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Experimental Section

Materials Synthesis and Film Fabrication
All raw chemicals are obtained from Sigma-Aldrich, USA with further purification 
except when mentioned specifically. MA+TFA- ionic liquids (ILs) are synthesized via 
proton transfer between a Brönsted acid, trifluoroacetic acid and a weak base, 
methylamine. Anhydrous trifluoroacetic acid (Sigma-Aldrich, USA) and methylamine 
(MA, 33 wt.% in ethanol solution; Sigma-Aldrich, USA) are reacted in the equimolar 
amount. Since these reactions are very exothermic, the dropwise addition of the acid 
to the amine was carried out by cooling the amine solution to 0 °C using an ice water 
bath. The mixture was then stirred at room temperature for 6 hours. To ensure a 
complete reaction, an excess of amine was used and then removed in vacuum using a 
rotary evaporator. 

Film Fabrication:
For the deposition of MAPbI3 perovskite thin films with on FTO-coated glass 
substrates, a 40 wt% PbI2:MAI (molar ratio 1:1) mixture was dissolved in the N,N-
dimethylmethanamide (DMF) solvent, with different amount of MA+TFA- as the 
additive, were prepared. The solutions were spin-coated on the substrates at 4000 rpm 
for 20 s. The as-formed thin films were then annealed at 130 ºC for 10 min. For 
obtaining better-quality thin films, the chlorobenzene-solvent-dripping process was 
introduced during the spin-coating step. Typically, the weight ratios of MA+TFA- and 
MAPbI3 are 1:35, 1:25, 1:15 and 1:10, respectively. 
Materials and Thin-Film Characterization. Qualitative analysis of as-synthesized 
MA+TFA- ILs has been carried out by Fourier-transform infrared spectroscopy (FTIR; 
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iS50, Nicolet, Thermo Scientific, USA) and 1H NMR (Advance Ⅲ HD 400, Bruker, 

USA). Thermogravimetry and Differential Thermal Analyses (TG-DTA) of the 
samples were studied via a TG analyzer (DTG-60, Shimadzu, Japan) within the 
temperature range of 30 to 500 oC. The measurement process was carried out in the 
air with a heating rate of 10 oC/min. X-ray diffraction (XRD) patterns were collected 
using an X-ray diffractometer (D8 Discover, Bruker, Germany) using Cu Kα radiation 
(λ=1.5406 Å) at step size of 0.02°. 2D XRD were performed on an X-ray 
diffractometer with an in-situ heating stage (D8 Advance, Bruker, Germany). UV-vis 
absorption spectra were obtained on a UV-vis spectrometer (UV-2600, Shimadzu 
Scientific, Japan). Photoluminescence (PL) spectroscopy was performed on a 
spectrometer (FluoTime 300, PicoQuant, Germany) using 405 nm laser excitation. 
The surface and cross-sectional morphology and microstructure of samples were 
observed by a scanning electron microscopy (SEM; G500, ZEISS, Germany). Energy 
dispersive X-ray spectrometer (EDS; Octane Elite EDS System, EDAX, USA) 
attached to the SEM was employed for elemental analyses. The surface chemical 
compositions were measured using X-ray photoelectron spectroscopy (XPS; K-alpha, 
Thermo Scientific, USA). 

PSC Fabrication and Testing. Patterned FTO-glass substrates were cleaned 
ultrasonically with an alconox (detergent) solution, followed by sonication in 
deionized water, acetone, and isopropyl alcohol sequentially for 20 min each. A 30-
nm compact-TiO2 layer was deposited on top of the etched FTO/glass substrates using 
the procedure described earlier. A 250-nm mesoporous-TiO2 layer was then deposited 
by spin-coating followed by a sintering heat-treatment of 500 ˚C for 30 min in air. A 
1.5 wt % solution of SnCl4 he distilled water was spin-coated at 3000 rpm for 30 s. 
This is followed by annealing at 200 °C for 30 min, forming an ultrathin compact 
SnO2 layer. The addition of SnO2 coating is for purpose of enhancing the overall 
device open-circuit voltage and does not have an obvious effect on the solution 
wetting. The thin films of MAPbI3 modified with or without the MA+TFA- additive 
were then deposited according to the procedure described above. A solution of Spiro-
MeOTAD (Merck Group, Germany) hole-transporting material (HTM) coating was 
prepared by dissolving 72.3 mg of Spiro-MeOTAD in 1 mL of chlorobenzene 
(99.8%), to which 28.8 µL of 4-tert-butyl pyridine (96%) and 17.5 µL of lithium 
bis(trifluoromethanesulfonyl)imide (LITSFI) solution (520 mg LITSFI in 1 mL 
acetonitrile were added. The HTM was deposited by spin-coating (3000 rpm, 30 s). 
Finally, a 100 nm Au electrode was thermally-evaporated to complete the solar cells. 
The current density-voltage (J-V) of the solar cells were measured using a Keithley 
2400 sourcemeter under simulated AM1.5 illumination (100 mW cm-2) simulated 
using a solar simulator (Sol3A Class AAA, Oriel, USA). A non-reflective mask (0.09 
cm2) was used to define the PSC area. The stabilized maximum-power outputs of the 
PSCs were measured by monitoring the J outputs at the maximum-power V bias 
(deduced from the reverse-scan J−V curves). The external quantum efficiency (EQE) 
spectra were recorded with an EQE measurement system (Newport, USA).



Supplementary Figures

Figure S1. Photograph of 70 wt% clear solution of MA+TFA- in DMF, demonstrating 
the high solubility.



Figure S2. TG-DTA result of MA+TFA-, showing the melting point of 61.8 oC, and 
the decomposition onset at152.4 oC and completion at 243.7 oC.



Figure S3. 1H NMR spectrum (DMSO-d6, 400 MHz, TMS) of MA+TFA-.
 1H NMR: δ 7.69 (s, 4H), 2.38 (s, 3H), demonstrating the existing of CH3NH3

+ 
cation in DMSO.



Figure S4. FTIR spectrum of MA+TFA-. The valleys are assigned as below: 3026 
cm-1 for ν N-H, which confirms the existing of -NH3; 2902 cm-1 for vs

 C-H, 2796 cm-

1 for νas C-H, 1476 cm-1 for δas C-H; 992 cm-1 for ν C-H, suggesting the existence of 
methyl group; 1425 cm-1 for δs C-H in -N-CH3, which confirms N atom is adjacent to 
methyl group, all above demonstrate the existence of CH3NH3

+ cation. 1178 and 
1142 cm-1 for ν C-F, 1671 cm-1 for ν C=O, 1531 cm-1 for v C-O, all these prove the 
existing of the anion CF3COO- . 



Figure S5. Cross-sectional optical images of MAPbI3 perovskite solution droplets on 
compact-TiO2-coated FTO-glasses with the increasing weight ratio of MA+TFA- to 
MAPbI3: (a) 0; (b) 1:35; (c) 1:15, (d) 1:10. 



Figure S6. SEM images of MAPbI3 perovskite thin films on compact-TiO2-coated 
FTO-glasses made with different weight ratios of MA+TFA- to MAPbI3: (a) 0; (b) 
1:35; (c) 1:15; (d) 1:10. Note that (a) and (d) are reproduced from Figure 1c and 1d. 



298 296 294 292 290 288 286 284 282 280 278

In
te

ns
ity

(a
rb

 u
ni

t)

Binding energy(ev)

 raw curve
 C=O
 C-C
 C-N
 C-F
 cumulative fit curve

C 1s

 

 

Figure S7. C 1s XPS of MAPbI3 perovskite thin film made with MA+TFA-.



Figure S8. EDX spectrum of MAPbI3 perovskite thin film made with MA+TFA-.



Figure S9. UV-vis absorption spectra of MAPbI3 perovskite thin films made without 
(grey solid line) and with (red solid line) MA+TFA- additive.



Figure S10. Time-resolved PL spectrum of the MAPbI3 perovskite thin film that is 
made using solvent annealing method [ref: doi:10.1002/adma.201401685] and exhibit 
a similar grain size to the film made with MA+TFA- additive in this study. The 
spectrum is fit using a bi-exponential function and the fitting parameters are included 
in Table S1. 



Fig
ure S11. SEM images of the FAPbI3 perovskite thin film made (a) without and (b) 
with MA+TFA- additive. (c) XRD patterns of the FAPbI3 perovskite thin film made 
without and with MA+TFA- additive after storage 48-h exposure to the controlled 
humid condition (70% RH, RT). (d) XRD patterns of the MA0.7FA0.3PbI3 perovskite 
thin film made without and with MA+TFA- additive after storage 48-h exposure to the 
controlled humid condition (70% RH, RT). 



Figure S12. J-V curves at both forward (F) and reverse ® scans for the best PSCs 
made without and with MA+TFA- additive. Inset shows the extracted J-V parameters.



Table S1. Time constants for fitting the PL decays in Figure 3b using bi-exponential 
functions. τavg is the amplitude average PL lifetime.

τ1 τ2 τavg

w/ MA+TFA- 10.9 ns 20.6 ns 15.6 ns 
w/o MA+TFA- 6.1 ns 24.0 ns 6.3 ns
w/ MA+TFA- 

(solvent-annealed) 
8.8 ns 20.5 ns 12.2 ns


