Electronic Supplementary Information (ESI)

P2-type $Na_{0.7}(Ni_{0.6}Co_{0.2}Mn_{0.2})O_2$ cathode with excellent cyclability and rate capability for sodium ion batteries

Jonghyun Choi, Kyeong-Ho Kim, Chul-Ho Jung, and Seong-Hyeon Hong*

Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 151-744, Republic of Korea

* Corresponding author Prof. Seong-Hyeon Hong (S.-H. Hong) E-mail: shhong@snu.ac.kr

Experimental

Sample preparation

Spherical $(Ni_{0.6}Co_{0.2}Mn_{0.2})(OH)_2$ precursors were synthesized using co-precipitation method using NiSO₄·6H₂O, CoSO₄·7H₂O and MnSO₄·H₂O (Daejung Chemical Co.) as starting materials. A homogeneously mixed transition metal sulfates were slowly pumped into a continuously stirred tank reactor. Concurrently, 4 M NaOH (aq) and 2 M NH₄OH chelating agent (aq) were also separately pumped into the reactor. After reaction, the precursor powders were obtained by filtering, washing, and vacuum drying at 110 °C for 12 h. For a typical synthesis of P2-type Na-MCM, the mixture of Na₂CO₃ and $(Ni_{0.6}Co_{0.2}Mn_{0.2})(OH)_2$ with a molar ratio of 0.7:1 was thoroughly ground, pressed into pellet, and annealed at 400 °C for 5 h and at 780 °C for 15 h in air followed by the quench process. The O3-type Na-NCM was prepared using Na₂CO₃ and $(Ni_{0.6}Co_{0.2}Mn_{0.2})(OH)_2$ with a molar ratio of 1.05:1. The mixture was annealed 650 °C for 15 h in air followed by furnace cooling process. Finally, the materials were immediately transferred to a glovebox under inert atmosphere.

Materials Characterization

The chemical composition of the synthesized powders was determined using inductively coupled plasma atomic emission spectrometer (ICP-AES; OPTIMA 4300DV, Perkin-Elmer). The crystal structure was determined by synchrotron radiation powder X-ray diffraction (SPXRD) data collected at room temperature from the 9B HRPD beamline of the Pohang Accelerator Laboratory (PAL) and X-ray diffraction (XRD, D8 Advance, Bruker). The Rietveld refinement was performed by Fullprof program. The morphology was observed by scanning electron microscopy (SEM, SU-70, Hitachi). The Ni K-edge, Co K-edge and Mn K-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were collected on the BL10C beam line at the Pohang Light Source (PLS-II) in Korea with top-up mode operation under a ring current of 200 mA at 3.0 GeV.

Electrochemical measurements

The cathode was fabricated by blending the active materials (90 wt %), carbon black (Super P) (4 wt %), and polyvinylidene fluoride (PVDF) (6 wt %) in n-methyl-2-pyrrolidone (NMP). The resulting slurry was pasted onto aluminum foil and dried at 110 °C for 12 h in a vacuum oven. The electrochemical properties were evaluated using a CR2032 coin-type half cell. The electrolyte was 1.0 M NaClO₄ dissolved in a solution of ethylene carbonate (EC) and dimethyl carbonate (DMC) (1:2 v/v). The cells were galvanostatically charged and discharged between 2.0 and 4.0 V vs. Na⁺/Na at room temperature using a program controlled battery test system (WBCS 3000S WonATech). The electrochemical impedance spectroscopy (EIS) measurements were carried out in the frequency range of 1000 kHz to 1 mHz with an AC amplitude of 10 mV using a ZIVE SP1 potentiostat/galvanostat/EIS.

Fig. S1 SEM images of $(Ni_{0.6}Co_{0.2}Mn_{0.2})(OH)_2$ precursor.

(a).						
()	Samples	Na		Ni	Co	Mn
-	(Ni _{0.6} Co _{0.2} Mn _{0.2})(OH) ₂	-		0.60	0.20	0.20
	O3-type Na(Ni _{0.6} Co _{0.2} Mn _{0.2})O ₂	0.97		0.60	0.20	0.20
-	P2-type Na _{0.7} (Ni _{0.6} Co _{0.2} Mn _{0.2})O ₂	0.68	3	0.59	0.21	0.19
(b)_						
	Cathodes	a(Å)	c(Å)	Volume(Å)	Rwp(%)	Rp(%)
	O3-type Na(Ni _{0.6} Co _{0.2} Mn _{0.2})O ₂	2.9326	15.7918	117.64	8.45	6.58
	P2-type Na _{0.7} (Ni _{0.6} Co _{0.2} Mn _{0.2})O ₂	2.8542	11.2063	119.45	10.48	8.21

Table S1 (a) ICP-AES results of hydroxide precursor and O3- and P2-type Na-NCMs and (b) lattice parameters of O3- and P2-type Na-NCMs determined by Rietveld refinement.

Fig. S2 X-ray diffraction patterns of Na-NCMs synthesized at different annealing temperature, Na content, and cooling rate.

Fig. S3 Temeprature profiles of furnace cooling and air quenching.

Fig. S4 X-ray diffraction pattern of as-syntheized P2-type Na-NCM after re-annealing at 780 °C and furmace-cooling.

Fig. S5 Cyclic voltammogram of (a) O3- and (b) P2-type Na-NCMs at a scan rate of 0.04 mV s⁻¹.

Fig. S6 Voltage profile of P2-type Na-NCM electrode between 2.0-4.3 V (vs. Na/Na⁺).

Fig. S7 Average working potential vs. gravimetric specific capacity for reported P2-type sodium layered cathode materials.

[1] J. J. Ding, Y. N. Zhou, Q. Sun, X. Q. Yu, X. Q. Yang and Z. W. Fu, *Electrochimica Acta* 2013, **87**, 388–393.

[2] A. Caballero, L. Hernan, J. Morales, L. Sanchez, J. Santos, Pena and M. A. G. Aranda, J. *Mater. Chem.*, 2012, **12**, 1142–1147.

[3] J. Billaud, G. Singh, A. R. Armstrong, E. Gonzalo, V. Roddatis, M. Armand, T. Rojo, and P. G. Bruce, *Energy Environ. Sci.*, 2014, **7**, 1387

[4] N. Yabuuchi, R. Hara, M. Kajiyama, K. Kubota, T. Ishigaki, A. Hoshikawa, and S. Komaba, *Adv. Energy Mater.*, 2014, **4**, 1301453.

[5] G. Singh, J. M. Lopez, M. Calceran, S. Perez-Villar and T. Rojo, *J. Mater. Chem. A*, 2015, **3**, 6954–6961.

[6] W. Zhao, H. Kirie, A. Tanaka, M. Unno, S. Yamamoto and H. Noguchi, *Mater. Lett.*, 2014, **135**, 131–134.

[7] J. Y. Hwang, J. Kim, T. Y. Yu, and Y. K. Sun, Adv. Energy Mater., 2019, 9, 1803346.

[8] N. Yabuuchi, R. Hara, K. Kubota, J. Paulsen, S. Kumakura and S. Komaba, *J. Mater. Chem. A.*, 2014, **2**, 16851–16855.

[9] H. Yoshida, N. Yabuuchi, K. Kubota, I. Ikeuchi, A. Garsuch, M. Schulz-Dobrick and S. Komaba, *Chem. Commun.*, 2014, **50**, 3677–3680.

[10] G. Singh, N. Tapia-Ruiz, J. M. Lopez, U. Maitra, J. W. Somerville, A. R. Armstrong, J. Martinez, T. Rojo and P. G. Bruce, *Chem. Mater.*, 2016, **28**, 5087–5094.

Fig. S8 *Ex-situ* XANES and EXAFS spectra of pristine, 1st charged, and 1st discharged P2-type Na-NCM electrode.

Fig. S9. Cycling performance of the P2-type Na-NCM electrode between 2.0 and 4.2 V (vs. Na/Na⁺) at the current density of 1 C.

Fig. S10 (a, c) Nyquist plots and (b, d) relationships between real impedance and frequency for pristince and cycled O3- and P2-type Na-NCM electrodes, respectively.

Cycle	Cathodes	R _{sei} (Ω)	R _{cτ} (Ω)	D _{Na+} (cm² S⁻¹)
Defense such	O3 type	-	235	2.24 x 10 ⁻¹⁰
Before cycle	P2 type	-	270	3.52 x 10 ⁻⁹
	O3 type	605	785	4.27 x 10 ⁻¹²
Alter cycle	P2 type	-	372	2.45 x 10 ⁻¹⁰

Table S2. Impedance parameters for O3- and P2-type Na-NCM electrodes.

The inclined line at low frequency in the Nyquist plots is related to the solid state diffusion of Na⁺ ions in the layered structure. The Na⁺ ion diffusion coefficient can be calculated based on the following equation [1,2]

$$R^2 T^2$$

$$D_{Na^+} = \frac{R^2 T^2}{2n^4 F^4 C^2 A^2 \sigma^2}$$

Where R is the gas constant, T is the absolute temperature, A is the surface area of the cathode, n is the number of electrons per molecule during oxidization, F is the Faraday constant, C is the concentration of sodium ion, and σ is the Warburg factor which can be calulated according to the following equation.

$$Z_{\text{real}} = R_{\text{SEI}} + R_{\text{CT}} + \sigma \omega^{-1/2}$$

Where R_{SEI} is the resistance of the electrolyte and electrode material, R_{CT} is the charge transfer resistance, and ω is the angular frequency in the low frequency region. The Na⁺ diffusion coefficients of P2-type and O3-type Na-NCMs obtained in this study were within the reported range of Na_xTMO₂ layered oxides [3].

[1] Q. Chen, C. Du, D. Qu, X. Zhang, Z. Tang, *RSC Adv.*, 2015, **5**, 75248-75253.
[2] Z. He, Z. Wang, H. Chen, Z. Huang, X. Li, H. Guo, R. Wang, *J. Power Sources*, 2015, **299**, 334-341.

[3] P.-F. Wang, H.-R. Yao, X.-Y. Liu, Y.-X. Yin, J.-N. Zhang, Y. Wen, X. Yu, L. Gu, Y.-G.

Guo, Sci. Adv., 2018, 4, eaar6018.

Fig. S11 Illustration of crystal structure for O3- and P2-type Na-NCMs.