all data)	0.0293, 0.0497	0.0551, 0.1072
Goof on F ²	1.116	1.067
peak / hole [$e \cdot Å^{-3}$]	1.427, –1.525	3.193, -1.418
CCDC	1940176	1940175

Table S1. Crystal structure refinement table of compounds 2, 3

Figure S1. ¹H NMR spectrum of compound **2**. (* hexane)

Figure S2. ¹³C{¹H} NMR spectrum of compound **2**. (* hexane)

6850 6800 6750 6700 6650 6600 6550 6500 6450 6400 6350 6300 6250 ppm

Figure S3. ²⁰⁷Pb NMR spectrum of compound **2**.

NMR spectra of compound 3

Figure S4. ¹H NMR spectrum of compound **3**. (* hexane)

¹H-NMR of Ar^{*}PbC(H)₂C(H)C(CH₃)₂ in Tol-d₈ at -40° C

Figure S5. ¹H NMR spectrum (–40°C) of compound **3**. (* hexane)

 13 C-NMR of Ar^{*}PbC(H)₂C(H)C(CH₃)₂ in Tol-d₈ at RT

Figure S6. ¹³C{¹H} NMR spectrum of compound **3**. (* hexane)

Figure S7. ²⁰⁷Pb NMR spectrum of compound **3**.

References

- 1 J. Schneider, C. P. Sindlinger, K. Eichele, H. Schubert and L. Wesemann, *J. Am. Chem. Soc.*, 2017, **139**, 6542-6545.
- 2 L. Pu, B. Twamley and P. P. Power, *Organometallics*, 2000, **19**, 2874-2881.
- 3 R. K. Harris, E. D. Becker, S. M. C. d. Menezes, P. Granger, R. E. Hoffman and K. W. Zilm, *Pure Appl. Chem.*, 2008, **80**, 59-84.
- 4 G. M. Sheldrick, *Journal*, SADABS, 2008 University of Göttingen, Göttingen, Germany.
- 5 L. Farrugia, J. Appl. Crystallogr., 2012, **45**, 849-854.
- 6 C. B. Hübschle, G. M. Sheldrick and B. Dittrich, *J. Appl. Crystallogr.*, 2011, **44**, 1281-1284.
- 7 Bruker AXS Inc., SAINT, APEX2, Madison, Wisconsin, USA, 2012.