Electronic Supplementary Information

Chiral squaramide-catalyzed asymmetric dearomative tandem annulation reaction through kinetic resolution of MBH alcohols: highly enantioselective synthesis of three-dimensional heterocyclic compounds

Leijie Zhou,^a Yuan Zeng,^a Xing Gao,^a Qijun Wang,^a Chang Wang,^a Bo Wang,^a Wei Wang,^b Yongjun Wu,^b Bing Zheng,^{*a} and Hongchao Guo^{*a}

^a Department of Applied Chemistry, China Agricultural University, Beijing 100193, China

^b College of Public Health, Zhengzhou University, Zhengzhou 450001, China

Fax: (+86) 10-6273-0784; E-mail: hchguo@cau.edu.cn, 2014026@cau.edu.cn

Contents

General Information	S2
Preparation of N-Iminoquinazolinium Ylides 1	S2
Preparation of MBH Adducts 2	S2
General Procedure for Chiral Squaramide-Catalyzed Tandem Reaction	S2
Analytic and Characterization Data for the Products 3	S3–S16
Transformations of the Product 3aa	S17–S19
Kinetic Resolution of 2a	S19
¹ H and ¹³ C NMR Spectra of All Products 3–8	S20–S50
HPLC Chromatograms of the Products 2–8	S51–S82
X-Ray Crystallographic Data of Product 3aa	S83–S102

General Information

All reactions were performed under N₂ atmospheres in oven-dried glassware with magnetic stirring. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All solvents were purified and dried according to standard methods prior to use. Organic solutions were concentrated under reduced pressure on a rotary evaporator or an oil pump. Reactions were monitored through thin layer chromatography (TLC) on silica gel-precoated glass plates. Chromatograms were visualized by fluorescence quenching with UV light at 254 nm. Flash column chromatography was performed using Qingdao Haiyang flash silica gel (200-300 mesh). Infrared spectra were recorded using a Bruker Optics TENSOR 27 instrument. ¹H and ¹³C NMR spectra were recorded in CDCl3 or DMSO-d6 using a 300 MHz NMR instrument (referenced internally to Me₄Si). ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet; d = doublet; q = quartet; m = multiplet; br = broad), coupling constant (Hz), and integral. Data for ¹³C NMR spectra are reported in terms of chemical shift. Optical rotation was obtained on an Autopol VI automatic polarimeter. Accurate mass measurements were performed using an Agilent instrument with the ESI-MS technique. Melting points were determined on a Stuard SMP3 melting point apparatus. X-ray crystallographic data were collected using a MM007HF Saturn724+. HPLC analysis was performed on Agilent 1100 or 1200 series, UV detection monitored at 254 or 220 nm, using Chiralpak OD-H column, Chiralpak IA column with hexane and *i*-PrOH as the eluent.

General Procedure for Preparation of N-Iminoquinazolinium Ylides¹

N-iminoquinazolinium ylides were prepared by the reported procedure.

General Procedure for Preparation of Morita-Baylis-Hillman Adducts²

The Morita-Baylis-Hillman adducts (MBH adducts) were prepared according to the literature.

General Procedure for Squaramide-Catalyzed Asymmetric Tandem Annulation Reaction

Under a nitrogen atmosphere, at -20 °C, to a mixture of N-iminoquinazolinium ylides 1 (0.1 mmol, 1.0 equiv) and catalyst C5 (0.02 mmol, 20 mol%) in DCM (2 mL) was added MBH adducts 2 (0.25 mmol, 2.5 equiv) via a syringe. Then the reaction solution was vigorously stirred at -20 °C and monitored by TLC. After the reaction was complete, the mixture was directly purified by column chromatography on silica gel (petroleum ether/EtOAc as the eluent) to furnish the corresponding product. Notably, strict anhydrous condition is very important.

¹ (a) Wang, T.; Luo, J.; Gu, C.; Li, R.; Tang, X.; Yu, D.; Li, J. CN 103172575A. (b) Wang, T.; Shao, A.-L.; Feng, H.-Y.; Yang, S.-W.;

Gao, M.; Tian, J.; Lei, A.-W. Tetrahedron. 2015, 71, 4473-4477.

² (a) Feng, J.; Lu, X.; Kong, A.; Han, X. Tetrahedron 2007, 63, 6035–6041.

Characterization Data for Chiral Squaramide-Catalyzed Tandem Annulation Reaction Products 3 Methyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-12-phenyl-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano)pyrazolo [5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3aa)

Prepared according to the general procedure as described above in 90% yield. $[\alpha]^{20}D = -41.9$ (c = 0.96, CH₂Cl₂); white solid. mp = 183 – 184 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.94 – 7.79 (m, 2H), 7.38 – 7.22 (m, 7H), 7.22 – 7.12 (m, 1H), 7.04 (dd, J = 7.6, 1.5 Hz, 1H), 6.77 – 6.58 (m, 2H), 5.36 (s, 1H), 5.19 (s, 1H), 4.85 (d, J = 4.9 Hz, 1H), 4.08 – 3.96 (m, 2H), 3.78 (d, J = 11.2 Hz, 1H), 3.52 (s, 3H), 2.42 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.2, 144.2, 140.3, 136.6, 132.7, 130.2, 129.3, 128.4, 128.0, 127.8, 126.5, 117.8, 117.0, 112.2, 86.8, 70.9, 70.8, 58.7, 51.8, 47.0, 21.3; HRMS (ESI) calcd for C₂₆H₂₅N₃O₅SH⁺ [M+H]⁺ 492.1588, found 492.1582; HPLC analysis: 91% ee (OD, isopropanol/hexane = 15:85, 1.0 mL/min, UV: 254 nm), 11.52 min (minor), 18.49 min (major).

Propyl (3*S*,3*aS*,9*R*,10*S*,12*R*)-12-(2-fluorophenyl)-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano) pyrazolo[5,1-*b*]quinazoline-3(3*aH*)-carboxylate (3*ab*)

Prepared according to the general procedure as described above in 98% yield. $[\alpha]^{20}D=-35.2$ (c=0.85, CH₂Cl₂); mp = 169 - 171 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.99 - 7.79 (m, 2H), 7.75 - 7.70 (m, 1H), 7.42 - 7.15 (m, 5H), 7.08 -7.04 (m, J=7.5, 1H), 6.97 - 6.90 (m, 1H), 6.80 - 6.65 (m, 2H), 5.47 (s, 1H), 5.38 (s, 1H), 4.88 (d, J=4.4 Hz, 1H), 4.11 - 4.02 (m, 2H), 4.02 - 3.80 (m, 2H), 3.55 (d, J=11.2 Hz, 1H), 2.48 (s, 3H), 1.47 - 1.39 (m, 2H), 0.72 (t, J=7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.1, 159.1 (d, J=246.3 Hz), 144.2, 140.5, 132.5, 130.3, 129.4 (d, J=4.8 Hz), 129.3, 128.4 (d, J=3.7 Hz), 128.4, 128.3, 124.4, 124.3, 123.9 (d, J=3.3 Hz), 117.7, 116.7, 114.2 (d, J=21.5 Hz), 112.1, 87.0, 70.2, 66.8, 65.1 (d, J=3.1 Hz), 57.3, 47.4, 21.3, 21.0, 9.8; HRMS (ESI) calcd for C₂₈H₂₈FN₃O₅SH⁺ [M+H]⁺ 538.1806, found 538.1804. HPLC analysis: 93% ee (OD, isopropanol/hexane = 15:85, 1.0 mL/min, UV: 254 nm), $t_R = 9.51$ min (minor), 12.10 min (major).

Propyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-12-(3-fluorophenyl)-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano) pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3ac)

Prepared according to the general procedure as described above in 86% yield. $[\alpha]^{20}D=-32.2$ (c=0.66, CH₂Cl₂); white solid. mp = 170 – 175 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.91 (d, J = 8.3 Hz, 2H), 7.44 – 7.17 (m, 5H), 7.19 – 7.05 (m, 3H), 7.05 – 6.93 (m, 1H), 6.85 – 6.65 (m, 2H), 5.37 (s, 1H), 5.19 (s, 1H), 4.75 (d, J = 4.8 Hz, 1H), 4.09 – 3.83 (m, 4H), 3.83 – 3.72 (m, 1H), 2.47 (s, 3H), 1.58 – 1.38 (m, 2H), 0.75 (t, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.9, 162.2 (d, J = 246.3 Hz), 144.2, 140.2, 139.2 (d, J = 7.1 Hz), 132.6, 130.3, 129.4 (d, J = 8.1 Hz), 129.3, 128.4, 122.3 (d, J = 2.8 Hz), 118.0, 116.9, 114.8 (d, J = 20.9 Hz), 113.9 (d, J = 22.7 Hz), 112.2, 86.8, 70.8, 70.4 (d, J = 2.0 Hz), 66.7, 58.5, 46.9, 21.3, 21.2, 9.7; HRMS (ESI) calcd for C₂₈H₂₈FN₃O₅SH⁺ [M+H]⁺ 538.1806, found 538.1804; HPLC analysis: 90% ee (OD, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), $t_R = 13.05$ min (minor), 17.02 min (major).

Methyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-12-(4-fluorophenyl)-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano) pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3ad)

Prepared according to the general procedure as described above in 94% yield. $[\alpha]^{20}_{D}$ = + 38.8 (*c*= 0.92, CH₂Cl₂); white solid. mp = 177 – 180 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.97 – 7.74 (m, 2H), 7.36 – 7.25 (m, 4H), 7.22 – 7.18 (m, 1H), 7.08 – 6.89 (m, 3H), 6.82 – 6.58 (m, 2H), 5.32 (s, 1H), 5.16 (s, 1H), 4.71 (d, *J* = 5.0 Hz, 1H), 4.04 (d, *J* = 4.9 Hz, 1H), 3.99 – 3.68 (m, 2H), 3.54 (s, 3H), 2.44 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.2, 162.2 (d, *J* = 247.3 Hz), 144.2, 140.1, 132.5 (d, *J* = 3.3 Hz), 132.4, 130.2, 129.3, 128.4 (d, *J* = 1.8 Hz), 128.3, 118.0, 117.0, 114.7 (d, *J* = 21.4 Hz), 112.2, 86.7, 70.8, 70.2, 58.7, 51.8, 46.8, 21.3; HRMS (ESI) calcd for C₂₆H₂₄FN₃O₅SH⁺ [M+H]⁺ 510.1493, found 510.1489; HPLC analysis: 90% ee (OD, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), *t_R* = 21.79 min (minor), 36.84 min (major).

Propyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-12-(2-chlorophenyl)-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano) pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3ae)

Prepared according to the general procedure as described above in 98% yield. $[\alpha]^{20}_{D}$ = -32.9 (*c*= 0.86, CH₂Cl₂); white solid. mp = 151 – 155 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.97 – 7.86 (m, 2H), 7.83 – 7.68 (m, 1H), 7.44 – 7.31 (m, 3H), 7.28 – 7.17 (m, 3H), 7.07 – 7.03 (m, 1H), 6.76 – 6.70 (m, 2H), 5.62 (s, 1H), 5.36 (s, 1H), 4.91 (d, *J* = 4.6 Hz, 1H), 4.28 – 4.05 (m, 2H), 4.03 – 3.90 (m, 1H), 3.90 – 3.74 (m, 1H), 3.48 (d, *J* = 11.2 Hz, 1H), 2.48 (s, 3H), 1.42 – 1.28 (m, 2H), 0.64 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.4, 144.3, 140.7, 134.8, 132.6, 132.5, 130.4, 129.4, 128.9, 128.7, 128.6, 128.3, 126.6, 117.6, 116.7, 111.9, 87.2, 70.4, 67.4, 67.0, 56.7, 47.5, 21.3, 20.9, 9.7; HRMS (ESI) calcd for C₂₈H₂₈ClN₃O₅SH⁺[M+H]⁺ 554.1511, found 554.1509; HPLC analysis: 88% ee (OD, isopropanol/hexane = 15:85, 1.0 mL/min, UV: 254 nm), *t_R* = 14.52 min (minor), 19.79 min (major).

Propyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-12-(3-chlorophenyl)-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano) pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3af)

Prepared according to the general procedure as described above in 85% yield. $[\alpha]^{20}_{D}$ = -36.7 (*c*= 0.67, CH₂Cl₂); white solid. mp = 157 – 159 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.96 – 7.83 (m, 2H), 7.39 – 7.31 (m, 3H), 7.31 – 7.19 (m, 4H), 7.07 (dd, *J* = 7.6, 1.5 Hz, 1H), 6.83 – 6.61 (m, 2H), 5.37 (s, 1H), 5.17 (s, 1H), 4.76 (d, *J* = 4.8 Hz, 1H), 4.06 – 3.85 (m, 4H), 3.82 – 3.72 (m, 1H), 2.47 (s, 3H), 1.57 – 1.40 (m, 2H), 0.75 (t, *J* = 7.4 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 168.9, 144.2, 140.2, 138.7, 130.3, 129.3, 129.1, 128.5, 128.4, 128.1, 126.9, 124.8, 118.0, 116.9, 112.2, 86.8, 70.8, 70.4, 66.7, 58.5, 46.9, 21.3, 21.2, 9.8; HRMS (ESI) calcd for C₂₈H₂₈ClN₃O₅SH⁺ [M+H]⁺ 554.1511, found 554.1509; HPLC analysis: 91% ee (OD, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), *t_R* = 13.21 min (minor), 16.90 min (major).

Propyl (3S,3aS,9R,10S,12R)-12-(2-chlorophenyl)-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano) pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3ag)

Prepared according to the general procedure as described above in 82% yield. $[\alpha]^{20}_{D} = -23.1$ (c = 0.67. CH₂Cl₂); white solid. mp = 172 - 174 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.01 – 7.80 (m, 2H), 7.43 – 7.31 (m, 2H), 7.30 (s, 4H), 7.28 – 7.20 (m, 1H), 7.12 – 7.06 (m, 1H), 6.81 – 6.66 (m, 2H), 5.37 (s, 1H), 5.18 (s, 1H), 4.72 (d, J = 4.9 Hz, 1H), 4.05 – 3.81 (m, 4H), 3.77 (d, J = 11.1 Hz, 1H), 2.47 (s, 3H), 1.60 - 1.39 (m, 2H), 0.76 (t, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.8, 144.2, 140.2, 135.2, 133.8, 132.6, 130.3, 129.3, 128.4, 128.2, 127.9, 118.0, 117.0, 112.2, 86.8, 70.9, 70.3, 66.6, 58.5, 46.9, 21.3, 21.2, 9.7; HRMS (ESI) calcd for C₂₈H₂₈ClN₃O₅SH⁺ [M+H]⁺ 554.1511, found 554.1508; HPLC analysis: 92%ee (OD, alcohol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), t_R = 13.61 min (minor), 18.42 min (major).

Propyl (3S,3aS,9R,10S,12R)-12-(2-bromophenyl)-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano) pyrazolo[5,1-b]quinazoline-3(3aH)-carboxylate (3ah)

Prepared according to the general procedure as described above in 98% yield. $[\alpha]^{20}_{D} = -32.9$ (c = 0.92, CH₂Cl₂); white solid. mp = 143 - 146 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.01 – 7.82 (m, 2H), 7.72 (dd, J = 7.9, 1.7 Hz, 1H), 7.51 - 7.31 (m, 4H), 7.25 - 7.17 (m, 2H), 7.06 (dd, J = 7.6, 1.4 Hz, 1H),6.83 - 6.62 (m, 2H), 5.60 (s, 1H), 5.35 (s, 1H), 4.88 (d, J = 4.7 Hz, 1H), 4.25 - 4.08 (m, 2H), 4.02 - 4.023.78 (m, 2H), 3.51 (d, J = 11.2 Hz, 1H), 2.48 (s, 3H), 1.42 - 1.29 (m, 2H), 0.63 (t, J = 7.4 Hz, 3H);¹³C NMR (75 MHz, CDCl₃) δ 169.4, 144.3, 140.7, 136.3, 132.6, 132.0, 130.4, 129.4, 129.3, 128.9, 128.5, 128.4, 127.1, 123.2, 117.6, 116.7, 111.9, 87.2, 70.5, 69.5, 67.1, 56.7, 47.7, 21.3, 20.9, 9.7; HRMS (ESI) calcd for C₂₈H₂₈BrN₃O₅SH⁺ [M+H]⁺ 598.1006, found 598.1003. HPLC analysis: 84% ee (OD, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), t_R = 15.89 min (minor), 22.34 min (major).

Propyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-12-(3-bromophenyl)-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano) pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3ai)

Prepared according to the general procedure as described above in 84% yield. $[\alpha]^{20}_{D}$ = -39.7 (*c*= 0.69, CH₂Cl₂); white solid. mp = 152 – 154 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.90 (d, *J* = 8.3 Hz, 2H), 7.52 – 7.38 (m, 2H), 7.40 – 7.27 (m, 3H), 7.28 – 7.13 (m, 2H), 7.07 (dd, *J* = 7.5, 1.5 Hz, 1H), 6.86 – 6.66 (m, 2H), 5.36 (s, 1H), 5.16 (s, 1H), 4.75 (d, *J* = 4.8 Hz, 1H), 4.11 – 3.82 (m, 4H), 3.77 (d, *J* = 11.3 Hz, 1H), 2.47 (s, 3H), 1.53 – 1.45 (m, 2H), 0.76 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.8, 144.2, 140.2, 138.9, 132.6, 131.0, 130.3, 129.7, 129.4, 129.3, 128.4, 128.4, 125.3, 121.9, 118.0, 116.9, 112.2, 86.8, 70.8, 70.3, 66.8, 58.5, 46.9, 21.3, 21.2, 9.7; HRMS (ESI) calcd for C₂₈H₂₈BrN₃O₅SH⁺ [M+H]⁺ 598.1006, found 598.1005; HPLC analysis: 92% ee (CHIRALPAK OD-H, isopropanol/hexane = 15:85, 1.0 mL/min, UV: 254 nm), *t_R* = 13.66 min (minor), 17.63 min (major).

Propyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-12-(4-bromophenyl)-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano) pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3aj)

Prepared according to the general procedure as described above in 83% yield. $[\alpha]^{20}_{D}$ = -22.5 (*c*= 0.71, CH₂Cl₂); white solid. mp = 170 – 173 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.06 – 7.82 (m, 2H), 7.52 – 7.41 (m, 2H), 7.39 – 7.29 (m, 2H), 7.29 – 7.18 (m, 3H), 7.08 (dd, *J* = 7.6, 1.5 Hz, 1H), 6.85 – 6.63 (m, 2H), 5.37 (s, 1H), 5.16 (s, 1H), 4.73 (d, *J* = 4.9 Hz, 1H), 4.07 – 3.80 (m, 4H), 3.77 (d, *J* = 11.3 Hz, 1H), 2.47 (s, 3H), 1.52 – 1.45 (m, 2H), 0.76 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.7, 144.2, 140.1, 135.7, 132.5, 130.9, 130.3, 129.3, 128.5, 128.4, 122.0, 118.0, 117.0, 112.2, 86.8, 70.9, 70.3, 66.7, 58.4, 46.9, 21.3, 21.2, 9.7; HRMS (ESI) calcd for C₂₈H₂₈BrN₃NaO₅S⁺ [M+H]⁺ 620.0831, found 620.0825; HPLC analysis: 91% ee (CHIRALPAK OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), *t_R* = 14.09 min (minor), 19.03 min (major).

Propyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-12-(*o*-tolyl)-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano) pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3ak)

Prepared according to the general procedure as described above in 85% yield. $[\alpha]^{20}_{D}$ = -35.1 (*c*= 0.84, CH₂Cl₂); white solid. mp = 148 – 151 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.99 – 7.83 (m, 2H), 7.42 (dd, *J* = 7.0, 2.2 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.28 – 7.15 (m, 3H), 7.15 – 7.00 (m, 2H), 6.82 – 6.65 (m, 2H), 5.41 (s, 1H), 5.29 (s, 1H), 4.77 (d, *J* = 5.1 Hz, 1H), 4.37 (d, *J* = 11.0 Hz, 1H), 4.14 (d, *J* = 5.1 Hz, 1H), 4.03 – 3.77 (m, 3H), 2.47 (s, 3H), 1.97 (s, 3H), 1.41 – 1.31 (m, 2H), 0.64 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.8, 144.1, 140.7, 136.3, 134.6, 132.9, 130.4, 130.2, 129.3, 128.5, 128.4, 127.8, 126.0, 125.5, 117.9, 117.0, 112.0, 87.0, 71.8, 66.9, 66.7, 57.3, 48.4, 21.3, 21.1, 18.5, 9.6; HRMS (ESI) calcd for C₂₉H₃₁N₃O₅SH⁺[M+H]⁺ 534.2057, found 534.2057; HPLC analysis: 89% ee (OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), *t_R* = 15.07 min (minor), 18.47 min (major).

Propyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-12-(*m*-tolyl)-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano) pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3al)

Prepared according to the general procedure as described above in 97% yield. $[\alpha]^{20}_{D}$ = -37.7 (*c*= 0.75, CH₂Cl₂); white solid. mp = 163 – 167 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.04 – 7.84 (m, 2H), 7.40 – 7.29 (m, 2H), 7.27 – 7.14 (m, 3H), 7.14 – 7.01 (m, 3H), 6.85 – 6.59 (m, 2H), 5.38 (s, 1H), 5.16 (s, 1H), 4.75 (d, *J* = 4.7 Hz, 1H), 4.08 (d, J = 11.2 Hz, 1H), 4.01 (d, *J* = 4.6 Hz, 1H), 3.88 (dt, *J* = 8.1, 6.6 Hz, 2H), 3.76 (d, *J* = 11.2 Hz, 1H), 2.47 (s, 3H), 2.34 (s, 3H), 1.45 (qd, *J* = 6.8, 2.8 Hz, 2H), 0.73 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.1, 144.2, 140.3, 137.5, 136.5, 132.7, 130.2, 129.3, 128.7, 128.4, 127.7, 127.2, 123.7, 117.9, 117.1, 112.2, 86.8, 70.9, 70.7, 66.5, 58.6, 47.0, 21.3, 21.1, 21.0, 9.7; HRMS (ESI) calcd for C₂₉H₃₁N₃O₅SH⁺ [M+H]⁺ 534.2057, found 534.2054; HPLC analysis: 91% ee (CHIRALPAK OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), *t_R* = 11.21 min (minor), 16.74 min (major).

Propyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-12-(*p*-tolyl)-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano) pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3am)

Prepared according to the general procedure as described above in 93% yield. $[\alpha]^{20}_{D}$ = -35.2 (*c*= 0.72, CH₂Cl₂); white solid. mp = 177 – 180 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.03 – 7.71 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.27 – 7.17 (m, 3H), 7.16 – 7.02 (m, 3H), 6.82 – 6.66 (m, 2H), 5.37 (s, 1H), 5.17 (s, 1H), 4.75 (d, *J* = 4.7 Hz, 1H), 4.06 (d, *J* = 11.2 Hz, 1H), 4.00 (d, *J* = 4.7 Hz, 1H), 3.97 – 3.80 (m, 2H), 3.76 (d, *J* = 11.2 Hz, 1H), 2.47 (s, 3H), 2.32 (s, 3H), 1.57 – 1.34 (m, 2H), 0.73 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.1, 144.1, 140.3, 137.7, 133.6, 132.7, 130.1, 129.3, 128.5, 128.4, 126.5, 117.9, 117.2, 112.2, 86.7, 70.8, 70.7, 66.5, 58.6, 47.0, 21.3, 21.2, 20.7, 9.7; HRMS (ESI) calcd for C₂₉H₃₁N₃O₅SH⁺ [M+H]⁺ 534.2057, found 534.2056; HPLC analysis: 92% ee (OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), *t_R* = 12.42 min (minor), 17.75 min (major).

Propyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-12-(2-methoxyphenyl)-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano)pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3an)

Prepared according to the general procedure as described above in 98% yield. $[\alpha]^{20}_{D}$ = -44.7 (*c*= 0.78, CH₂Cl₂); white solid. mp = 169 – 171 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.96 – 7.81 (m, 2H), 7.66 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.39 – 7.30 (m, 2H), 7.30 – 7.16 (m, 2H), 7.10 – 7.00 (m, 2H), 6.79 – 6.61 (m, 3H), 5.51 (s, 1H), 5.34 (s, 1H), 4.95 (d, *J* = 4.3 Hz, 1H), 4.10 (d, *J* = 3.5 Hz, 1H), 4.05 (d, *J* = 11.0 Hz, 1H), 4.00 – 3.86 (m, 1H), 3.75 – 3.56 (m, 4H), 3.44 (d, *J* = 11.1 Hz, 1H), 2.47 (s, 3H), 1.42 – 1.31 (m, 2H), 0.67 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.7, 155.5, 144.1, 140.8, 132.8, 130.1, 129.3, 128.6, 128.4, 128.3, 127.6, 125.4, 120.3, 117.2, 117.1, 111.9, 108.8, 86.8, 70.0, 66.2, 65.4, 56.7, 54.5, 47.5, 21.3, 21.0, 9.8; HRMS (ESI) calcd for C₂₉H₃₁N₃O₆SH⁺[M+H]⁺550.2006, found 550.2004; HPLC analysis: 86% ee (CHIRALPAK OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), *t_R* = 18.04 min (minor), 36.03 min (major).

Propyl

Prepared according to the general procedure as described above in 95% yield. $[\alpha]^{20}_{D} = -36.7$ (*c* = 0.55, CH₂Cl₂); white solid. mp = 150 - 152 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.96 – 7.83 (m, 2H), 7.45 – 7.31 (m, 2H), 7.27 - 7.18 (m, 2H), 7.08 (dd, J = 7.6, 1.5 Hz, 1H), 6.96 - 6.87 (m, 2H), 6.86 - 6.80(m, 1H), 6.79 - 6.66 (m, 2H), 5.38 (s, 1H), 5.17 (s, 1H), 4.75 (d, J = 4.7 Hz, 1H), 4.06 (d, J = 11.2Hz, 1H), 4.00 (d, J = 4.6 Hz, 1H), 3.96 – 3.83 (m, 2H), 3.80 (s, 3H), 3.76 (d, J = 11.3 Hz, 1H), 2.47 (s, 3H), 1.46 (qd, J = 6.7, 1.8 Hz, 2H), 0.74 (t, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.0, 159.2, 144.1, 140.3, 138.1, 132.7, 130.2, 129.3, 128.8, 128.5, 128.4, 118.9, 117.9, 113.6, 112.3, 112.2, 86.8, 70.8, 70.7, 66.5, 58.6, 54.9, 47.0, 21.3, 21.2, 9.8; HRMS (ESI) calcd for C₂₉H₃₁N₃O₆SH⁺ [M+H]⁺ 550.2006, found 550.2005; HPLC analysis: 95% ee (CHIRALPAK OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), t_R = 16.49 min (minor), 25.44 min (major).

(3S,3aS,9R,10S,12R)-12-(4-methoxyphenyl)-1-tosyl-1,2,4,9-tetrahydro-9,3-Propyl (epoxymethano)pyrazolo[5,1-b]quinazoline-3(3aH)-carboxylate (3ap)

Prepared according to the general procedure as described above in 80% yield. $[\alpha]^{20}_{D} = -29.5$ (*c* = 0.90, CH₂Cl₂); white solid. mp = 173 - 175 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.99 - 7.75 (m, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.30 - 7.18 (m, 3H), 7.08 (dd, J = 7.5, 1.5 Hz, 1H), 6.92 - 6.80 (m, 2H), 6.82 - 6.80 (m, 2H)6.66 (m, 2H), 5.37 (s, 1H), 5.16 (s, 1H), 4.71 (d, J = 4.8 Hz, 1H), 4.04 (d, J = 11.2 Hz, 1H), 3.98 (d, J = 4.7 Hz, 1H), 3.96 - 3.83 (m, 2H), 3.80 (s, 4H), 2.47 (s, 3H), 1.47 (gd, J = 6.7, 1.6 Hz, 2H), 0.75 (t, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.0, 159.2, 144.1, 140.3, 132.7, 130.1, 129.3, 128.7, 128.5, 128.4, 127.9, 117.9, 117.2, 113.2, 112.2, 86.8, 70.8, 70.5, 66.5, 58.7, 54.9, 47.0, 21.3, 21.2, 9.8; HRMS (ESI) calcd for C₂₉H₃₁N₃O₆SH⁺ [M+H]⁺ 550.2006, found 550.2003; HPLC analysis: 94% ee (CHIRALPAK OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), t_R = 19.63 min (minor), 29.70 min (major).

Propyl

(epoxymethano)pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3aq)

Prepared according to the general procedure as described above in 95% yield. $[\alpha]^{20}_{D}$ = -52.7 (*c*= 0.98, CH₂Cl₂); white solid. mp = 177 – 180 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.96 – 7.70 (m, 6H), 7.54 – 7.42 (m, 2H), 7.36 – 7.30 (m, 3H), 7.25 – 7.18 (m, 1H), 7.08 (dd, *J* = 7.5, 1.5 Hz, 1H), 6.80 – 6.67 (m, 2H), 5.43 (s, 1H), 5.35 (s, 1H), 4.80 (d, *J* = 4.8 Hz, 1H), 4.11 – 4.03 (m, 2H), 3.77 (d, *J* = 11.3 Hz, 1H), 3.49 (s, 3H), 2.44 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.4, 144.2, 140.3, 134.1, 132.8, 132.7, 130.2, 129.3, 128.4, 127.8, 127.4, 127.2, 125.9, 124.2, 117.9, 117.1, 112.2, 86.8, 70.9, 70.8, 58.8, 51.8, 47.0, 21.3; HRMS (ESI) calcd for C₃₀H₂₇N₃O₅SH⁺ [M+H]⁺ 542.1744, found 542.1739; HPLC analysis: 82% ee (CHIRALPAK OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), *t_R* = 8.67 min (minor), 14.13 min (major).

Methyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-12-(thiophen-2-yl)-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano) pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3ar)

Prepared according to the general procedure as described above in 96% yield. $[\alpha]^{20}_{D}$ = -24.8 (*c*= 0.96, CH₂Cl₂); white solid. mp = 198 – 200 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.97 – 7.81 (m, 2H), 7.41 – 7.16 (m, 4H), 7.05 (dd, *J* = 7.6, 1.5 Hz, 1H), 6.98 – 6.87 (m, 2H), 6.80 – 6.60 (m, 2H), 5.45 (s, 1H), 5.29 (s, 1H), 4.60 (d, *J* = 5.4 Hz, 1H), 4.17 – 3.92 (m, 3H), 3.63 (s, 3H), 2.44 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.9, 144.1, 140.0, 139.1, 132.8, 130.3, 129.3, 128.5, 128.4, 126.1, 125.2, 125.1, 118.2, 116.9, 112.4, 86.9, 71.3, 68.1, 59.2, 52.0, 48.0, 21.3.; HRMS (ESI) calcd for C₂₄H₂₃N₃O₅S₂H⁺ [M+H]⁺ 498.1152, found 498.1146; HPLC analysis: 94% ee (CHIRALPAK OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), *t_R* = 27.27 min (minor), 52.01 min (major).

Propyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-12-ethyl-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano) pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3as)

Prepared according to the general procedure as described above in 61% yield. $[\alpha]^{20}_{D} = -13.7$ (c = 0.57, CH₂Cl₂); white solid, mp = 167 – 172 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.00 – 7.83 (m, 2H), 7.36 – 7.30 (m, 2H), 7.22 – 7.17 (m, 1H), 7.04 (dd, J = 7.6, 1.5 Hz, 1H), 6.78 – 6.76 (m, 1H), 6.62 (dd, J = 8.0, 1.1 Hz, 1H), 5.14 (s, 1H), 4.50 (d, J = 5.3 Hz, 1H), 4.08 (td, J = 6.6, 1.6 Hz, 2H), 4.00 – 3.82 (m, 4H), 2.46 (s, 3H), 1.70 – 1.63 (m, 2H), 1.57 – 1.37 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H), 0.84 (t, J = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.4, 144.0, 140.4, 132.9, 129.9, 129.2, 117.9, 117.6, 112.1, 86.2, 71.3, 69.9, 66.6, 57.8, 48.2, 24.0, 21.4, 21.3, 10.0, 9.6; HRMS (ESI) calcd for C₂₄H₂₉N₃O₅SH⁺ [M+H]⁺ 472.1901, found 472.1898; HPLC analysis: -36% ee (CHIRALPAK OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), $t_R = 8.90$ min (major), 10.58 min (minor).

Methyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-12-isopropyl-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano) pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3at)

Prepared according to the general procedure as described above in 55% yield. $[\alpha]^{20}_{D}$ = -14.2 (*c*= 0.68, CH₂Cl₂); white solid. mp = 128 – 130 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.94 – 7.74 (m, 2H), 7.34 – 7.27 (m, 2H), 7.18 – 7.14 (m, 1H), 6.98 (dd, *J* = 7.6, 1.5 Hz, 1H), 6.70 (td, *J* = 7.4, 1.1 Hz, 1H), 6.63 – 6.55 (m, 1H), 5.10 (s, 1H), 4.56 (d, *J* = 4.8 Hz, 1H), 4.05 – 3.93 (m, 2H), 3.89 (d, *J* = 4.6 Hz, 1H), 3.75 (d, *J* = 6.5 Hz, 1H), 3.69 (s, 3H), 2.42 (s, 3H), 1.81 – 1.70 (m, 1H), 0.89 (d, *J* = 6.7 Hz, 3H), 0.70 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.4, 144.0, 140.4, 132.9, 129.8, 129.2, 128.4, 128.2, 117.7, 117.5, 111.9, 86.3, 73.0, 71.5, 57.1, 51.9, 48.0, 30.3, 21.3, 19.3, 18.1; HRMS (ESI) calcd for C₂₃H₂₇N₃O₅SH⁺ [M+H]⁺ 458.1744, found 458.1739; HPLC analysis: 46% ee (CHIRALPAK OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), *t_R* = 6.66 min (minor), 7.63 min (major).

Propyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-12-(1-(*tert*-butoxycarbonyl)-1*H*-indol-3-yl)-1-tosyl-1,2,4,9tetrahydro-9,3-(epoxymethano)pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3au)

Prepared according to the general procedure as described above in 79% yield. $[\alpha]^{20}D=-34.6$ (c=0.77, CH₂Cl₂); white solid. mp = 179 – 180 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, J = 8.3 Hz, 1H), 8.00 – 7.85 (m, 2H), 7.64 (s, 1H), 7.43 (dt, J = 7.7, 1.0 Hz, 1H), 7.40 – 7.24 (m, 4H), 7.24 – 7.05 (m, 2H), 6.85 – 6.70 (m, 2H), 5.47 (s, 1H), 5.39 (s, 1H), 4.81 (d, J = 4.8 Hz, 1H), 4.19 (d, J = 11.1 Hz, 1H), 4.07 (d, J = 4.8 Hz, 1H), 3.97 – 3.72 (m, 2H), 3.69 – 3.48 (m, 1H), 2.48 (s, 3H), 1.71 (s, 9H), 1.24 (q, J = 7.1 Hz, 2H), 0.57 (t, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.2, 149.0, 144.2, 140.4, 134.9, 132.7, 130.3, 129.3, 128.5, 128.4, 128.1, 124.3, 123.7, 122.2, 119.3, 118.0, 116.9, 116.8, 114.8, 112.2, 86.8, 83.7, 70.8, 66.7, 65.9, 57.9, 27.8, 21.3, 20.9, 9.4; HRMS (ESI) calcd for C₃₅H₃₈N₄O₇SH⁺ [M+H]⁺ 659.2534, found 659.2530; HPLC analysis: 80% ee (OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), $t_R = 14.84$ min (minor), 20.82 min (major).

Propyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-12-((E)-styryl)-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano) pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3av)

Prepared according to the general procedure as described above in 29% yield. $[\alpha]^{20}_{D}$ = -45.7 (*c*= 0.28, CH₂Cl₂); white solid. mp = 169 – 171 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.99 – 7.85 (m, 2H), 7.46 – 7.18 (m, 9H), 7.11 (dd, *J* = 7.6, 1.5 Hz, 1H), 6.87 – 6.59 (m, 3H), 6.13 (dd, *J* = 15.9, 5.5 Hz, 1H), 5.32 (s, 1H), 4.77 (dd, *J* = 5.5, 1.4 Hz, 1H), 4.56 (d, *J* = 5.6 Hz, 1H), 4.07 (td, *J* = 6.6, 1.7 Hz, 2H), 4.04 – 3.91 (m, 3H), 2.47 (s, 3H), 1.62 (q, *J* = 7.0 Hz, 2H), 0.91 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.9, 144.1, 140.1, 135.9, 133.5, 132.8, 130.1, 129.3, 128.5, 128.4, 128.2, 127.6, 126.2, 123.3, 118.2, 117.4, 112.4, 86.4, 71.4, 68.8, 66.7, 48.5, 21.5, 21.3, 10.0; HRMS (ESI) calcd for C₃₀H₃₁N₃O₅SH⁺ [M+H]⁺ 546.2057, found 546.2052; HPLC analysis: 83% ee (OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), *t_R* = 17.89 min (minor), 40.24 min (major).

Methyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-7-fluoro-12-phenyl-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano) pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3ba)

Prepared according to the general procedure as described above in 96% yield. $[\alpha]^{20}_{D}$ = -36.5 (*c*= 0.94, CH₂Cl₂); white solid. mp = 184 – 186 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.03 – 7.72 (m, 2H), 7.37 – 7.26 (m, 7H), 6.95 – 6.90 (m, 1H), 6.77 (dd, *J* = 8.2, 2.8 Hz, 1H), 6.62 (dd, *J* = 8.8, 4.3 Hz, 1H), 5.25 (s, 1H), 5.16 (s, 1H), 4.67 (d, *J* = 4.9 Hz, 1H), 4.06 (d, *J* = 4.8 Hz, 1H), 3.87 (dd, *J* = 63.4, 11.3 Hz, 2H), 3.52 (s, 3H), 2.44 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.2, 155.3 (d, *J* = 238.0 Hz), 144.3, 136.4, 136.3, 132.7, 129.3, 128.4, 128.1, 127.9, 126.5, 117.9 (d, *J* = 6.9 Hz), 117.2 (d, *J* = 22.9 Hz), 114.6 (d, *J* = 23.0 Hz), 113.4 (d, *J* = 7.6 Hz), 86.0, 70.9, 70.8, 58.6, 51.8, 46.8, 21.3; HRMS (ESI) calcd for C₂₆H₂₄FN₃O₅SH⁺ [M+H]⁺ 510.1493, found 510.1489; HPLC analysis: 89% ee (CHIRALPAK OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), *t_R* = 21.28 min (minor), 36.32 min (major).

Propyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-7-methyl-12-phenyl-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano) pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3cw)

Prepared according to the general procedure as described above in 85% yield. $[\alpha]^{20}D=-27.7$ (c=0.82, CH₂Cl₂); white solid. mp = 161 – 163 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.98 – 7.75 (m, 2H), 7.45 – 7.18 (m, 8H), 7.14 – 6.96 (m, 1H), 6.89 (d, J = 2.0 Hz, 1H), 6.63 (d, J = 8.1 Hz, 1H), 5.34 (s, 1H), 5.20 (s, 1H), 4.62 (d, J = 4.7 Hz, 1H), 4.12 – 4.01 (m, 1H), 3.98 (d, J = 4.7 Hz, 1H), 3.96 – 3.80 (m, 2H), 3.75 (d, J = 11.2 Hz, 1H), 2.47 (s, 3H), 2.23 (s, 3H), 1.56 – 1.36 (m, 2H), 0.72 (t, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.0, 144.1, 137.9, 136.6, 132.7, 130.9, 129.3, 128.7, 128.4, 128.0, 127.9, 127.8, 126.7, 117.1, 112.3, 86.8, 71.0, 70.8, 66.4, 46.9, 21.3, 21.1, 19.9, 9.7; HRMS (ESI) calcd for C₂₉H₃₁N₃O₅SH⁺ [M+H]⁺ 534.2057, found 534.2056; HPLC analysis: 96% ee (CHIRALPAK OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), $t_R = 14.39$ min (minor), 25.29 min (major).

Propyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-12-phenyl-1-(phenylsulfonyl)-1,2,4,9-tetrahydro-9,3-(epoxymethano)pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3dw)

Prepared according to the general procedure as described above in 83% yield. $[\alpha]^{20}D=-36.4$ (c=0.80, CH₂Cl₂); white solid. mp = 163 – 165 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.13 – 7.96 (m, 2H), 7.75 – 7.62 (m, 1H), 7.61 – 7.50 (m, 2H), 7.40 – 7.27 (m, 5H), 7.24 (td, J = 7.7, 1.5 Hz, 1H), 7.07 (dd, J = 7.6, 1.5 Hz, 1H), 6.83 – 6.64 (m, 2H), 5.37 (s, 1H), 5.21 (s, 1H), 4.76 (d, J = 4.7 Hz, 1H), 4.12 – 3.99 (m, 2H), 3.98 – 3.82 (m, 2H), 3.78 (d, J = 11.2 Hz, 1H), 1.45 (qd, J = 6.8, 1.9 Hz, 2H), 0.73 (t, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.0, 140.3, 136.5, 135.7, 133.2, 130.2, 128.6, 128.5, 128.4, 128.0, 127.8, 126.6, 117.9, 117.1, 112.2, 86.7, 70.9, 66.5, 58.6, 46.9, 21.1, 9.8; HRMS (ESI) calcd for C₂₇H₂₇N₃O₅SH⁺ [M+H]⁺ 506.1744, found 506.1741. HPLC analysis: 94% ee (CHIRALPAK OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), $t_R = 6.43$ min (minor), 7.80 min (major).

Propyl (3*S*,3*aS*,9*R*,10*S*,12*R*)-1-(naphthalen-1-ylsulfonyl)-12-phenyl-1,2,4,9-tetrahydro-9,3-(epoxymethano)pyrazolo[5,1-*b*]quinazoline-3(3*aH*)-carboxylate (3ew)

Prepared according to the general procedure as described above in 96% yield. $[\alpha]^{20}_{D}$ = +13.3 (*c*= 0.70, CH₂Cl₂); white solid. mp = 123 – 124 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.02 (dd, *J* = 8.7, 1.1 Hz, 1H), 8.40 (dd, *J* = 7.4, 1.3 Hz, 1H), 8.14 (d, *J* = 8.2 Hz, 1H), 7.99 (dd, *J* = 8.4, 1.1 Hz, 1H), 7.83 – 7.77 (m, 1H), 7.71 – 7.65 (m, 1H), 7.56 (dd, *J* = 8.2, 7.4 Hz, 1H), 7.41 – 7.31 (m, 5H), 7.18 – 7.16 (m, *J* = 8.1, 7.3, 1.5 Hz, 1H), 6.79 (dd, *J* = 7.6, 1.5 Hz, 1H), 6.75 – 6.57 (m, 2H), 5.20 (s, 1H), 4.96 – 4.79 (m, 2H), 4.65 (d, *J* = 4.8 Hz, 1H), 4.13 (d, *J* = 3.2 Hz, 2H), 3.93 – 3.90 (m, 2H), 1.47 – 1.43 (m, 2H), 0.72 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.1, 140.4, 136.6, 134.9, 133.8, 131.6, 131.4, 130.1, 128.7, 128.4, 128.1, 128.0, 127.8, 126.6, 126.5, 125.1, 123.8, 117.6, 116.9, 112.2, 86.2, 71.3, 70.9, 66.5, 58.3, 45.5, 21.1, 9.8; HRMS (ESI) calcd for C₃₁H₂₉N₃O₅SH⁺ [M+H]⁺ 556.1901, found 556.1903; HPLC analysis: 91% ee (CHIRALPAK OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), *t_R* = 17.71 min (minor), 33.12 min (major).

Propyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-1-((4-(tert-butyl)phenyl)sulfonyl)-12-phenyl-1,2,4,9-tetrahydro-9,3-(epoxymethano)pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3fw)

Prepared according to the general procedure as described above in 95% yield. $[\alpha]^{20}_{D}$ = -41.7 (*c*= 0.72, CH₂Cl₂); white solid. mp = 164 – 166 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.04 – 7.90 (m, 2H), 7.66 – 7.50 (m, 2H), 7.38 – 7.30 (m, 5H), 7.23 (td, *J* = 7.7, 1.5 Hz, 1H), 7.06 (dd, *J* = 7.4, 1.5 Hz, 1H), 6.82 – 6.64 (m, 2H), 5.36 (s, 1H), 5.22 (s, 1H), 4.81 (d, *J* = 4.7 Hz, 1H), 4.18 – 4.02 (m, 2H), 3.99 – 3.76 (m, 3H), 1.38 (s, 12H), 0.72 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.0, 157.1, 140.3, 136.6, 132.8, 130.2, 128.4, 128.3, 128.0, 127.8, 126.7, 125.7, 117.9, 117.1, 112.2, 86.7, 70.9, 66.5, 58.5, 46.7, 34.9, 30.7, 21.1, 9.8; HRMS (ESI) calcd for C₃₁H₃₅N₃O₅SH⁺ [M+H]⁺ 562.2370, found 562.2369; HPLC analysis: 93% ee (CHIRALPAK OD-H, isopropanol /hexane = 10:90, 1.0 mL/min, UV: 254 nm), *t_R* = 11.11 min (minor), 12.84 min (major).

Propyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-12-phenyl-1-(*o*-tolylsulfonyl)-1,2,4,9-tetrahydro-9,3-(epoxymethano)pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (3gw)

Prepared according to the general procedure as described above in 98% yield. $[\alpha]^{20}D=-55.3$ (c=0.77, CH₂Cl₂); white solid. mp = 170 – 172 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.08 (dd, J = 7.9, 1.4 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.44 – 7.35 (m, 1H), 7.35 – 7.28 (m, 6H), 7.20 – 7.16 (m, 1H), 6.91 (dd, J = 7.6, 1.5 Hz, 1H), 6.76 – 6.61 (m, 2H), 5.22 (s, 1H), 4.95 (d, J = 2.8 Hz, 2H), 4.71 (d, J = 4.8 Hz, 1H), 4.04 (dd, J = 23.7, 12.5 Hz, 2H), 3.96 – 3.86 (m, 2H), 2.88 (s, 3H), 1.54 – 1.33 (m, 2H), 0.71 (t, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.1, 140.4, 138.8, 136.6, 134.7, 133.3, 132.1, 130.9, 130.2, 128.2, 128.1, 128.0, 127.8, 126.5, 125.8, 117.6, 116.8, 112.3, 86.2, 71.3, 71.0, 66.6, 58.2, 45.4, 21.1, 20.3, 9.8; HRMS (ESI) calcd for C₂₈H₂₉N₃O₅SH⁺ [M+H]⁺ 520.1901, found 520.1889; HPLC analysis: 93% ee (CHIRALPAK OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), $t_R = 11.77$ min (minor), 21.52 min (major).

Transformations of the Product 3aa

Under a nitrogen atmosphere, the cycloaddition **3aa** (49.1 mg, 0.1 mmol) was dissolved in 0.5 mL CH₃CN and 0.5 mL of THF, then DMAP (2.4 mg, 0.02 mmol) and Boc₂O (65.4 mg, 0.3 mmol) was added, the mixture was stirred overnight. Once starting material was consumed (monitored by TLC), the mixture was concentrated to dryness. The residue was purified through flash column chromatography (EtOAc/PE) to afford the corresponding product **5** as a white solid, 82% yield, 91% ee.

The product **5** (59.1 mg, 0.1 mmol) was dissolved in 1 ml of THF, then slowly added to LiAlH₄ (30.4 mg, 0.8 mmol) in 1ml of THF, the resulting mixture was stirred at 0 °C for 1 h. Once starting material was consumed (monitored by TLC), the mixture was concentrated to dryness. The residue was purified through flash column chromatography (25% EtOAc/PE) to afford the corresponding product **6** as a white solid, 65% yield, 91% ee.

4-(*tert*-butyl) 3-methyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-12-phenyl-1-tosyl-1,2-dihydro-9,3-(epoxymethano) pyrazolo[5,1-*b*]quinazoline-3,4(3a*H*,9*H*)-dicarboxylate (5)

Prepared according to the general procedure as described above in 82% yield. It was purified by flash chromatography (20% EtOAc/PE) to afford a white solid. mp = 198 – 200 °C; $[\alpha]^{20}_{D}$ = + 11.0 (*c* 0.48, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 8.51 (d, J = 8.7 Hz, 1H), 8.00 – 7.82 (m, 2H), 7.46 – 7.15 (m, 10H), 7.08 (dd, J = 7.4, 1.0 Hz, 1H), 5.55 (s, 1H), 5.03 (s, 1H), 4.66 (s, 1H), 4.13 (d, J = 11.0 Hz, 1H), 3.86 (d, J = 11.1 Hz, 1H), 3.57 (s, 3H), 2.43 (s, 3H), 1.37 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 167.6, 151.3, 144.2, 136.1, 135.7, 132.1, 130.0, 129.6, 128.7, 128.5, 128.2, 127.9, 127.2, 122.9, 120.3, 118.1, 86.6, 83.0, 71.2, 69.8, 57.2, 51.8, 48.6, 27.4, 21.3; HRMS (ESI) calcd for C₃₁H₃₃N₃O₇SNH⁺[M+H]⁺ 592.2112, found 592.2107; HPLC analysis: 91% ee (CHIRALPAK OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 254 nm), *t_R* = 9.54 min (minor), 14.429 min (major).

((3*R*,3a*S*,9*R*,10*S*,12*R*)-12-phenyl-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano)pyrazolo[5,1-*b*] quinazolin-3(3a*H*)-yl)methanol (6)

Prepared according to the general procedure as described above in 65% yield. It was purified by flash chromatography (30% EtOAc/PE) to afford a white solid. mp = 228 – 229 °C; $[\alpha]^{20}_{D}$ = -48.5 (*c*= 0.20, CH₂Cl₂); ¹H NMR (300 MHz, DMSO) δ 7.82 – 7.64 (m, 2H), 7.47 – 6.98 (m, 9H), 6.86 (d, J = 6.2 Hz, 1H), 6.70 – 6.47 (m, 2H), 5.33 (s, 1H), 4.59 (t, J = 5.3 Hz, 1H), 4.53 (s, 1H), 3.64 – 3.46 (m, 2H), 3.34 – 3.23 (m, 2H), 2.81 (dd, J = 11.5, 5.1 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (75 MHz, DMSO) δ 144.1, 142.7, 137.4, 132.7, 130.1, 129.8, 128.5, 128.4, 128.1, 127.9, 127.0, 117.6, 116.3, 112.6, 86.9, 71.9, 67.3, 56.8, 51.3, 46.8, 21.2; HRMS (ESI) calcd for C₂₅H₂₅N₃O₄SH⁺ [M+H]⁺ 464.1639, found 464.1635; HPLC analysis: 91% ee (CHIRALPAK OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 220 nm), *t_R* = 20.40 min (major), 26.09 min (minor).

Transformations of the product 3aa

The cycloaddition product **3aa** (49.1 mg, 0.1 mmol) was dissolved in 1 ml of DCM, to the solution was added aza-*o*-quinone methide precursor 7 (59.0 mg, 0.2 mmol) and Na₂CO₃ (31.8 mg, 0.3 mmol), the resulting mixture was stirred overnigh at rt. Once starting material was consumed (monitored by TLC), the mixture was concentrated to dryness. The residue was purified through flash column chromatography (40% EtOAc/PE) to afford the corresponding product **8** as a white solid, 86% yield, 90% ee.

Methyl (3*S*,3a*S*,9*R*,10*S*,12*R*)-4-(2-((4-methylphenyl)sulfonamido)benzyl)-12-phenyl-1-tosyl-1,2,4,9-tetrahydro-9,3-(epoxymethano)pyrazolo[5,1-*b*]quinazoline-3(3a*H*)-carboxylate (8)

Prepared according to the general procedure as described above in 86% yield. It was purified by flash chromatography (25% EtOAc/PE) to afford a white solid. mp = 230 – 231 °C; $[\alpha]^{20}$ _D= -104.1 (*c*= 0.59, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, J = 8.2 Hz, 2H), 7.62 (d, J = 8.2 Hz, 2H), 7.42 – 7.25 (m, 8H), 7.22 – 7.02 (m, 7H), 6.79 – 6.64 (m, 2H), 6.56 – 6.30 (m, 2H), 5.42 (s, 1H), 5.22 (s, 1H), 4.95 (d, J = 18.1 Hz, 1H), 4.27 (d, J = 18.1 Hz, 1H), 4.07 (d, J = 11.2 Hz, 1H), 3.99 (s, 1H), 3.88 (d, J = 11.2 Hz, 1H), 3.62 (s, 3H), 2.45 (s, 3H), 2.26 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.8, 143.9, 143.8, 141.2, 136.5, 135.9, 133.8, 133.4, 132.6, 130.3, 129.4, 129.3, 128.7, 128.3, 128.0, 127.8, 127.6, 127.4, 127.4, 127.2, 127.1, 127.0, 117.9, 117.8, 110.5, 87.0, 77.6, 70.5, 58.0, 52.0, 49.9, 47.7, 21.2, 21.1; HRMS (ESI) calcd for C₄₀H₃₈N4O7S₂H⁺ [M+H]⁺ 751.2255, found 751.2249; HPLC analysis: 90% ee (CHIRALPAK IC, isopropanol/hexane = 20:80, 1.0 mL/min, UV: 220 nm), *t_R* = 45.03 min (minor), 75.68 min (major).

Kinetic Resolution of 2a

Under a nitrogen atmosphere, at -20 °C, to a mixture of N-iminoquinazolinium ylides 1 (0.1 mmol, 1.0 equiv) and catalyst C8 (0.02 mmol, 20 mol %) in DCM (2 mL) was added MBH adducts 2 (0.1 mmol, 1.0 equiv) via a syringe. Then the reaction solution was vigorously stirred at -20 °C and monitored by TLC. After the reaction was complete, the mixture was directly purified by column chromatography on silica gel (petroleum ether/EtOAc as the eluent) to furnish the corresponding product (2a, 47% yield, 83% ee). Notably, strict anhydrous condition is very important.

Methyl (S)-2-(hydroxy(phenyl)methyl)acrylate

2a

Prepared according to the general procedure as described above in 47% yield. $[\alpha]^{20}_{D}$ = +20.0 (*c*= 0.50, CH₂Cl₂). The absolute configuration of **2a** was determined by the comparison of $[\alpha]^{20}_{D}$ with reported result. HPLC analysis: 83% ee (CHIRALPAK OD-H, isopropanol/hexane = 10:90, 1.0 mL/min, UV: 220 nm), *t_R* = 11.77 min (minor), 21.52 min (major).

130 120 110 100 f1 (ppm) 90 80

S22

110 100 90 80 70 f1 (ppm)

S25

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 f1 (ppm)

200

10

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	4 4 4 4 5 5 6 6 6 7 7 8 9 6 7 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2.47	1.97	1.39 1.37 1.32 1.32 1.32	0.67 0.64 0.62
		I.	I.		SIZ

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 r1 (ppm)

110 100 90 f1 (ppm)

S36

S37

110 100 fl (ppm)

S39

S49

S50

HPLC chromatogram of racemic 3aa

HPLC chromatogram of chiral 3aa

S51

HPLC chromatogram of racemic 3ab

HPLC chromatogram of chiral 3ab

HPLC chromatogram of racemic 3ac

HPLC chromatogram of chiral 3ac

HPLC chromatogram of racemic 3ad

HPLC chromatogram of chiral 3ad

HPLC chromatogram of racemic 3ae

HPLC chromatogram of chiral 3ae

HPLC chromatogram of racemic 3af

HPLC chromatogram of chiral 3af

HPLC chromatogram of racemic 3ag

HPLC chromatogram of chiral 3ag

HPLC chromatogram of racemic 3ah

HPLC chromatogram of chiral 3ah

HPLC chromatogram of racemic 3ai

HPLC chromatogram of chiral 3ai

HPLC chromatogram of racemic 3aj

HPLC chromatogram of chiral 3aj

HPLC chromatogram of racemic 3ak

HPLC chromatogram of chiral 3ak

HPLC chromatogram of racemic 3al

HPLC chromatogram of chiral 3al

HPLC chromatogram of racemic 3am

HPLC chromatogram of chiral 3am

HPLC chromatogram of racemic 3an

HPLC chromatogram of chiral 3an

HPLC chromatogram of racemic 3ao

HPLC chromatogram of chiral 3ao

HPLC chromatogram of racemic 3ap

HPLC chromatogram of chiral 3ap

HPLC chromatogram of racemic 3aq

HPLC chromatogram of chiral 3aq

HPLC chromatogram of racemic 3ar

HPLC chromatogram of chiral 3ar

HPLC chromatogram of racemic 3as

HPLC chromatogram of chiral 3as

HPLC chromatogram of racemic 3at

HPLC chromatogram of chiral 3at

HPLC chromatogram of racemic 3au

HPLC chromatogram of chiral 3au

HPLC chromatogram of racemic 3av

HPLC chromatogram of chiral 3av

HPLC chromatogram of racemic 3ba

HPLC chromatogram of chiral 3ba

HPLC chromatogram of racemic 3cw

HPLC chromatogram of chiral 3cw

HPLC chromatogram of racemic 3dw

HPLC chromatogram of chiral 3dw

HPLC chromatogram of racemic 3ew

HPLC chromatogram of chiral 3ew

HPLC chromatogram of racemic 3fw

HPLC chromatogram of chiral 3fw

HPLC chromatogram of racemic 3gw

HPLC chromatogram of chiral 3gw

HPLC chromatogram of racemic 5

HPLC chromatogram of chiral 5

HPLC chromatogram of racemic 6

HPLC chromatogram of chiral 6

HPLC chromatogram of racemic 8

HPLC chromatogram of chiral 8

HPLC chromatogram of racemic 2a

HPLC chromatogram of chiral 2a

X-Ray Crystallography Data

Crystallographic data for **3aa** has been deposited with the Cambridge Crystallographic Data Centre as deposition number CCDC 1857263. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Table S1. Crystal data and structure refinement for 3aa.

Identification code	3aa	
Empirical formula	C27 H25 N2 O5 S	
Formula weight	489.55	
Temperature	173.15 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 6.5581(12) Å	a= 90°.
	b = 10.9280(19) Å	b=92.794(3)°.
	c = 16.216(3) Å	g = 90°.
Volume	1160.8(4) Å ³	

Ζ	2
Density (calculated)	1.401 Mg/m ³
Absorption coefficient	0.183 mm ⁻¹
F(000)	514
Crystal size	0.366 x 0.319 x 0.203 mm ³
Theta range for data collection	2.515 to 27.495°.
Index ranges	-8<=h<=8, -14<=k<=14, -21<=l<=21
Reflections collected	13224
Independent reflections	5290 [R(int) = 0.0474]
Completeness to theta = 25.242°	99.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.73515
Refinement method	Full-matrix least-squares on F ³
Data / restraints / parameters	5290 / 1 / 318
Goodness-of-fit on F ²	1.057
Final R indices [I>2sigma(I)]	R1 = 0.0409, wR2 = 0.1085
R indices (all data)	R1 = 0.0418, wR2 = 0.1093
Absolute structure parameter	0.01(3)
Extinction coefficient	n/a

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2 x 10^3$) for **3aa**. U (eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	у	Z	U(eq)	
S1	-141(1)	4316(1)	4086(1)	27(1)	

01	1336(3)	4879(2)	1587(1)	28(1)
02	-1283(3)	5431(2)	4121(1)	34(1)
O3	-1154(4)	3165(2)	4146(1)	36(1)
O4	7234(3)	3359(2)	2130(1)	32(1)
O5	5544(3)	1878(2)	2766(1)	30(1)
N1	2037(4)	5387(2)	3024(2)	25(1)
N2	870(3)	4299(2)	3172(1)	25(1)
C1	4156(4)	4926(2)	3002(2)	25(1)
C2	1377(5)	5830(3)	2195(2)	28(1)
C3	3182(4)	4179(3)	1564(2)	26(1)
C4	3799(4)	3755(3)	2459(2)	25(1)
C5	5509(4)	5849(2)	2731(2)	20(1)
C6	4800(5)	6844(3)	2273(2)	30(1)
C7	6071(5)	7816(3)	2084(2)	37(1)
C8	5338(6)	8775(3)	1603(2)	45(1)
C9	3298(7)	8808(3)	1324(2)	45(1)
C10	2012(6)	7862(3)	1519(2)	36(1)
C11	2751(5)	6876(3)	1988(2)	31(1)
C12	2808(4)	3145(3)	955(2)	27(1)
C13	864(5)	2630(3)	823(2)	32(1)
C14	567(5)	1679(3)	263(2)	36(1)
C15	2150(5)	1225(3)	-167(2)	36(1)

S85

C16	4098(5)	1731(3)	-35(2)	36(1)
C17	4409(5)	2686(3)	516(2)	33(1)
C18	1987(4)	3193(3)	2892(2)	26(1)
C19	5720(4)	2987(2)	2437(2)	24(1)
C20	7390(5)	1140(3)	2764(2)	34(1)
C21	1892(4)	4375(3)	4827(2)	26(1)
C22	2884(5)	5486(3)	4985(2)	29(1)
C23	4683(5)	5488(3)	5476(2)	34(1)
C24	5486(4)	4415(3)	5817(2)	33(1)
C25	4412(5)	3318(3)	5677(2)	35(1)
C26	2640(5)	3298(3)	5182(2)	31(1)
C27	7440(5)	4434(4)	6341(2)	47(1)

Table S3. Bond lengths [Å] and angles $[\circ]$ for 3aa.

S1-O2	1.433(2)
S1-O3	1.428(2)
S1-N2	1.653(2)
S1-C21	1.753(3)
O1-C2	1.432(3)
O1-C3	1.434(3)

O4-C19	1.203(3)
O5-C19	1.332(3)
O5-C20	1.455(3)
N1-N2	1.440(3)
N1-C1	1.480(4)
N1-C2	1.474(4)
N2-C18	1.495(4)
C1-H1	1.0000
C1-C4	1.565(4)
C1-C5	1.427(3)
С2-Н2	1.0000
C2-C11	1.503(4)
С3-Н3	1.0000
C3-C4	1.557(4)
C3-C12	1.513(4)
C4-C18	1.538(4)
C4-C19	1.515(4)
С5-Н5	0.9500
C5-C6	1.384(4)
C6-C7	1.394(4)
C6-C11	1.400(4)
С7-Н7	0.9500

C7-C8	1.378(5)
С8-Н8	0.9500
C8-C9	1.392(6)
С9-Н9	0.9500
C9-C10	1.381(5)
С10-Н10	0.9500
C10-C11	1.392(4)
C12-C13	1.400(4)
C12-C17	1.391(4)
С13-Н13	0.9500
C13-C14	1.388(4)
C14-H14	0.9500
C14-C15	1.371(5)
С15-Н15	0.9500
C15-C16	1.399(5)
С16-Н16	0.9500
C16-C17	1.382(4)
С17-Н17	0.9500
C18-H18A	0.9900
C18-H18B	0.9900
C20-H20A	0.9800
C20-H20B	0.9800

C20-H20C	0.9800
C21-C22	1.394(4)
C21-C26	1.389(4)
С22-Н22	0.9500
C22-C23	1.391(4)
С23-Н23	0.9500
C23-C24	1.390(5)
C24-C25	1.403(5)
C24-C27	1.503(4)
С25-Н25	0.9500
C25-C26	1.380(5)
С26-Н26	0.9500
С27-Н27А	0.9800
С27-Н27В	0.9800
С27-Н27С	0.9800
O2-S1-N2	106.20(13)
O2-S1-C21	108.81(14)
O3-S1-O2	120.02(12)
O3-S1-N2	105.05(13)
O3-S1-C21	109.06(14)
N2-S1-C21	106.91(12)

C2-O1-C3	114.7(2)
C19-O5-C20	114.5(2)
N2-N1-C1	103.3(2)
N2-N1-C2	106.7(2)
C2-N1-C1	108.9(2)
N1-N2-S1	112.29(17)
N1-N2-C18	110.15(18)
C18-N2-S1	120.33(19)
N1-C1-H1	108.6
N1-C1-C4	100.2(2)
C4-C1-H1	108.6
C5-C1-N1	111.4(2)
С5-С1-Н1	108.6
C5-C1-C4	118.9(2)
O1-C2-N1	112.6(2)
01-С2-Н2	107.9
O1-C2-C11	112.9(2)
N1-C2-H2	107.9
N1-C2-C11	107.5(2)
С11-С2-Н2	107.9
О1-С3-Н3	108.7
O1-C3-C4	108.4(2)

01-C3-C12	107.8(2)
С4-С3-Н3	108.7
С12-С3-Н3	108.7
C12-C3-C4	114.4(2)
C3-C4-C1	107.8(2)
C18-C4-C1	99.6(2)
C18-C4-C3	111.9(2)
C19-C4-C1	111.4(2)
C19-C4-C3	108.8(2)
C19-C4-C18	116.8(2)
С1-С5-Н5	119.2
C6-C5-C1	121.5(2)
С6-С5-Н5	119.2
C5-C6-C7	121.9(3)
C5-C6-C11	119.3(3)
C7-C6-C11	118.9(3)
С6-С7-Н7	119.7
C8-C7-C6	120.5(3)
С8-С7-Н7	119.7
С7-С8-Н8	119.8
C7-C8-C9	120.5(3)
С9-С8-Н8	119.8

С8-С9-Н9	120.2
C10-C9-C8	119.6(3)
С10-С9-Н9	120.2
С9-С10-Н10	119.8
C9-C10-C11	120.3(3)
С11-С10-Н10	119.8
C6-C11-C2	118.9(2)
C10-C11-C2	120.9(3)
C10-C11-C6	120.2(3)
C13-C12-C3	121.1(3)
C17-C12-C3	120.1(3)
C17-C12-C13	118.8(3)
С12-С13-Н13	120.0
C14-C13-C12	119.9(3)
С14-С13-Н13	120.0
C13-C14-H14	119.4
C15-C14-C13	121.2(3)
C15-C14-H14	119.4
C14-C15-H15	120.4
C14-C15-C16	119.2(3)
С16-С15-Н15	120.4
С15-С16-Н16	119.9

C17-C16-C15	120.2(3)
С17-С16-Н16	119.9
С12-С17-Н17	119.6
C16-C17-C12	120.8(3)
С16-С17-Н17	119.6
N2-C18-C4	102.5(2)
N2-C18-H18A	111.3
N2-C18-H18B	111.3
C4-C18-H18A	111.3
C4-C18-H18B	111.3
H18A-C18-H18B	109.2
O4-C19-O5	124.2(3)
O4-C19-C4	121.8(3)
O5-C19-C4	114.0(2)
O5-C20-H20A	109.5
O5-C20-H20B	109.5
О5-С20-Н20С	109.5
H20A-C20-H20B	109.5
H20A-C20-H20C	109.5
H20B-C20-H20C	109.5
C22-C21-S1	119.4(2)
C26-C21-S1	119.6(2)

C26-C21-C22	120.6(2)
С21-С22-Н22	120.6
C23-C22-C21	118.8(3)
С23-С22-Н22	120.6
С22-С23-Н23	119.3
C24-C23-C22	121.4(3)
С24-С23-Н23	119.3
C23-C24-C25	118.6(3)
C23-C24-C27	120.6(3)
C25-C24-C27	120.7(3)
С24-С25-Н25	119.7
C26-C25-C24	120.6(3)
С26-С25-Н25	119.7
С21-С26-Н26	120.1
C25-C26-C21	119.8(3)
С25-С26-Н26	120.1
С24-С27-Н27А	109.5
С24-С27-Н27В	109.5
С24-С27-Н27С	109.5
H27A-C27-H27B	109.5
Н27А-С27-Н27С	109.5
Н27В-С27-Н27С	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
S1	26(1)	30(1)	24(1)	-2(1)	2(1)	-1(1)	
01	30(1)	29(1)	25(1)	-2(1)	-6(1)	3(1)	
O2	31(1)	39(1)	31(1)	-3(1)	1(1)	7(1)	
03	36(1)	40(1)	31(1)	-4(1)	5(1)	-12(1)	
O4	26(1)	35(1)	34(1)	4(1)	2(1)	-2(1)	
05	28(1)	26(1)	36(1)	1(1)	2(1)	-1(1)	
N1	26(1)	25(1)	23(1)	1(1)	0(1)	-2(1)	
N2	28(1)	25(1)	23(1)	-1(1)	0(1)	-3(1)	
C1	26(1)	25(1)	22(1)	1(1)	-3(1)	-1(1)	
C2	33(1)	28(1)	23(1)	0(1)	-2(1)	4(1)	
C3	26(1)	27(1)	24(1)	1(1)	1(1)	-2(1)	
C4	24(1)	28(1)	23(1)	-1(1)	-2(1)	-3(1)	
C5	19(1)	19(1)	22(1)	0(1)	-3(1)	-4(1)	
C6	42(2)	24(1)	24(1)	-2(1)	3(1)	-3(1)	
C7	46(2)	31(2)	34(2)	-4(1)	2(1)	-9(1)	
C8	73(2)	27(1)	34(2)	2(1)	4(2)	-15(2)	

Table S4. Anisotropic displacement parameters ($Å^2 \ge 10^3$) for **3aa**. The anisotropic displacementfactor exponent takes the form: $-2p^2 [h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}]$

С9	78(3)	28(1)	30(2)	6(1)	-2(2)	1(2)
C10	53(2)	31(2)	26(1)	0(1)	-2(1)	5(1)
C11	42(2)	26(1)	24(1)	-1(1)	1(1)	0(1)
C12	32(1)	28(1)	21(1)	2(1)	-3(1)	-2(1)
C13	30(1)	34(1)	30(1)	-2(1)	-5(1)	1(1)
C14	36(2)	34(2)	35(2)	-1(1)	-10(1)	-7(1)
C15	49(2)	29(1)	29(2)	-2(1)	-10(1)	1(1)
C16	43(2)	40(2)	26(1)	-4(1)	2(1)	3(1)
C17	34(2)	39(2)	25(1)	-2(1)	-1(1)	-3(1)
C18	26(1)	26(1)	26(1)	-1(1)	0(1)	-2(1)
C19	24(1)	26(1)	23(1)	-1(1)	-3(1)	-2(1)
C20	34(2)	25(1)	43(2)	-2(1)	4(1)	2(1)
C21	31(1)	25(1)	23(1)	-2(1)	3(1)	1(1)
C22	39(2)	23(1)	24(1)	0(1)	-3(1)	-1(1)
C23	42(2)	33(2)	27(1)	-4(1)	0(1)	-8(1)
C24	32(1)	45(2)	23(1)	0(1)	0(1)	-2(2)
C25	43(2)	33(2)	30(2)	4(1)	1(1)	9(1)
C26	38(2)	24(1)	30(1)	2(1)	2(1)	-1(1)
C27	38(2)	65(2)	37(2)	4(2)	-9(1)	2(2)

	Х	У	Z	U(eq)	
H1	4622	4666	3572	29	
H2	-41	6158	2224	34	
Н3	4286	4716	1362	31	
Н5	6929	5780	2869	24	
H7	7454	7818	2288	44	
H8	6231	9418	1462	54	
Н9	2793	9477	1000	55	
H10	616	7884	1333	44	
H13	-250	2932	1116	38	
H14	-757	1337	175	43	
H15	1926	575	-550	43	
H16	5210	1417	-324	44	
H17	5732	3033	595	39	
H18A	1120	2694	2505	31	
H18B	2459	2678	3366	31	
H20A	7958	1176	2216	50	
H20B	7062	290	2896	50	

Table S5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^2) for **3aa**.

H20C	8394	1458	3177	50
H22	2341	6227	4761	35
H23	5377	6240	5581	41
H25	4909	2582	5925	42
H26	1933	2549	5084	37
H27A	8436	4961	6082	71
H27B	7986	3601	6393	71
H27C	7172	4753	6891	71

Table S6. Torsion angles $[^{\circ}]$ for 3aa.

S1-N2-C18-C4	-140.32(19)
S1-C21-C22-C23	-170.1(2)
S1-C21-C26-C25	170.9(2)
O1-C2-C11-C6	-90.4(3)
O1-C2-C11-C10	89.4(3)
O1-C3-C4-C1	-60.5(3)
O1-C3-C4-C18	48.0(3)
O1-C3-C4-C19	178.6(2)
O1-C3-C12-C13	-30.4(3)
O1-C3-C12-C17	149.8(3)

O2-S1-N2-N1	54.3(2)
O2-S1-N2-C18	-173.5(2)
O2-S1-C21-C22	-36.2(3)
O2-S1-C21-C26	150.9(2)
O3-S1-N2-N1	-177.52(18)
O3-S1-N2-C18	-45.4(2)
O3-S1-C21-C22	-168.8(2)
O3-S1-C21-C26	18.3(3)
N1-N2-C18-C4	-7.3(3)
N1-C1-C4-C3	69.1(2)
N1-C1-C4-C18	-47.8(2)
N1-C1-C4-C19	-171.7(2)
N1-C1-C5-C6	-21.9(4)
N1-C2-C11-C6	34.4(3)
N1-C2-C11-C10	-145.8(3)
N2-S1-C21-C22	78.1(3)
N2-S1-C21-C26	-94.8(2)
N2-N1-C1-C4	44.0(2)
N2-N1-C1-C5	170.8(2)
N2-N1-C2-O1	-48.3(3)
N2-N1-C2-C11	-173.3(2)
C1-N1-N2-S1	113.31(19)

C1-N1-N2-C18	-23.7(2)
C1-N1-C2-O1	62.6(3)
C1-N1-C2-C11	-62.4(3)
C1-C4-C18-N2	33.1(2)
C1-C4-C19-O4	-64.7(3)
C1-C4-C19-O5	116.9(3)
C1-C5-C6-C7	172.8(3)
C1-C5-C6-C11	-7.4(4)
C2-O1-C3-C4	50.1(3)
C2-O1-C3-C12	174.4(2)
C2-N1-N2-S1	-131.93(19)
C2-N1-N2-C18	91.0(2)
C2-N1-C1-C4	-69.2(3)
C2-N1-C1-C5	57.6(3)
C3-O1-C2-N1	-51.4(3)
C3-O1-C2-C11	70.6(3)
C3-C4-C18-N2	-80.6(3)
C3-C4-C19-O4	54.0(3)
C3-C4-C19-O5	-124.5(2)
C3-C12-C13-C14	-179.7(3)
C3-C12-C17-C16	179.1(3)
C4-C1-C5-C6	93.8(3)

C4-C3-C12-C13	90.2(3)
C4-C3-C12-C17	-89.6(3)
C5-C1-C4-C3	-52.5(3)
C5-C1-C4-C18	-169.3(2)
C5-C1-C4-C19	66.8(3)
C5-C6-C7-C8	177.8(3)
C5-C6-C11-C2	0.5(4)
C5-C6-C11-C10	-179.3(3)
C6-C7-C8-C9	2.2(5)
C7-C6-C11-C2	-179.8(3)
C7-C6-C11-C10	0.4(4)
C7-C8-C9-C10	-1.0(5)
C8-C9-C10-C11	-0.5(5)
C9-C10-C11-C2	-179.1(3)
C9-C10-C11-C6	0.8(5)
C11-C6-C7-C8	-1.9(4)
C12-C3-C4-C1	179.2(2)
C12-C3-C4-C18	-72.2(3)
C12-C3-C4-C19	58.3(3)
C12-C13-C14-C15	0.1(5)
C13-C12-C17-C16	-0.7(5)
C13-C14-C15-C16	0.2(5)
C14-C15-C16-C17	-0.8(5)
C15-C16-C17-C12	1.0(5)

S101

C17-C12-C13-C14	0.1(4)
C18-C4-C19-O4	-178.2(3)
C18-C4-C19-O5	3.4(3)
C19-C4-C18-N2	153.1(2)
C20-O5-C19-O4	2.8(4)
C20-O5-C19-C4	-178.8(2)
C21-S1-N2-N1	-61.7(2)
C21-S1-N2-C18	70.4(2)
C21-C22-C23-C24	-0.8(5)
C22-C21-C26-C25	-1.8(4)
C22-C23-C24-C25	-1.9(5)
C22-C23-C24-C27	179.5(3)
C23-C24-C25-C26	2.7(5)
C24-C25-C26-C21	-0.9(5)
C26-C21-C22-C23	2.6(4)
C27-C24-C25-C26	-178.7(3)

Symmetry transformations used to generate equivalent atoms:

Table S7. Hydrogen bonds for **3aa** [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	