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Experimental

Sample preparation

Spherical (Nig¢Co,Mng,)(OH), precursors were synthesized using co-precipitation method
using NiSO4-6H,0, CoSO4 7H,0 and MnSO4-H,O (Daejung Chemical Co.) as starting
materials. A homogeneously mixed transition metal sulfates were slowly pumped into a
continuously stirred tank reactor. Concurrently, 4 M NaOH (aq) and 2 M NH4OH chelating
agent (aq) were also separately pumped into the reactor. After reaction, the precursor powders
were obtained by filtering, washing, and vacuum drying at 110 °C for 12 h. For a typical
synthesis of P2-type Na-MCM, the mixture of Na,CO; and (Niy Coy,Mng,)(OH), with a molar
ratio of 0.7:1 was thoroughly ground, pressed into pellet, and annealed at 400 °C for 5 h and at
780 °C for 15 h in air followed by the quench process. The O3-type Na-NCM was prepared
using Na,CO;3 and (Nig¢Co,Mng,)(OH), with a molar ratio of 1.05:1. The mixture was
annealed 650 °C for 15 h in air followed by furnace cooling process. Finally, the materials were

immediately transferred to a glovebox under inert atmosphere.

Materials Characterization

The chemical composition of the synthesized powders was determined using inductively
coupled plasma atomic emission spectrometer (ICP-AES; OPTIMA 4300DV, Perkin-Elmer).
The crystal structure was determined by synchrotron radiation powder X-ray diffraction
(SPXRD) data collected at room temperature from the 9B HRPD beamline of the Pohang
Accelerator Laboratory (PAL) and X-ray diffraction (XRD, D8 Advance, Bruker). The
Rietveld refinement was performed by Fullprof program. The morphology was observed by
scanning electron microscopy (SEM, SU-70, Hitachi). The Ni K-edge, Co K-edge and Mn K-
edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine
structure (EXAFS) were collected on the BL10C beam line at the Pohang Light Source (PLS-

II) in Korea with top-up mode operation under a ring current of 200 mA at 3.0 GeV.



Electrochemical measurements

The cathode was fabricated by blending the active materials (90 wt %), carbon black (Super P)
(4 wt %), and polyvinylidene fluoride (PVDF) (6 wt %) in n-methyl-2-pyrrolidone (NMP). The
resulting slurry was pasted onto aluminum foil and dried at 110 °C for 12 h in a vacuum oven.
The electrochemical properties were evaluated using a CR2032 coin-type half cell. The
electrolyte was 1.0 M NaClO, dissolved in a solution of ethylene carbonate (EC) and dimethyl
carbonate (DMC) (1:2 v/v). The cells were galvanostatically charged and discharged between
2.0 and 4.0 V vs. Na"/Na at room temperature using a program controlled battery test system
(WBCS 3000S WonATech). The electrochemical impedance spectroscopy (EIS)
measurements were carried out in the frequency range of 1000 kHz to 1 mHz with an AC

amplitude of 10 mV using a ZIVE SP1 potentiostat/galvanostat/EIS.



Fig. S1 SEM images of (Nij¢Co,Mny,)(OH), precursor.

(a)

Samples Na Ni Co Mn

(Nig.5C00.2Mny2)(OH), ) 0.60 0.20 0.20

03-type Na(Nip sC0pMn; )0, 0.97 0.60 0.20 0.20

P2-type Nay 7(NipsC0g2Mng )0, 0.68 0.59 0.21 0.19

(b)
Cathodes a(A) c(A) Volume(A) Rwp(%) Rp(%)

03-type Na(NiyC0,,Mn; 5)0; 2.9326 15.7918 117.64 8.45 6.58
P2-type Nag 7(NigsC0g ;Mng 2)0; 2.8542 11.2063 119.45 10.48 8.21

Table S1 (a) ICP-AES results of hydroxide precursor and O3- and P2-type Na-NCMs and (b)

lattice parameters of O3- and P2-type Na-NCMs determined by Rietveld refinement.
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Fig. S2 X-ray diffraction patterns of Na-NCMs synthesized at different annealing

temperature, Na content, and cooling rate.
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Fig. S3 Temeprature profiles of furnace cooling and air quenching.
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Fig. S4 X-ray diffraction pattern of as-syntheized P2-type Na-NCM after re-annealing at 780

°C and furmace-cooling.
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Fig. S5 Cyclic voltammogram of (a) O3- and (b) P2-type Na-NCMs at a scan rate of 0.04 mV
s,
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Fig. S6 Voltage profile of P2-type Na-NCM electrode between 2.0-4.3 V (vs. Na/Na").
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Fig. S7 Average working potential vs. gravimetric specific capacity for reported P2-type

sodium layered cathode materials.
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Fig. S8 Ex-situ XANES and EXAFS spectra of pristine, 1 charged, and 1% discharged P2-type
Na-NCM electrode.
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Fig. S9. Cycling performance of the P2-type Na-NCM electrode between 2.0 and 4.2 V (vs.
Na/Na") at the current density of 1 C.
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Fig. S10 (a, c) Nyquist plots and (b, d) relationships between real impedance and frequency for

pristince and cycled O3- and P2-type Na-NCM electrodes, respectively.
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Cycle Cathodes Rsg (Q) Rer(Q) Dpas (cm2 §71)

03 type - 235 2.24 x 10-10
Before cycle

P2 type - 270 3.52x10°

03 type 605 785 4.27 x 1012
After cycle

P2 type - 372 2.45 x 10-10

Table S2. Impedance parameters for O3- and P2-type Na-NCM electrodes.

The inclined line at low frequency in the Nyquist plots is related to the solid state diffusion of
Na* ions in the layered structure. The Na* ion diffusion coefficient can be calculated based on

the following equation [1,2]
22
R°T

Dy, = 2n*F*C%A%6°

Where R is the gas constant, T is the absolute temperature, A is the surface area of the cathode,
n is the number of electrons per molecule during oxidization, F is the Faraday constant, C is
the concentration of sodium ion, and ¢ is the Warburg factor which can be calulated according

to the following equation.
Zreal = RSEI + RCT + G(D_]/z

Where Rgg; is the resistance of the electrolyte and electrode material, Rct is the charge transfer
resistance, and o is the angular frequency in the low frequency region. The Na* diffusion
coefficients of P2-type and O3-type Na-NCMs obtained in this study were within the reported
range of Na,TMO, layered oxides [3].
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Fig. S11 Illustration of crystal structure for O3- and P2-type Na-NCMs.
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