Dioxazolones as Masked Ester Surrogates in the Pd(II)-Catalyzed Direct C-H Arylation of 6,5-Fused Heterocycles.

Paridhi Saxena, Neha Maida and Manmohan Kapur*

Table of contents

General Methods	Page S2
General procedures	Page S3 – S10
Control experiments and Mechanistic studies	Pages S11 – S17
Optimization table	Pages S18 – S19
References	Page S20
Analytical data of new compounds	Pages S21–S29
¹ H and ¹³ C-NMR Spectra of new compounds	Pages S30– S72
X-ray crystallographic data	Pages S73– S75

Experimental Section: (i) General Methods:

All commercially available compounds were used without purification. Unless otherwise noted, all reactions were performed in oven-dried glassware. All reactions were run under nitrogen or oxygen atmosphere. All solvents used in the reactions were purified before use. Tetrahydrofuran was distilled from sodium and benzophenone, whereas dry dichloromethane, dimethylformamide, dioxane, toluene and dichloroethane were distilled from CaH₂. Petroleum ether with a boiling range of 40–60 °C was used. Melting points are uncorrected. ¹H, and ¹³C NMR: Recorded on 400 and 500 MHz NMR Spectrometers; spectra were recorded at 295 K in CDCl₃; chemical shifts are calibrated to the residual proton and carbon resonance of the solvent: CDCl₃ (¹H δ 7.25; ¹³C δ 77.0). LC-HRMS: Recorded on a Q-ToF with electron spray ionization (ESI) or Atmospheric pressure chemical ionization (APCI). GC-HRMS: Performed GC-QToF (with Electron Impact (EI), 70eV) using DB-5 column. GC-LRMS: Performed GC-MS (EI 70 eV) using DB-5 column. IR were recorded as thin films between KBr plates.

(ii) General Procedures:

Scheme S1: Synthesis of 2, 3-unsubstituted benzo[b]furan 1.^{1a}

To a stirring solution of the phenol **I** (5.32 mmol) in *N*,*N*-dimethylformamide (4 mL), was added NaH (319 mg, 7.97 mmol, 60% dispersion in mineral oil) and the resulting mixture was stirred gently at room temperature. This was followed by the addition of 2-bromo-1,1-diethoxyethane (1.24 mL, 7.97 mmol), and the reaction mixture was then stirred at reflux for 24 h. Upon completion of the reaction and subsequent cooling to room temperature, the mixture was poured over crushed ice and stirred vigorously. This mixture was then extracted with ethyl acetate (3×10 mL), and the combined organic extract was washed with NaOH solution (1N) and brine. The extract was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give the desired product **II** that was used as such for the next step, without any purification.

The product \mathbf{II} (5.30 mmol) was dissolved in toluene (15.0 mL) and to this was added polyphosphoric acid (3.58 g, 10.64 mmol) and the mixture was stirred at reflux for 12 h during which the reaction was found to be complete. Upon cooling to room temperature, the mixture was filtered through a plug of silica gel and eluted with petroleum ether. The organic filtrate was concentrated under reduced pressure and the crude product was purified by silica gel flash column chromatography (petroleum ether) to afford the desired benzofuran product 1.

4-methylbenzofuran (1b): Prepared according to the general procedure and the title compound was isolated as a colorless liquid (51% yield). Spectral data obtained were in good agreement with those reported in the literature.^{1a}

4-methoxybenzofuran (1d): Prepared according to the general procedure and the title compound was isolated as a colorless liquid (10% yield). Spectral data obtained were in good agreement with those reported in the literature.^{1a}

7-methylbenzofuran (1e): Prepared according to the general procedure and the title compound was isolated as a colorless liquid (42% yield). Spectral data obtained were in good agreement with those reported in the literature.^{1b}

4,7-dimethylbenzofuran (1f): Prepared according to the general procedure and the title compound was isolated as a colorless liquid (47% yield). Spectral data obtained were in good agreement with those reported in the literature.^{1a}

4,6-dimethylbenzofuran(1g): Prepared according to the general procedure and the title compound was isolated as a colorless liquid (44% yield). Spectral data obtained were in good agreement with those reported in the literature.^{1a}

5-methylbenzofuran (**1h**): Prepared according to the general procedure and the title compound was isolated as a colorless liquid (41% yield). Spectral data obtained were in good agreement with those reported in the literature.^{1b}

4-(*tert***-butyl)benzofuran (1i):** Prepared according to the general procedure and the title compound was isolated as a colorless liquid (37% yield). Spectral data obtained were in good agreement with those reported in the literature.^{1a}

5-phenylbenzofuran (1j): Prepared according to the general procedure and the title compound was isolated as a white solid (35% yield). Spectral data obtained were in good agreement with those reported in the literature.^{1a}

5-chlorobenzofuran (11): Prepared according to the general procedure and the title compound was isolated as a colorless oil (31% yield). Spectral data obtained were in good agreement with those reported in the literature.^{1a}

5-iodobenzofuran (1m): Prepared according to the general procedure and the title compound was isolated as a colorless oil (8% yield). Spectral data obtained were in good agreement with those reported in the literature.^{1b}

5-methoxybenzofuran (**1n**): Prepared according to the general procedure and the title compound was isolated as a colorless oil (42% yield). Spectral data obtained were in good agreement with those reported in the literature.^{1b}

To a stirring solution of 2-aryloxyacetaldehyde diethyl acetal (1 mmol) in trifluorotoluene (10 mL) was added $SnCl_2.H_2O$ (0.5 mmol). The resulting mixture was refluxed, and the progress of the reaction was followed by TLC. Upon completion of the reaction and subsequent cooling to room temperature, the reaction mixture was quenched with water and extracted with Et₂O (3×5 mL). The solution was washed with water, brine and dried over anhydrous Na₂SO₄. The organic extract was filtered and concentrated under reduced pressure and the crude product was purified by silica gel flash column chromatography (petroleum ether: EtOAc) to afford the desired 2,3-unsubstituted benzo[*b*]furans **1**.

4-bromobenzofuran (1d): Prepared according to the general procedure and the title compound was isolated as a colorless oil (40% yield). Spectral data obtained were in good agreement with those reported in the literature.²

5-bromobenzofuran (11): Prepared according to the general procedure and the title compound was isolated as a colorless oil (44% yield). Spectral data obtained were in good agreement with those reported in the literature.²

Scheme S3: Synthesis of 3-bromobenzo[b]furan (10):³

In a round bottom flask, benzofuran (500 mg, 4.23 mmol, 1.0 equiv.) was dissolved in 10 mL of DCM and this stirring solution was cooled to -10 °C. A solution of bromine (0.3 mL, 4.66 mmol, 1.1 equiv.) in DCM (1.5 mL) was slowly added at this temperature. The reaction mixture was stirred for 1 h at that temperature. Subsequently aq. NaOH solution (0.5 mL, 1 M) was added. The resulting mixture was diluted with water (20 mL) and then Na₂S₂O₃ solution was added (10 mL). This was extracted with DCM and the combined organic extract was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was dissolved in ethanol (10 mL) and was added dropwise to a saturated solution of KOH in ethanol (10 mL) at 0 °C. After refluxing for 2 h, water was added (5 mL) and the EtOH was removed under reduced pressure. The aqueous residue was extracted with ethyl acetate and the organic extract was washed successively with water, brine and dried over anhydrous Na₂SO₄. Upon filtration, this organic extract was concentrated under reduced pressure anhydrous Na₂SO₄. Upon filtration, this organic extract was concentrated under reduced pressure and the residue was purified by silica gel flash column chromatography (petroleum ether: EtOAc, 20:1) and the product was obtained as a dark yellow oil (482 mg, 56%).

Spectral data obtained were in good agreement with those reported in the literature.³ ¹**H** NMR (400 MHz,CDCl₃): δ 7.63 (s, 1H), 7.52 (d, *J* = 7.3 Hz, 1H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.38 – 7.26 (m, 2H); ¹³**C** NMR (101 MHz, CDCl₃): δ 154.41, 142.62, 127.12, 125.44, 123.44, 119.80, 111.75, 97.94; **GC-MS**: 196.0[M]⁺.

Scheme S4: Synthesis of 2,3-unsubstituted benzo[b]thiophene (1'):^{1a}

Thiophenol **III** (4.54 mmol) was dissolved in *N*,*N*-dimethylformamide (4 mL) and to this stirring solution was added NaH (273 mg, 6.82 mmol) in portions at room temperature. This was followed by the addition of 2-bromo-1,1-diethoxyethane (1.24 mL, 6.82mmol) and the reaction mixture was refluxed for about 24 h. Upon completion of the reaction and subsequent cooling to room temperature, the reaction mixture was poured over crushed ice and stirred vigorously. This was extracted with ethyl acetate (3×10 mL) and the combined organic extract was washed with NaOH solution (1N) and brine, dried over anhydrous Na₂SO₄. Filtration and concentration under reduced pressure resulted in the desired product **IV** that was used as such without further purification for the next step.

To a stirring solution of the crude product **IV** (4.0 mmol) in toluene (12 mL) was added polyphosphoric acid (2.41g, 8.0 mmol) and the mixture was refluxed for 12 h. Thereafter, the mixture was allowed to cool to room temperature and then filtered through a plug of silica gel, eluting with petroleum ether. The filtrate was concentrated under reduced pressure and the crude product was purified by silica gel flash column chromatography (eluting with petroleum ether) to afford the desired benzothiophene product **1**'.

Scheme S5: Synthesis of ((2-bromophenyl)ethynyl)trimethylsilane:⁴

In a round bottom flask, 1, 2-dibromobenzene (480 mg, 2.04 mmol) was dissolved in THF (2 mL) and triethylamine (2 mL). To the deaerated solution, trimethylsilylacetylene (0.3 mL, 2.04 mmol), $PdCl_2(PPh_3)_2$ (49.9 mg, 40.7 µmol) and copper(I) iodide (38.8 mg, 204 µmol) were added. The reaction mixture was refluxed for about 24 h at 60 °C. Upon completion of

the reaction and subsequent cooling to room temperature, the mixture was diluted with water (10 mL) and extracted with chloroform (10 mL \times 2). The extract was washed with brine, dried over anhydrous Na₂SO₄ and concentration under reduced pressure. The oily residue was purified by silica gel flash column chromatography (eluting with petroleum ether) and the product was obtained as a dark yellow oil. Spectral data obtained were in good agreement with those reported in the literature.⁴

Scheme S6: Synthesis of benzo[b]selenophene (1''):⁴

In a round bottom flask, sodium borohydride (40 mg, 1.0 mmol) was added to a suspension of selenium powder (84 mg, 1.0 mmol) in ethanol (4 mL) at 0 °C. After stirring the reaction mixture for 40 min, NMP (8 mL) and 1-bromo-2-(trimethylsilylethynyl)benzene (150 mg, 0.6 mmol) was added and stirred at 170 °C. The progress of the transformation was monitored by TLC. Upon completion of the reaction, the mixture was cooled and diluted with saturated aqueous ammonium chloride solution (20 mL) and extracted with pentane (10 mL \times 2). The extract was washed with brine and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (petroleum ether) to afford the desired benzo[*b*]selenophene (1"). Spectral data obtained were in good agreement with those reported in the literature.⁴

Scheme S7: Preparation of the hydroxamic acids:⁵

In a round-bottom flask, CDI (16.39 mmol, 2.0 equiv.) was added portion-wise to a stirring solution of aromatic acid (8.19 mmol, 1.0 equiv.) in THF (45 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for another 1.5 h. This mixture was then cooled to 0 °C and NH₂OH.HCl (12.29 mmol, 1.5 equiv.) was added to it in portions and the resulting mixture was allowed to warm up to room temperature. The progress of the transformation was monitored by TLC. Upon completion of the reaction, the solvent was removed under reduced pressure, and the reaction mixture was diluted with saturated KHSO₄ (20 mL) and extracted twice with EtOAc. The organic layer was washed with brine and dried

over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (2:1, petroleum ether: EtOAc). Spectral data obtained were in good agreement with those reported in the literature.⁴

Scheme S8: Preparation of 3-aryl-1,4,2-dioxazol-5-ones (2):⁶

CDI was added (810 mg, 5.0 mmol, 1.0 equiv.) to a stirred solution of the hydroxamic acid (5.0 mmol, 1.0 equiv.) in dichloromethane (50 mL) at room temperature. After 3 h, the reaction mixture was quenched with 1N HCl, extracted with dichloromethane and dried over Na₂SO₄. The solvent was removed under reduced pressure and the crude product was purified by silica gel flash column chromatography (9:1, petroleum ether: EtOAc) to afford the 3-aryl-1, 4, 2-dioxazol-5-ones.

3-(*p***-tolyl)-1,4,2-dioxazol-5-one (2a):** Prepared according to the general procedure and the title compound was isolated as a white solid (90% yield). Spectral data obtained were in good agreement with those reported in the literature.^{6a}

3-(4-methoxyphenyl)-1,4,2-dioxazol-5-one (2f): Prepared according to the general procedure and the title compound was isolated as a white solid (85% yield). Spectral data obtained were in good agreement with those reported in the literature.^{6a}

3-(4-bromophenyl)-1,4,2-dioxazol-5-one (2g): Prepared according to the general procedure and the title compound was isolated as a white solid (61% yield). Spectral data obtained were in good agreement with those reported in the literature.^{6a}

3-(4-chlorophenyl)-1,4,2-dioxazol-5-one (2h): Prepared according to the general procedure and the title compound was isolated as a white solid (82% yield). Spectral data obtained were in good agreement with those reported in the literature.^{6a}

3-(4-fluorophenyl)-1,4,2-dioxazol-5-one (2i): Prepared according to the general procedure and the title compound was isolated as a white solid (75% yield). Spectral data obtained were in good agreement with those reported in the literature.^{6a}

3-(*m***-tolyl)-1,4,2-dioxazol-5-one (2j):** Prepared according to the general procedure and the title compound was isolated as awhite solid (92% yield). Spectral data obtained were in good agreement with those reported in the literature.^{6b}

3-(*m***-methoxy**)**-1,4,2-dioxazol-5-one (2k):** Prepared according to the general procedure and the title compound was isolated as a white solid (83% yield). Spectral data obtained were in good agreement with those reported in the literature.^{6c}

3-(*o***-tolyl)-1,4,2-dioxazol-5-one (2l):** Prepared according to the general procedure and the title compound was isolated as a white solid (90% yield). Spectral data obtained were in good agreement with those reported in the literature.^{6a}

3-(naphthalen-2-yl)-1,4,2-dioxazol-5-one (2m): Prepared according to the general procedure and the title compound was isolated as a white solid (54% yield). Spectral data obtained were in good agreement with those reported in the literature.^{6a,c}

3-(*m*-bromo)-**1,4,2-dioxazol-5-one** (**2n**): Prepared according to the general procedure and the title compound was isolated as a white solid (61% yield). Spectral data obtained were in good agreement with those reported in the literature.^{6a}

Scheme S9: Preparation of 3-methylbenzofuran-2-d (1a-[D₂]):⁷

To the solution of 3-methyl benzofuran (200 mg, 1.51 mmol) in dry THF (8 mL) cooled to -40 °C, *n*-butyllithium (1.50 mL, 2.27 mmol, 2.0 M solution in cyclohexane) was added dropwise. The resulting mixture was stirred for 4 h at -40 °C and D₂O (0.5 mL) was added. The resulting mixture was stirred for 2 h at room temperature before H₂O was added (1.0 mL). The contents were transferred to a separatory funnel and Et₂O was added and the layers were separated. The aqueous phase was re-extracted with Et₂O. The combined organic extract was washed with water, brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (eluting with hexane) to afford 3-methylbenzofuran-2-*d* as a colourless oil (180 mg, 91%). Spectral data obtained were in good agreement with those reported in the literature.⁷

iii) General procedure for the Pd-catalyzed C-2 arylation with dioxazolones.

In a Schlenk tube equipped with a stir bar, the 6,5-fused heterocycle (0.17 mmol) was dissolved in MeOH (1.0 mL). The reaction mixture was degassed with nitrogen for ~10 min followed by the addition of $Pd(OAc)_2$ (5 mol%), $Cu(OTf)_2$ (1.0 equiv.), KF (1.5 equiv.) and

3-aryl-1,4,2-dioxazol-5-ones (2.0 equiv.). The tube was fitted with a reflux condenser under a nitrogen flow. The reaction mixture was allowed to stir at reflux temperature under a nitrogen atmosphere for 12-24 h until completion of the reaction (confirmed by TLC). The reaction was cooled to room temperature, filtered through a pad of celite, eluting with EtOAc. The filtrate was transferred to a separatory funnel and washed with NaHCO₃ solution. The organic extract was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by a silica gel flash column chromatography to yield the desired C-2 arylated product.

2. Experimental Procedures for the Mechanistic Studies:

Scheme S10: Control Experiments:

(a) Reaction with methyl benzoate:

In a Schlenk tube equipped with a stir bar, the benzofuran (0.25 mmol) was dissolved in MeOH (2 mL). The reaction mixture was degassed with nitrogen for 10 min followed by the addition of $Pd(OAc)_2$ (2.5 mg, 5 mol%), $Cu(OTf)_2$ (90 mg, 1.0 equiv.), KF (22 mg, 1.5 equiv.) and methyl benzoate (34 mg, 2.0 equiv.). The tube was fitted with a reflux condenser under a nitrogen flow. The reaction mixture was allowed to stir at reflux temperature for 24h. The reaction progress was monitored *via* TLC, no C-2 arylation product was formed and the starting material remained unreacted.

(b) Arylation with deuterated protic solvent.

In a Schlenk tube equipped with a stir bar, the substrate benzofuran (30 mg, 0.25 mmol) was dissolved in MeOH- d_4 (2 mL, 0.38 mmol). The reaction mixture was degassed with nitrogen for 10 min followed by the addition of Pd(OAc)₂ (2.5 mg, 5 mol%), Cu(OTf)₂ (90 mg,1.0 equiv.), KF (22 mg, 1.5 equiv.) and 3-(*p*-tolyl)-1,4,2-dioxazol-5-ones (88.5 mg, 2.0 equiv.). The tube was fitted with a reflux condenser under a nitrogen flow. The reaction mixture was allowed to stir at reflux temperature under a nitrogen atmosphere for 12 h until completion of the reaction (as indicated by TLC). The reaction was cooled to room temperature, filtered through a pad of celite, eluting with EtOAc. The filtrate was transferred to a separatory funnel and washed with NaHCO₃ solution. The organic extract was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by a silica gel flash column chromatography (eluting with 9:1 petroleum ether: EtOAc) and the compound was analyzed by ¹H NMR which shows complete deuterium incorporation in the

ester functionality of the C-2 aryl ring. Yield: 60%; Physical appearance: pale yellow liquid; ¹H NMR (400 MHz,CDCl₃): δ 7.68 (d, *J* = 7.9 Hz, 1H), 7.60 (d, *J* = 7.5 Hz, 1H), 7.57 (s, 1H), 7.49 (d, *J*= 8.0 Hz, 1H), 7.33 – 7.22 (m, 3H), 6.92 (s, 1H), 2.46 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 169.21, 155.05, 154.96,141.56, 129.87, 129.71, 129.40, 128.93, 128.16, 124.41, 122.87, 121.15, 111.07, 104.34, 21.45; **ESI-HRMS**: Calculated for C₁₇H₁₁D₃NaO₃⁺ [M+Na]⁺ 292.1023, found 292.1016.

(c) Intermolecular Competition Experiment:

An oven dried Schlenk tube was charged with 3-methyl benzo[*b*]furan (30 mg, 0.25 mmol, 1.0 equiv.), 3-(*p*-tolyl)-1,4,2-dioxazol-5-one (88.5 mg, 0.37 mmol, 1.5 equiv.) and 3-(*p*-bromo)-1,4,2-dioxazol-5-one (91 mg, 0.37 mmol, 1.5 equiv.) along with Pd(OAc)₂ (2.5 mg,5.0 mol %), Cu(OTf)₂ (90 mg, 1.0 equiv.), KF (22 mg, 1.5 equiv.) were stirred in MeOH (2 mL) under N₂ at reflux temperature for 6 h. The reaction progress was monitored by TLC until completion of the reaction. The reaction was cooled to room temperature, filtered through a pad of celite and eluting with EtOAc. The filtrate was transferred to a separatory funnel and washed with NaHCO₃ solution. The organic extract was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The composition of the products was found to be ((R=Me): (R=Br) = 2:1) as determined by ¹H NMR.

Scheme S11: Mechanistic Studies:

(a) Radical Trap Experiments:

Radical Scavenger	3a Yield (%)
TEMPO (1.0 equiv.)	47
TEMPO (3.0 equiv.)	51
BHT (1.0 equiv.)	52
Ph ₂ CH=CH ₂ (1.0 equiv.)	55

In a Schlenk tube equipped with a stir bar, benzo[*b*]furan (30 mg, 0.25 mmol) was dissolved in MeOH (2 mL). The reaction mixture was degassed with nitrogen for 10 min followed by the addition of Pd(OAc)₂ (2.5 mg, 5 mol%), Cu(OTf)₂ (90 mg, 1.0 equiv.), KF (22 mg, 1.5 equiv.), 3-(*p*-tolyl)-1,4,2-dioxazol-5-one (88.5 mg, 2.0 equiv.) and radical scavengers (1.0 equiv.). The reaction mixture was stirred at reflux temperature for 6 h. Upon cooling to room temperature, the reaction mixture was diluted with EtOAc and filtered through a pad of celite. The filtrate was transferred to a separatory funnel and washed with NaHCO₃. The organic extract was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by a silica gel flash column chromatography (eluting with Petroleum ether: EtOAc (19:1)) to yield the product. Similarly, reactions were performed with increased equivalents (upto 3.0 equivalents) of the radical scavengers and no significant reduction in the yield of the product was observed.

(b) (i) Reversibility of metalation at benzo[b]furan:

To a Schlenk tube, benzo[*b*]furan **1** (20 mg, 0.17 mmol) was dissolved in MeOH (1 mL) and reaction mixture was degassed with nitrogen for 10 min. Subsequently Pd(OAc)₂ (2.0 mg, 5 mol%), Cu(OTf)₂ (58.0 mg, 0.17 mmol, 1.0 equiv.), and KF (14.5 mg, 0.25 mmol, 1.5 equiv.) along with D₂O (30 μ L, 1.70 mmol) was stirred at reflux temperature for 30 minutes. Upon cooling to room temperature, the reaction mixture was diluted with EtOAc and filtered through a pad of celite. The filtrate was transferred to a separatory funnel and washed with NaHCO₃. The organic extract was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude mixture was analysed by ¹HNMR for the extent of deuteration at the recovered starting material and it showed no deuterium incorporation in the compound **1a'**. This indicated that the C(2)-H activation step at the benzofuran may be irreversible (yield of recovered starting material: 88%).

(b) (ii) Reversibility of metalation at dioxazolone:

In a Schlenk tube, dioxazolone (20 mg, 0.11 mmol) was dissolved in MeOH (1mL). Pd(OAc)₂ (1.5 mg, 5 mol%), Cu(OTf)₂ (37.7 mg, 0.11 mmol, 1.0 equiv.), and KF (10 mg, 0.17 mmol, 1.5 equiv.) along with D₂O (30 μ L, 1.10 mmol) was charged. The reaction mixture was stirred at reflux temperature for 30 min. The resulting mixture was diluted with EtOAc (4 mL) and filtered through a plug of celite. The filtrate was evaporated to dryness under reduced pressure. No starting material **2a** was observed after 30 minutes of refluxing hence no deuterated **2a** was isolated.

(b) (ii) Reversibility study in C-2 arylation:

To a Schlenk tube, benzo[*b*]furan **1** (20 mg, 0.17 mmol) was dissolved in MeOH (1.0 mL) and reaction mixture was degassed with nitrogen for 10 min. Subsequently Pd(OAc)₂ (2.0 mg, 5 mol%), Cu(OTf)₂ (58.0 mg, 0.17 mmol, 1.0 equiv.), KF (14.5 mg, 0.25 mmol, 1.5 equiv.) and 3-(*p*-tolyl)-1,4,2-dioxazol-5-one (60 mg, 2.0 equiv.) along with D₂O (30 μ L, 1.70 mmol) was stirred at reflux temperature for 30 minutes. Upon cooling to room temperature, the reaction mixture was diluted with EtOAc and filtered through a pad of celite. The filtrate was transferred to a separatory funnel and washed with NaHCO₃. The organic extract was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude mixture was analysed by ¹H-NMR for the extent of deuteration at the recovered starting material and it showed no deuterium incorporation in the compound **3a**.

(c) Kinetic Isotope Effect Studies:

(i) Determination of the kinetic isotope effect (*k*_H/*k*_D): (Parallel experiment)

Two parallel reactions were set in two different Schlenk tubes, one having 3methylbenzo[*b*]furan (0.17 mmol) and other having D_2 -3-methylbenzo[*b*]furan (0.17 mmol) each dissolved in 1.0 mL of MeOH. The reaction mixture was degassed with nitrogen for 10 min. Subsequently Pd(OAc)₂ (2.0 mg, 5 mol%), Cu(OTf)₂ (58.0 mg, 0.17 mmol, 1.0 equiv.), and KF (14.5 mg, 0.25 mmol, 1.5 equiv.) was added along with dodecane ($8.0 \ \mu$ L) as the internal standard. The reaction was stirred at reflux temperature and aliquots of 50 μ L were drawn at every 4-minute intervals and the conversions were analysed by GC-MS. The consumption of starting material was plotted with time and $k_{\rm H}/k_{\rm D}$ was found to be 1.0 (average of 3 runs). A representative plot is shown below:

Figure S1: Initial rate measurement w.r.t non-deuterated substrate for the determination of KIE.

Figure S2: Initial rate measurement w.r.t deuterated substrate for the determination of KIE. Kinetic isotope effect $k_{\rm H}/k_{\rm D} = 1.0$ (Average value of 3 runs)

(ii) Determination of the kinetic isotope effect $(k_{\rm H}/k_{\rm D})$: (Competition experiment)

In a Schlenk tube equipped with a stir bar, C-H and C-D substrates in equimolar amount (0.25 mmol) were taken in same reaction flask and dissolved in MeOH (2.0 mL). The reaction mixture was degassed with nitrogen for 5 min followed by the addition of Pd(OAc)₂ (5 mol%), Cu(OTf)₂ (1.0 equiv.), KF (1.5 equiv.) and 3-substituted-1,4,2-dioxazol-5-ones (2.0 equiv.). The tube was fitted with a reflux condenser under nitrogen flow. The reaction mixture was allowed to stir at reflux temperature for 15 minutes, followed by dilution with EtOAc and filtered through a short pad of celite. The filtrate was transferred to a separatory funnel and washed with brine. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure and the crude mixture was purified by silica gel flash column chromatography (Petroleum ether: EtOAc (19:1)). The recovered starting materials (C-H and C-D substrates) were analyzed by ¹H NMR and relative integration of the characteristic peaks of the recovered starting materials yielded a value of $k_{\rm H}/k_{\rm D}$ = 1.0 (average of 3 experiments).

Scheme S12: Application to Other Heterocycles:

Table S1: Screening of heterocycles:

Entry	Heterocycle	Yield (%) of 3
1		60
2	N. Me	-
3	K Ac	-
4	Boc	-
5		58
6	N Me	-
7	Se	58

Optimization Studies:

Table S2: Optimization of reaction conditions:^a

5aa

Entry	Conditions	Yield of 3aa (%) ^b
1	Pd(OAc) ₂ / Cu(OTf) ₂ / KF / DCE / 80 °C / 12 h	NR
2	Pd(OAc) ₂ / Cu(OTf) ₂ / KF/ MeOH/ reflux/ 6 h	55
3	Pd(OAc) ₂ / Cu(OTf) ₂ / MeOH/ reflux/ 12 h	<10
4	Cu(OTf) ₂ / KF/ MeOH/ reflux/ 12 h	NR
5	Pd(OAc) ₂ / MeOH/ reflux/ 12 h	NR
6	Pd(OAc)2 (5 mol%)/ Cu(OTf)2/ KF/ MeOH/ reflux/ 6 h	60
7	Pd(OAc) ₂ / AgOTf/ KF/ MeOH/ reflux/ 12 h	41
8	Pd(OAc) ₂ / AgOTf/ MeOH/ reflux/ 12 h	27
9	Pd(OAc) ₂ / AgOTf/ KF/ DCE/ reflux/ 12 h	NR
10	Pd(TFA) ₂ /AgOTf/ KF/ MeOH/ reflux/ 12 h	20
11	Pd(OAc) ₂ / Cu(OTf) ₂ / KOAc/ MeOH/ reflux/ 24 h	NR
12	Pd(OAc) ₂ / Cu(OTf) ₂ / KF / DCM / 50 °C / 12 h	NR
13	Pd(OAc) ₂ / Cu(OTf) ₂ / KF / Toluene / 100 °C / 12 h	Complex mixture
14	Pd(OAc) ₂ / Cu(OTf) ₂ / KF / Dioxane / 100 °C / 24 h	NR
15	Pd(OAc) ₂ / Cu(OTf) ₂ / KF / IPA / 80 °C / 12 h	51
16	Pd(OAc) ₂ / Cu(OTf) ₂ (2.0 equiv.)/ KF/ MeOH/ reflux/ 12 h	42
17	Pd(OAc) ₂ / Cu(OAc) ₂ / KF/ MeOH/ reflux/ 24 h	NR
18	Pd(OAc) ₂ /AgOAc/ KF/ MeOH/ reflux/ 24 h	NR
19	Pd(TFA) ₂ / Cu(OTf) ₂ / KF/ MeOH/ reflux/ 6 h	35
20^c	Pd(OAc) ₂ / Cu(OTf) ₂ / KF/ MeOH/ reflux/ 12 h	NR
21	Pd(OAc) ₂ / Cu(OTf) ₂ / KF/ MeOH/ rt/ 12 h	20
22	KF/ MeOH/ reflux/ 12 h	NR
23	[RhCp*Cl ₂] ₂ (3 mol%)/ AgSbF ₆ (10 mol%)/ KOAc (1 equiv.)/ DCE/ 80 °C/ 12 h	NR
24	[RhCp*Cl ₂] ₂ (3 mol%)/ AgSbF ₆ (10 mol%)/ KOAc (1 equiv.)/ MeOH/ reflux/ 12 h	NR

25	[RhCp*Cl ₂] ₂ (3 mol%)/ AgSbF ₆ (10 mol%)/ MeOH/ reflux/ 12 h	NR
26	[Ru(<i>p</i> -cym)Cl ₂] ₂ (3 mol%)/ AgSbF ₆ (10 mol%)/ KOAc (1 equiv.)/ DCE/ 80 °C/ 12 h	NR
27	[Ru(<i>p</i> -cym)Cl ₂] ₂ (3 mol%)/ AgSbF ₆ (10 mol%)/ KOAc (1 equiv.)/ MeOH/ reflux/ 12 h	NR
28	[Ru(<i>p</i> -cym)Cl ₂] ₂ (3 mol%)/ AgSbF ₆ (10 mol%)/ KF (1 equiv.)/ MeOH/ reflux/ 12 h	Complex mixture
29	Co(OAc) ₂ (3 mol%)/ AgSbF ₆ (10 mol%)/ Cu(OTf) ₂ (1 equiv)/ DCE/ 80 °C/ 12 h	NR
30	Co(acac) ₂ (3 mol%)/ AgSbF ₆ (10 mol%)/ AgOAc (1 equiv)/ MeOH/ reflux/ 12 h	NR
31	Cp*Co(CO)I ₂ (3 mol%)/ AgSbF ₆ (10 mol%)/ NaOAc (1 equiv)/ DCE/ 80 °C/ 12 h	NR
32	$\label{eq:constraint} \begin{array}{c} Cp*Co(CO)I_2(3\ mol\%)/\ AgSbF_6(10\ mol\%)/\ NaOAc\ (1\ equiv)/\ MeOH/\\ reflux/\ 12\ h \end{array}$	NR

^{*a*}Unless otherwise noted, all reactions were carried out using **1** (0.15 mmol), **2a** (0.22 mmol), catalyst (10 mol %), oxidant (1.0 equiv.) in the presence of additive (1.5 equiv.) in a solvent (1.0 mL) at reflux temperature for 12 h under N₂. ^{*b*}Isolated yields after column chromatography. ^{*c*}Reaction under oxygen atmosphere. NR = No reaction.

References:

1) (a) V. Ramella, Z. He, C.-G. Daniliuc and A. Studer, Eur. J. Org. Chem., 2016, 2268; (b)

S. Lips, B.–A. Frontana-Uribe, M. Dörr, D. Schollmeyer, R. Franke and S. –R. Waldvogel, *Chem. -Eur. J.*, 2018, **24**, 6057.

2) N. Sun, P. Huang, Y. Wang, W. Mo, B. Hu, Z. Shen and X. Hu, *Tetrahedron*, 2013, **69**, 4429.

3) S. Fredrich, A. Bonasera, V. Valderrey and S. Hecht, J. Am. Chem. Soc., 2018, 140, 6432.

4) T. Kashiki, S. Shinamura, M. Kohara, E. Miyazaki, K. Takimiya, M. Ikeda and H. Kuwabara, *Org. Lett.*, 2009, **11**, 2473.

5) (a) C. Feng and T. P. Loh, *Angew. Chem., Int. Ed.*, 2014, **53**, 2722. (b) R. Mocci, L. D. Luca, F. Delogu and A. Porcheddu, *Adv. Synth. Catal.*, 2016, **358**, 3135.

6) (a) V. Bizet, L. Buglioni and C. Bolm, Angew. Chem., Int. Ed., 2014, 53, 5639. (b) Y.

Park, K. T. Park, J. G. Kim and S. Chang, *J. Am. Chem. Soc.*, 2015, **137**, 4534. (c) J. Xia, X. Yang, Y. Li and X. Li, *Org. Lett.*, 2017, **19**, 3243.

7) M. V. Pham and N. Cramer, Angew. Chem., Int. Ed., 2014, 53, 14575.

Analytical data for new compounds

Methyl 2-(benzofuran-2-yl)benzoate (3aa): Yield: 61% (25 mg), Physical appearance: pale-

MeO₂C´ J = 7.3 Hz,1H), 7.22 (d, J = 7.4 Hz, 1H), 6.93 (s, 1H), 3.81 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 168.40, 153.05, 131.47, 130.96, 128.94, 128.64, 128.58, 125.02, 123.14, 121.44, 111.18, 105.49, 52.63; **IR** (KBr, cm⁻¹): 3404, 2408, 2362, 1733, 1598, 1289,1094, 844, 750; **ESI-HRMS**: Calculated for C₁₆H₁₂NaO₃⁺ [M+Na]⁺ 275.0679, found 275.0667.

Ethyl 2-(benzofuran-2-yl)benzoate(3ab): Yield: 52% (22 mg), Physical appearance: palevellow gel TLC B_{c} 0.40 (19:1) Petroleum ether: EtOAc): ¹H NMP

yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.76 (t, J = 7.2 Hz, 1H), 7.61 (d, J = 7.4 Hz, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 7.9 Hz, 2H), 7.33 – 7.22 (m, 3H), 6.93 (s, 1H), 4.28 (q, J = 7.1 Hz, 2H), 1.13 (t, J = 7.1 Hz, 3H); ¹³C

yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹**H** NMR (400 MHz, CDCl₃): δ 7.75 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 7.8Hz, 1H), 7.60 (d, J = 7.6 Hz, 1H), 7.55 (t, J = 7.7 Hz, 1H), 7.50 – 7.41 (m, 2H), 7.29 (t,

NMR (126 MHz, CDCl₃): δ 163.24, 155.05, 131.46, 130.94, 129.46, 129.18, 128.71, 124.46, 122.91, 121.15, 111.13, 104.34, 61.47, 13.99; **IR** (KBr, cm⁻¹): 3394, 2935, 2382, 1707, 1658, 1196, 1075, 823, 749; **ESI-HRMS**: Calculated for C₁₇H₁₄NaO₃⁺ [M+Na]⁺ 289.0835, found 289.0839.

Methyl 2-(benzofuran-2-yl)-4-methylbenzoate (3ac): Yield: 58% (26 mg), Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether:

appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹**H** NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 7.9 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.54 (s, 1H), 7.48 (d, J = 8.1 Hz, 1H), 7.31 – 7.26 (m, 1H), 7.26 – 7.20 (m, 2H), 6.90 (s, 1H), 3.78 (s, 3H), 2.44 (s, 3H); ¹³**C** NMR (101 MHz, CDCl₃): δ 169.20, 154.96, 141.56,

129.86, 129.72, 129.40, 128.93, 128.14, 124.42, 122.87, 121.15, 111.08, 104.35, 52.36, 21.45; **IR** (KBr, cm⁻¹): 3405, 2775, 2362, 1733, 1598, 1289, 1094, 844, 750; **ESI-HRMS**: Calculated for $C_{17}H_{14}NaO_{3}^{+}$ [M+Na]⁺ 289.0835, found 289.0834.

Isopropyl 2-(benzofuran-2-yl)-4-methylbenzoate (3ad): Yield: 55% (27 mg), Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹**H NMR** (400 MHz, CDCl₃): δ 7.66 (d, J = 7.8 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.50 (d, J = 1.6 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.30 – 7.22 (m, 3H), 6.91 (s, 1H), 5.17 (m, 1H), 2.43 (s, 3H), 1.12 (d, J = 6.3 Hz, 6H); ¹³**C NMR** (126 MHz, CDCl₃): δ

168.23, 155.33, 154.96, 141.28, 130.10, 129.78, 129.73, 129.45, 129.19, 128.94, 124.25, 122.80, 121.03, 111.17, 104.18, 68.78, 21.61; **IR** (KBr, cm⁻¹): 3397, 2980, 2934, 2369, 1719, 1601, 1281, 1255, 1096, 805, 748; **ESI-HRMS**: Calculated for $C_{19}H_{18}NaO_3^+$ [M+Na]⁺ 317.1148, found 317.1145.

(t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 168.81, 155.22, 155.03, 141.44, 130.07, 129.94, 129.79, 129.45, 128.95, 128.72, 124.31, 122.83, 121.06, 111.13, 104.26, 65.22, 30.47, 21.43, 19.00, 13.56; **IR** (KBr, cm⁻¹): 3405, 2963, 2369, 1719, 1456, 1286, 1096, 936, 776, 748; **ESI-HRMS**: Calculated for C₂₀H₂₀NaO₃⁺ [M+Na]⁺ 331.1305, found 331.1300.

Methyl 2-(benzofuran-2-yl)-4-methoxybenzoate (3af): Yield: 60% (29 mg), Physical

appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹**H** NMR (400 MHz, CDCl₃): δ 7.77 (d, J = 8.6 Hz, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.27 (t, J = 7.5Hz, 1H), 7.20 (d, J = 2.5 Hz, 2H), 6.93 (dd, J = 8.6, 2.7 Hz, 1H), 6.90 (s, 1H), 3.87 (s, 3H), 3.74 (s, 3H); ¹³**C** NMR (126 MHz,

CDCl₃): δ 168.46, 161.67, 154.75, 132.30, 132.05, 128.85, 124.51, 122.89, 121.21, 114.95, 114.05, 111.12, 104.80, 99.98, 55.59, 52.24; **IR** (KBr, cm⁻¹): 3390, 2936, 2369, 1708, 1596, 1239, 1112, 1029, 934, 752; **ESI-HRMS**: Calculated for C₁₇H₁₄NaO₄⁺ [M+Na]⁺ 305.0784, found 305.0774.

Methyl 2-(benzofuran-2-yl)-4-bromobenzoate (3ag): Yield: 48% (27 mg), Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.92 (s, 1H), 7.63 – 7.55 (m, 3H), 7.48 (d, J = 8.1 Hz, 1H), 7.31 (t, J = 7.7 Hz, 1H), 7.27 – 7.21 (m, 1H), 6.96 (s, 1H), 3.81 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 168.40, 153.05, 131.47, 128.94, 128.58, 125.02, 123.14, 121.44,

111.18, 105.49, 52.63; **IR** (KBr, cm⁻¹): 3405, 2958, 2367, 1711, 1632, 1456, 1280, 1109, 952, 734; **ESI-HRMS**: Calculated for $C_{16}H_{11}BrNaO_3^+$ [M+Na]⁺ 352.9784 and 354.9763, found 352.9781 and 354.9760.

Methyl 2-(benzofuran-2-yl)-4-chlorobenzoate (3ah): Yield: 45% (22 mg), Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, J = 2.1 Hz, 1H), 7.67 (d, J = 8.3 Hz, 1H), 7.60 (d, J = 7.4 Hz, 1H), 7.47 (d, J = 8.1 Hz, 1H), 7.40 (dd, J = 8.3, 2.1 Hz, 1H), 7.31 (t, J = 7.3 Hz, 1H), 7.25 (m, 1H), 6.97 (s, 1H), 3.81 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ

168.40, 155.13, 153.05, 137.22, 131.47, 130.96, 129.10, 128.94, 128.64, 128.58, 125.02, 123.14, 121.44, 111.18, 105.49, 52.63; **IR** (KBr, cm⁻¹): 3401, 2920, 2454, 2334, 1778, 1610,

1426, 1257, 1092, 1052, 752; **ESI-HRMS**: Calculated for $C_{16}H_{11}CINaO_3^+$ [M+Na]⁺ 309.0289, found 309.0286.

Methyl 2-(benzofuran-2-yl)-4-fluorobenzoate (3ai): Yield: 45% (20 mg), Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.79 (dd, J = 8.6, 5.7 Hz, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.38 – 7.32 (m, 1H), 7.29 – 7.26 (m, 1H), 7.16 (td, J = 8.2, 2.6 Hz, 1H), 7.01 (d, J = 1.0 Hz, 1H), 3.85 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 168.31, 155.06(d, J =

227. 8 Hz), 153.14, 132.00(d, J = 9.2 Hz), 128.64, 124.99, 123.11, 121.42, 119.14, 116.11(d, J = 23.9 Hz), 115.87(d, J = 21.6 Hz), 111.16, 105.47, 77.31, 52.55; ¹⁹F NMR (376 MHz, CDCl₃): δ –108.01; **IR** (KBr, cm⁻¹): 3391, 2775, 2361, 1731, 1601, 1335, 1205, 1084, 823, 776; **ESI-HRMS**: Calculated for C₁₆H₁₁FNaO₃⁺ [M+Na]⁺ 293.0584, found 293.0581.

Methyl 2-(benzofuran-2-yl)-5-methylbenzoate (3aj): Yield: 64% (28 mg), Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 7.3 Hz, 1H), 7.51 (s, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.36 – 7.31 (m, 1H), 7.28 – 7.17 (m, 3H), 6.85 (s, 1H), 3.78 (s, 1H), 7.28 – 7.17 (m, 2H), 6.85 (s, 1H), 3.78 (s, 1H), 7.28 – 7.17 (m, 2H), 6.85 (s, 1H), 3.78 (s, 1H), 7.28 – 7.17 (m, 2H), 6.85 (s, 1H), 3.78 (s, 1H), 7.28 – 7.17 (m, 2H), 6.85 (s, 1H), 3.78 (s, 1H), 7.28 – 7.17 (m, 2H), 6.85 (s, 1H), 3.78 (s, 1H), 7.28 – 7.17 (m, 2H), 6.85 (s, 1H), 3.78 (s, 1H), 7.28 – 7.17 (m, 2H), 6.85 (s, 1H), 3.78 (s, 1H), 7.28 – 7.17 (m, 2H), 6.85 (s, 1H), 3.78 (s, 1H), 7.28 – 7.17 (m, 2H), 6.85 (s, 1H), 3.78 (s, 1H), 7.28 – 7.17 (m, 2H), 6.85 (s, 1H), 3.78 (s, 1H), 7.28 – 7.17 (m, 2H), 6.85 (s, 1H), 3.78 (s, 1H), 7.28 – 7.17 (m, 2H), 6.85 (s, 1H), 3.78 (s, 1H), 7.28 – 7.17 (m, 2H), 6.85 (s, 1H), 3.78 (s, 1H), 7.28 – 7.17 (m, 2H), 6.85 (s, 1H), 3.78 (s, 1H), 7.28 – 7.17 (m, 2H), 6.85 (s, 1H), 3.78 (s, 1H), 7.28 – 7.17 (m, 2H), 6.85 (s, 1H), 3.78 (s, 1H), 7.28 – 7.17 (m, 2H), 6.85 (s, 1H), 3.78 (s, 1H), 7.28 – 7.17 (m, 2H), 7.28 – 7

3H), 2.40 (s, 3H); (**For peak clarity** ¹**H NMR in MeOH-***d*₄) ¹**H NMR** (400 MHz, Methanol*d*₄): δ 7.72 (d, *J* = 8.0 Hz, 1H), 7.63 (d, *J* = 7.3 Hz, 1H), 7.53 (s, 1H), 7.50 – 7.44 (m, 2H), 7.31 (dt, *J* = 7.3, 1.3 Hz, 1H), 7.25 (dt, *J* = 7.5, 1.1 Hz, 1H), 6.99 (s, 1H), 3.82 (s, 3H), 2.45 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃): δ 169.50, 154.99, 138.91, 131.71, 130.79, 129.88, 128.96, 126.85, 124.30, 122.84, 121.05, 111.02, 103.83, 52.44, 21.14; **IR** (KBr, cm⁻¹): 3411, 2923, 2860, 1752, 1694, 1450, 1278, 1159, 893, 750; **ESI-HRMS**: Calculated for C₁₇H₁₄NaO₃⁺ [M+Na]⁺ 289.0835, found 289.0834.

Methyl 2-(benzofuran-2-yl)-5-methoxybenzoate (3ak): Yield: 61% (30 mg), Physical

appearance: pale-yellow gel, TLC R_f 0.30 (19:1, Petroleum ether: EtOAc); ¹**H** NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 8.6 Hz, 1H), 7.56 (d, J = 7.4 Hz, 1H), 7.44 (d, J = 7.4 Hz, 1H), 7.30 – 7.17 (m, 3H), 7.07 (dd, J = 8.6, 2.7 Hz, 1H), 6.81 (s, 1H), 3.88 (s,

3H), 3.80 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 169.08, 159.75, 154.82, 132.22, 130.65, 129.08, 124.13, 122.83, 122.31, 120.95, 117.14, 114.27, 110.96, 103.27, 55.63, 52.56, IR (KBr, cm⁻¹): 3381, 2927, 2365, 2334, 1721, 1654, 1267, 1053, 803, 763; **ESI-HRMS**: Calculated for C₁₇H₁₄NaO₄⁺ [M+Na] ⁺ 305.0784, found 305.0781.

Methyl 2-(benzofuran-2-yl)-6-methylbenzoate (3al): Yield: 57% (25 mg), Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, J = 7.8 Hz, 1H), 7.57 (d, J = 7.5 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.38 (t, J = 7.8

Hz, 1H), 7.28 (ddd, J = 8.2, 7.3, 1.5 Hz, 1H), 7.25 – 7.19 (m, 2H), 6.91 (s, 1H), 3.87 (s, 3H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 169.50, 154.99, 138.91, 131.71, 130.79, 129.88, 128.96, 126.85, 124.30, 122.84, 121.05, 111.02, 103.83, 52.44, 21.14; **IR** (KBr, cm⁻¹): 3410, 2928, 2860, 1740, 1690, 1450, 1159, 893, 704; **ESI-HRMS**: Calculated for C₁₇H₁₄NaO₃⁺ [M+Na]⁺ 289.0835, found 289.0834.

Methyl 2-(benzofuran-2-yl)-3-bromobenzoate (3an): Yield: 61% (35 mg), Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 2.7 Hz, 1H), 7.73 – 7.63 (m, 2H), 7.62 (d, J = 8.1 Hz, 1H), 7.49 (d, J = 8.2 Hz, 1H), 7.32 (t, J = 7.7 Hz, 1H), 6.96 (s, 1H), 3.85 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 167.87, 153.42, 134.03, 132.31, 130.30, 128.72, 124.86, 123.10, 121.31, 111.12, 104.98, 52.75; **IR** (KBr, cm⁻¹): 3399, 2923, 2851, 2347, 1721, 1601,

1329, 1158, 890, 725; **ESI-HRMS**: Calculated for $C_{16}H_{11}BrNaO_3^+$ [M+Na]⁺ 352.9784 and 354.9763, found 352.9772 and 354.9752.

Methyl 3-(benzofuran-2-yl)-2-naphthoate (3am): Yield: 48% (25 mg), Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.32 (s, 1H), 8.24 (s, 1H), 7.94 (d, J = 8.0 Hz, 2H), 7.67 – 7.56 (m, 3H), 7.53 (d, J = 8.0 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.27 (m, 1H), 7.01 (s, 1H), 3.87 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 167.27, 135.52, 132.50,

131.07, 129.36, 128.23, 128.15, 127.76, 127.41, 126.64, 125.23, 52.24; **IR** (KBr, cm⁻¹): 3410, 2950, 2373, 1828,1721, 1529, 1450, 1267, 1128, 868, 751; **ESI-HRMS**: Calculated for $C_{20}H_{14}NaO_{3}^{+}$ [M+Na]⁺ 325.0835, found 325.0833.

Methyl 2-(benzoselenophen-2-yl)-4-methylbenzoate (3ao): Yield: 58% (21 mg), Physical appearance: colorless oil, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.99 – 7.95 (m, 1H), 7.93 (d, J = 7.9 Hz, 1H), 7.79 (s, 1H), 7.39 – 7.35 (m, 1H), 7.34 – 7.29 (m, 3H), 7.28 – 7.25 (m, 1H), 3.46 (s, 3H), 2.46 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 167.92, 142.47, 141.56, 140.92, 140.74,

137.97, 132.28, 130.46, 128.60, 125.82, 124.81, 124.43, 124.36, 51.86, 21.45; **IR** (KBr, cm⁻¹): 3394, 2923, 1718, 1607, 1436, 1256, 1022, 761, 728; **ESI-HRMS**: Calculated for $C_{17}H_{14}NaO_2Se^+$ [M+Na]⁺ 353.0057, found 353.0052.

Ethyl 2-(benzo[b]selenophen-2-yl)-4-methylbenzoate (3ap): Yield: 41% (18 mg), Physical appearance: colorless oil, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, J = 7.9 Hz,2H), 7.77 (s, 1H), 7.38 – 7.30 (m, 3H), 7.26 (s, 2H), 3.98-3.72 (m, 2H), 2.46 (s, 3H), 0.68 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 168.71, 155.21, 154.98, 141.46, 130.01, 129.91, 129.79, 129.45, 128.93, 128.64, 124.33, 122.83, 121.08, 111.10, 104.26, 61.27, 21.43, 13.99; **IR** (KBr, cm⁻¹): 3407, 2927, 2361, 1708, 1630,

1421, 1278, 1020, 757, 620; **ESI-HRMS**: Calculated for C₁₈H₁₆NaO₂Se⁺ [M+Na]⁺ 367.0208, found 367.0204.

Methyl 2-(benzoselenophen-2-yl)-4-chlorobenzoate (3aq): Yield: 41% (16 mg), Physical

appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.99 – 7.94 (m, 2H), 7.84 (s, 1H), 7.50 (dd, J = 8.4, 2.2 Hz, 1H), 7.47 (d, J = 2.1 Hz, 1H), 7.38 – 7.31 (m, 3H), 3.47 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 167.12, 141.02, 140.81, 139.66, 139.25, 137.99, 131.72, 131.51, 129.80,

128.06, 125.90, 124.64, 124.59, 124.08, 52.15; **IR** (KBr, cm⁻¹): 3393, 2924, 2369, 1708, 1638, 1421, 1285, 1020, 759, 647; **ESI-HRMS**: Calculated for $C_{16}H_{11}CINaO_2Se^+$ [M+Na]⁺ 372.9514, found 372.9503.

129.65, 129.63, 129.17, 128.03, 126.41, 124.31, 120.60, 111.28, 104.18, 52.35, 21.76, 21.44; **IR** (KBr, cm⁻¹): 3400, 2927, 2852, 2373, 1720, 1639, 1259, 1033, 805, 773; **ESI-HRMS**: Calculated for $C_{18}H_{16}NaO_{3}^{+}$ [M+Na]⁺ 303.0992, found 303.0987.

Methyl 4-methyl-2-(4-methylbenzofuran-2-yl)benzoate (3b): Yield: 60% (26 mg), Methyl 4-methyl-2-(4-methylbenzofuran-2-yl)benzoate (3b): Yield: 60% (26 mg), Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, J= 7.9 Hz, 1H), 7.56 (s, 1H), 7.49 (d, J = 7.9 Hz, 1H), 7.33 – 7.30 (m, 1H), 7.26 (d, J = 7.9 Hz, 1H), 7.09 (d, J = 7.9 Hz, 1H), 6.89 (d, J = 0.9 Hz, 1H), 3.82 (s, 3H), 2.50 (s, 3H), 2.47 (s, 3H); ¹³C NMR (126 MHz,

CDCl₃): δ 169.33, 155.51, 154.33, 141.46, 134.74, 129.65, 129.63, 129.17, 128.03, 126.41, 124.31, 120.60, 111.28, 104.18, 52.35, 21.76, 21.44; **IR** (KBr, cm⁻¹): 3405, 2863, 1712, 1684, 1354, 1296, 1209, 1101, 840, 784, 767; **ESI-HRMS**: Calculated for C₁₈H₁₆NaO₃⁺ [M+Na]⁺ 303.0992, found 303.0990.

Methyl 2-(4-bromobenzofuran-2-yl)-4-methylbenzoate (3c): Yield: 52% (20 mg), Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, J = 7.9 Hz, 1H), 7.68 (s, 1H), 7.55 (d, J = 1.5 Hz, 1H), 7.48 (d, J = 8.3 Hz, 1H), 7.39 (dd, J = 8.3, 1.7 Hz, 1H), 7.31 (d, J = 1.3 Hz, 1H), 6.90 (d, J = 1.0 Hz, 1H), 3.82 (s, 3H), 2.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ

170.88, 154.36, 142.21, 135.68, 130.49, 129.50, 127.87, 125.09, 124.57, 123.01, 121.17, 111.11, 103.82, 52.46, 19.46; **IR** (KBr, cm⁻¹): 2926, 2862, 2378, 1726, 1609, 1438, 1289, 1096, 1051, 833, 779; **ESI-HRMS**: Calculated for $C_{17}H_{13}BrNaO_3^+$ [M+Na]⁺ 366.9940 and 368.9920, found 366.9938 and 368.9919.

Methyl 2-(4-methoxybenzofuran-2-yl)-4-methylbenzoate (3d): Yield: 55% (22 mg), Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (500 MHz, CDCl₃): δ 7.66 (d, J = 7.9 Hz, 1H), 7.56 (s, 1H), 7.48 (d, J = 8.5 Hz, 1H), 7.24 (d, J = 7.8 Hz, 1H), 7.04 (s, 1H), 6.91 (dd, J = 8.5, 2.3 Hz, 1H), 6.88 (s, 1H), 3.89 (s, 3H), 3.83 (s, 3H), 2.47 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 169.24, 156.01, 155.71, 150.13, 141.52, 129.89, 129.73, 129.68, 129.46, 129.35, 128.07,

113.28, 111.53, 104.50, 103.44, 55.93, 52.37, 21.46; **IR** (KBr, cm⁻¹): 3410, 2922, 2854, 1723, 1609, 1449, 1278, 1103, 825, 724; **ESI-HRMS**: Calculated for $C_{18}H_{16}NaO_4^+$ [M+Na]⁺ 319.0941, found 319.0938.

Methyl 4-methyl-2-(7-methylbenzofuran-2-yl)benzoate (3e): Yield: 42% (18 mg), Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, J = 7.9 Hz, 1H), 7.55 (s, 1H), 7.42 (d, J = 7.7 Hz, 1H), 7.23 (s, 2H), 7.13 (t, J =7.5 Hz, 1H), 7.10 – 7.05 (m, 1H), 6.90 (s, 1H), 3.78 (s, 3H), 2.52 (s, 3H), 2.44 (s, 3H); (For peak clarity ¹H NMR in MeOH-d₄) ¹H

NMR (400 MHz, Methanol-*d*₄): δ 7.64 (s, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.45 (d, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 7.9 Hz, 1H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.10 – 7.07 (m, 1H), 7.01 (s, 1H), 3.80 (s, 3H), 2.52 (s, 3H), 2.47 (s, 3H); ¹³C **NMR** (126 MHz, CDCl₃): δ 169.43, 154.64, 154.15, 141.41, 129.88, 129.65, 129.57, 129.29, 128.38, 128.24, 125.31, 122.92, 121.29, 118.60, 104.44, 52.27, 21.45, 15.03; **IR** (KBr, cm⁻¹): 3406, 2925, 2837, 2352, 1721, 1601, 1423, 1289, 763, 733; **ESI-HRMS**: Calculated for C₁₈H₁₆NaO₃⁺ [M+Na]⁺ 303.0992, found 303.0991.

Methyl 2-(4,7-dimethylbenzofuran-2-yl)-4-methylbenzoate (3f): Yield: 55% (22 mg),

Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 7.8 Hz, 1H), 7.54 (s, 1H), 7.27 – 7.21 (m, 1H), 6.98 (d, J = 7.4 Hz, 1H), 6.93 (m, 2H), 3.78 (s, 3H), 2.50 (s, 3H), 2.47 (s, 3H), 2.44 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 169.54, 154.22, 153.90, 141.36, 129.58,

129.54, 129.19, 128.22, 128.17, 125.20, 123.10, 118.47, 103.08, 76.76, 52.25, 21.45, 18.37, 14.79; **IR** (KBr, cm⁻¹): 3403, 2924, 2360, 1609, 1443, 1263, 1099, 776, 744; **ESI-HRMS**: Calculated for $C_{19}H_{18}NaO_3^+$ [M+Na]⁺ 317.1148, found 317.1145.

141.41, 134.71, 130.52, 130.07, 129.59, 129.07, 128.00, 126.28, 124.73, 108.69, 102.85,

52.34, 21.70, 21.44, 18.58; **IR** (KBr, cm⁻¹): 3390, 2927, 2378, 1781, 1609, 1438, 1289, 1096, 833, 779; **ESI-HRMS**: Calculated for $C_{19}H_{18}NaO_3^+$ [M+Na]⁺ 317.1148, found 317.1147.

Methyl 2-(5-(methyl)benzofuran-2-yl)-4-methylbenzoate (3h): Yield: 65% (28 mg),

Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, J = 7.8 Hz, 1H), 7.62 – 7.55 (m, 1H), 7.41 (s, 1H), 7.38 (d, J= 8.2 Hz, 1H), 7.30 – 7.24 (m, 1H), 7.12 (dd, J = 8.5, 1.8 Hz, 1H), 6.87 (s, 1H), 3.81 (s, 3H), 2.47 (s, 6H); ¹³C NMR (126

MHz, CDCl₃): δ 169.33, 155.00, 153.52, 141.47, 132.29, 129.93, 129.70, 129.63, 129.28, 129.03, 128.12, 125.70, 120.94, 110.56, 104.09, 52.34, 21.44, 21.35; **IR** (KBr, cm⁻¹): 3391, 2775, 2361, 1701, 1610, 1336, 1284, 1091, 823, 776; **ESI-HRMS**: Calculated for C₁₈H₁₆NaO₃⁺ [M+Na]⁺ 303.0992, found 303.0989.

Methyl 2-(5-(tert-butyl)benzofuran-2-yl)-4-methylbenzoate (3i): Yield: 58% (23 mg), Me Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.67 (dd I = 8.3, 2.6 Hz 1H) 7.62 (d I = 2.0 Hz 1H) 7.56 (s 1H)

Physical appearance: pale-yellow gel, TLC K_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.67 (dd, J = 8.3, 2.6 Hz, 1H), 7.62 (d, J = 2.0 Hz, 1H), 7.56 (s, 1H), 7.46 – 7.35 (m, 2H), 7.28 – 7.23 (m, 1H), 6.90 (d, J = 0.9 Hz, 1H), 3.83 (s, 3H), 2.47 (s, 3H), 1.40 (d, J = 6.1 Hz, 9H); ¹³C

NMR (126 MHz, CDCl₃): δ 169.30, 154.98, 153.31, 145.91, 141.47, 130.02, 129.71, 129.62, 129.24, 128.09, 122.44, 117.32, 110.35, 104.54, 52.37, 34.73, 31.86, 21.46; **IR** (KBr, cm⁻¹): 3394, 2923, 2364, 1717, 1605, 1469, 1261, 1116, 873, 750, 669; **ESI-HRMS**: Calculated for C₂₁H₂₂NaO₃⁺ [M+Na]⁺ 345.1461, found 345.1455.

Methyl 4-methyl-2-(5-phenylbenzofuran-2-yl)benzoate (3j): Yield: 51% (18 mg), Physical

appearance: white solid, M.P 100-102 °C; TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹**H NMR** (400 MHz, CDCl₃): δ 7.82 (s, 1H), 7.71 (d, J = 7.9 Hz, 1H), 7.68 – 7.63 (m, 2H), 7.60 (s, 1H), 7.58 – 7.53 (m, 2H), 7.48 (t, J = 7.4 Hz, 2H), 7.41 – 7.34 (m, 1H), 7.32 – 7.29 (m, 1H), 6.98 (s, 1H), 3.84 (s, 3H), 2.49 (s, 3H);

¹³C NMR (126 MHz, CDCl₃): δ 169.12, 155.69, 154.69, 141.68, 141.63, 136.63, 129.92, 129.78, 129.51, 127.45, 126.88, 124.18, 119.66, 111.17, 104.53, 52.39, 21.46; **IR** (KBr, cm⁻¹): 3405, 2958, 2369, 1719, 1621, 1468, 1285, 936, 767; **ESI-HRMS**: Calculated for $C_{23}H_{18}NaO_3^+$ [M+Na]⁺ 365.1148, found 365.1142.

Methyl 2-(5-bromobenzofuran-2-yl)-4-methylbenzoate (3l): Yield: 60% (22 mg), Physical

appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹**H** NMR (400 MHz, CDCl₃): δ 7.96 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 8.5 Hz, 1H), 7.41 (d, J = 2.0 Hz, 1H), 7.37 – 7.31 (m, 3H), 7.24 (s, 1H), 3.56 (s, 3H), 2.47 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 168.77, 156.43, 153.76, 141.79, 130.90, 130.12,

129.92, 129.82, 129.51, 128.15, 127.27, 123.73, 115.92, 112.52, 103.75, 52.37, 21.43; **IR** (KBr, cm⁻¹): 3399, 2923, 2356, 1721, 1601, 1328, 1273, 1054, 890, 752; **ESI-HRMS**:

Calculated for $C_{17}H_{13}BrNaO_3^+$ [M+Na]⁺ 366.9940 and 368.9920, found 366.9938 and 368.9919.

Methyl 2-(5-chlorobenzofuran-2-yl)-4-methylbenzoate (3k): Yield: 60% (24 mg), Physical

appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹**H NMR** (400 MHz, CDCl₃): δ 7.72 (d, J = 7.9 Hz, 1H), 7.59 (d, J = 2.1 Hz, 1H), 7.55 (s, 1H), 7.42 (d, J = 8.6 Hz, 1H), 7.33 – 7.29 (m, 1H), 7.28 – 7.24 (m, 1H), 6.87 (s, 1H), 3.81 (s, 3H), 2.48 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃): δ 168.78,

156.57, 141.78, 130.10, 129.91, 129.80, 128.14, 124.58, 120.67, 112.03, 103.91, 52.37, 21.43; **IR** (KBr, cm⁻¹): 3414, 3030, 2854, 2352, 1623, 1459, 1055,908, 750; **ESI-HRMS**: Calculated for $C_{17}H_{13}ClNaO_3^+$ [M+Na]⁺ 323.0445, found 323.0442.

Methyl 2-(5-iodobenzofuran-2-yl)-4-methylbenzoate (3m): Yield: 45% (17 mg), Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (500 MHz,CDCl₃): δ 7.96 (d, J = 1.8 Hz, 1H), 7.72 (d, J = 7.9 Hz, 1H), 7.58 (dd, J = 8.6, 1.8 Hz, 1H), 7.55 (s, 1H), 7.32 – 7.30 (m, 1H), 7.28 – 7.27 (m, 2H), 6.85 (s, 1H), 3.81 (s, 3H), 2.48 (s, 3H); (For peak clarity ¹H NMR in MeOH-d_4) ¹H

NMR (400 MHz, Methanol-*d*₄): δ 7.80 (s, 1H), 7.67 (d, *J* = 7.9 Hz, 1H), 7.62 (s, 1H), 7.43 (s, 2H), 7.37 (d, *J* = 7.9 Hz, 1H), 7.00 (s, 1H), 3.79 (s, 3H), 2.48 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃): δ 169.50, 154.99, 154.85, 138.91, 131.71, 130.79, 129.88, 128.96, 126.85, 124.30, 122.84, 121.05, 111.02, 103.83, 52.44, 21.14; **IR** (KBr, cm⁻¹): 3393, 2925, 1734, 1445,1261, 1097, 1040, 803, 776; **ESI-HR**MS: Calculated for C₁₇H₁₃INaO₃⁺ [M+Na]⁺ 414.9802, found 414.9798.

Methyl 2-(5-methoxybenzofuran-2-yl)-4-methylbenzoate (3n): Yield: 60% (26 mg),

MeO₂C

Physical appearance: pale-yellow gel, TLC R_f 0.30 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz,CDCl₃): δ 7.68 (d, J = 7.9 Hz, 1H), 7.56 (s, 1H), 7.39 (d, J = 8.9 Hz, 1H), 7.28 - 7.24 (m, 1H), 7.08 (d, J = 2.6 Hz, 1H), 6.92 (dd, J = 8.9, 2.6 Hz, 1H), 6.87 (s, 1H), 3.88 (s, 3H), 3.82 (s, 3H), 2.47 (s, 3H);

¹³C NMR (126 MHz, CDCl₃): δ 169.24, 156.01, 155.71, 150.13, 141.52, 129.89, 129.73, 129.68, 129.46, 129.35, 128.07, 113.28, 111.53, 104.50, 103.44, 55.93, 52.37, 21.46; **IR** (KBr, cm⁻¹): 3402, 2894, 2798, 1718, 1610, 1436, 1267, 1100, 851, 714; **ESI-HRMS**: Calculated for C₁₈H₁₆NaO₄⁺ [M+Na]⁺ 319.0941, found 319.0938.

Methyl 2-(3-bromobenzofuran-2-yl)-4-methylbenzoate(30): Yield: 61% (24 mg), Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 7.9 Hz, 1H), 7.60 (d, J = 7.5 Hz, 1H), 7.57 (s, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.33

-7.28 (m, 1H), 7.26 -7.22 (m, 1H), 6.92 (s, 1H), 3.80 (s, 3H), 2.46 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 169.19, 155.05, 154.96, 141.56, 129.86, 129.71, 129.40, 128.93, 128.15, 124.42, 122.87, 121.15, 111.08, 104.35, 52.35, 21.44; **IR** (KBr, cm⁻¹):3400, 2927, 2352, 1723, 1628, 1441, 1292, 1053, 805, 746; **ESI-HRMS**: Calculated for C₁₇H₁₃BrNaO₃⁺ [M+Na]⁺ 366.9940 and 368.9920, found 366.9938 and 368.9919.

Methyl 2-(benzo[*b*]thiophen-2-yl)-4-methylbenzoate (3q): Yield: 58% (29 mg), Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.94 – 7.87 (m, 2H), 7.47 – 7.41 (m, 1H), 7.38 – 7.29 (m, 4H), 7.27 (s, 1H), 3.45 (s, 3H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 169.50, 154.99, 138.91, 131.71, 130.79, 129.88, 128.96, 126.85, 124.30, 122.84, 121.05, 111.02,

103.83, 52.44, 21.14; **IR** (KBr, cm⁻¹): 3405, 2923, 2352, 1721, 1601, 1423, 1289, 1088, 763, 733; **ESI-HRMS**: Calculated for $C_{17}H_{15}O_2S^+$ [M+H]⁺ 283.0787 found 283.0782.

7.83 (d, J = 8.0 Hz, 1H), 7.58 (s, 1H), 7.39 (d, J = 7.9 Hz, 1H), 7.30 (s, 1H), 7.22 (d, J = 8.0, 1H), 7.13 (s, 1H), 3.43 (s, 3H), 2.43 (s, 3H), 2.35 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 168.15, 142.34, 139.34, 137.06, 136.76, 136.48, 133.95, 132.31, 130.39, 128.60, 128.54, 126.00, 123.07, 122.32, 122.20, 51.85, 21.44; **IR** (KBr, cm⁻¹): 3410, 2927, 2386, 1717, 1608, 1425, 1292, 1121, 1086, 779; **ESI-HRMS**: Calculated for C₁₈H₁₇O₂S⁺ [M+H]⁺ 297.0944, found 297.0941.

Methyl 4-methyl-2-(5-chlorobenzo[b]thiophen-2-yl)benzoate (3s): Yield: 57% (21 mg),

Physical appearance: pale-yellow gel, TLC R_f 0.40 (19:1, Petroleum ether: EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, J= 7.8 Hz, 1H), 7.80 (d, J = 8.5 Hz, 1H), 7.38 (s, 1H), 7.36 – 7.28 (m, 3H), 7.22 (s, 1H), 3.54(s, 3H), 2.46 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 166.82, 143.22, 142.24, 136.54, 135.25,

131.17, 129.90, 127.93, 125.71, 124.35, 52.11, 21.63; **IR** (KBr, cm⁻¹): 3397, 2977, 2842, 1721, 1601, 1268, 1035, 804, 743; **ESI-HRMS**: Calculated for $C_{17}H_{13}ClNaO_2S^+$ [M+Na]⁺ 339.0217, found 339.0202.

		- I - I		· · ·								 									
210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm	80	70	60	50	40	30	20	10	0	-10

210	200	190	180	170	160	150	140	130	120			90	80	70	60	50	40	30	20	10	0	-10
	f1 (ppm)																					

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
f1 (ppm)																							

X-ray crystallographic study of compound 31:

Figure 1: ORTEP of the PS-17-11-135 drawn with 50% displacement ellipsoids.

Single crystal data of the compound **PS1711135** was collected on the Bruker D8 VENTURE diffractometer equipped with CMOS type (PHOTON 100) detector using monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Unit cell measurement, data collection, integration, scaling and absorption corrections for the crystal were done using Bruker Apex II software ^[11]. Data reduction was done by Bruker SAINT Suite^[2]. The crystal structure was solved by direct methods using SHELXT 2014^[3] and refined by the full matrix least squares method using SHELXL 2018 ^[4] present in the program suite WinGX (version 2014.1) ^[5]. Absorption correction was applied using SADABS^[6]. All non-hydrogen atoms were refined anisotropically and all hydrogen atoms were positioned geometrically and refined using ariding model with U_{iso}(H)=1.2Ueq [C_{aromatic}], U_{iso}(H) = 1.5Ueq (methyl groups). ORTEP was generated using Mercury 3.5.1(CCDC) program[7]. Crystallographic and refinement data of the compound was tabulated in **Table-1**.

rable 1. Crystal data and structure		
CCDC	1897155	
Empirical formula	C23 H18 O3	
Formula weight	342.37	
Temperature	298(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P n a 21	
Unit cell dimensions	$a = 10.8534(4) \text{ Å}$ $\alpha = 90^{\circ}.$	
	$b = 13.6583(5) \text{ Å} \qquad \beta = 90^{\circ}.$	
	$c = 12.5256(4) \text{ Å}$ $\gamma = 90^{\circ}.$	
Volume	1856.78(11) Å ³	
Z	4	
Density (calculated)	1.225 Mg/m ³	
Absorption coefficient	0.080 mm ⁻¹	
F(000)	720	
Crystal size	0.320 x 0.180 x 0.060 mm ³	
θ (min, max)range for data collection	2.397 to 30.531°.	
Index ranges	-15<=h<=15, -19<=k<=19, -17<=l<=17	
Reflections collected	33166	
Independent reflections	5665 [R(int) = 0.0893]	
Completeness to theta = 25.242°	99.9 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5665 / 1 / 238	
Goodness-of-fit on F ²	1.049	
Final R indices [I>2sigma(I)]	R1 = 0.0590, wR2 = 0.0986	
R indices (all data)	R1 = 0.1320, wR2 = 0.1181	
Absolute structure parameter	0.2(16)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.153 and -0.179 e.Å ⁻³	

Table 1. Crystal data and structure refinement for **PS-17-11-135**.

References:

1. Apex2, Version 2 User Manual, M86-E01078, Bruker Analytical X-ray Systems Madison, WI, 2006.

- 2. Siemens, SMART System, Siemens Analytical X-ray Instruments Inc. Madison, MI, 1995.
- 3. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3-8.

4. Sheldrick, G. M. ActaCrystallogr. 2015, C71, 3-8.

- 5. Farrugia, L. J. J. Appl. Crystallogr. 2012, 45, 849-854.
- 6. Sheldrick, G. M. SADABS; Bruker AXS, Inc.: Madison, WI, 2007.

7. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock E.; Rodriguez-Monge, L.; Taylor, R.; Streek, J.; Wood, P. A. *J. Appl. Crystallogr.***2008**, *41*, 466-470.