Supplementary Information

Fluorescent chemosensing for aromatic compounds by supramolecular complex composed of tin(IV) porphyrin, viologen, and cucurbit[8]uril

Nirmal Kumar Shee, Min Kyoung Kim and Hee-Joon Kim*

Department of Applied Chemistry, Kumoh National Institute of Technology,
Gumi 39177, Republic of Korea

Experimental Section

All operations were carried out using standard Schlenk line techniques under nitrogen atmosphere. ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a Bruker BIOSPIN/AVANCE III 400 spectrometer. Fluorescence spectra were recorded on a Shimadzu PF-5300PC spectrophotometer. ESI mass spectra were recorded on a Thermo Finnigan Linear Ion Trap Quadrupole mass spectrometer.

meso-Tetrakis[4-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl]porphyrin

To a solution containing [2-[2-(2-methoxyethoxy)ethoxy]ethoxy]p-toluenesulfonate ($0.14 \mathrm{~g}, 0.50 \mathrm{mmol}$) and meso-tetrakis(4-hydroxyphenyl)porphyrin ($0.10 \mathrm{~g}, 0.15 \mathrm{mmol}$) in DMF (30 mL), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.17 \mathrm{~g}$, 1.25 mmol) was added. The reaction mixture was heated at reflux for 24 h . After the solvent was removed in vacuo, the product was separated and purified by column chromatography using an eluent of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ on silica gel. Yield: $0.18 \mathrm{~g}(93 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.87(\mathrm{~s}, 8 \mathrm{H}), 8.16(\mathrm{~d}, 8 \mathrm{H})$, $7.29(\mathrm{~d}, 8 \mathrm{H}), 4.25(\mathrm{t}, 8 \mathrm{H}), 3.91(\mathrm{t}, 8 \mathrm{H}), 3.73(\mathrm{t}, 8 \mathrm{H}), 3.66(\mathrm{t}, 8 \mathrm{H}), 3.58(\mathrm{t}, 8 \mathrm{H}), 3.46(\mathrm{t}, 8 \mathrm{H}), 3.29(\mathrm{~s}, 12 \mathrm{H})$, -2.90 (s, 2H) ppm.
trans-Dichloro[tetrakis\{4-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl\}porphyrinato]tin(IV): To a solution of tetrakis[4-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl] porphyrin ($0.10 \mathrm{~g}, 0.79 \mathrm{mmol}$) in 50 mL pyridine, anhydrous tin(II) chloride ($200 \mathrm{mg}, 1.05 \mathrm{mmol}$) was added. After refluxing for 7 hours, the solution was filtered through a celite pad. The product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane. Yield: $0.09 \mathrm{~g}(78 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 3.28(\mathrm{~s}, 12 \mathrm{H}), 3.50(\mathrm{~m}, 8 \mathrm{H}), 3.60(\mathrm{~m}, 8 \mathrm{H}), 3.65$ (m, 8H), $3.73(\mathrm{~m}, 8 \mathrm{H}), 3.95(\mathrm{t}, 8 \mathrm{H}), 4.44(\mathrm{t}, 8 \mathrm{H}), 7.49(\mathrm{~d}, 8 \mathrm{H}), 8.21(\mathrm{~d}, 8 \mathrm{H}), 9.28(\mathrm{~s}, 8 \mathrm{H}) \mathrm{ppm}$.
trans-Dihydroxo[tetrakis\{4-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl\}porphyrinato]tin(IV):
To a solution of (por) $\mathrm{SnCl}_{2}(0.2 \mathrm{~g}, 0.13 \mathrm{mmol})$ in 100 mL of THF, a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.325 \mathrm{~g}, 2.21$ mmol) in distilled water (30 mL) was added. After refluxing for 3 hours, the solvent was evaporated and the residue was carried on the extraction using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ water. The organic layers were then combined, dried over anhydrous MgSO_{4}, and filtered. The solvent was evaporated under reduced pressure and the product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane. Yield: $0.14 \mathrm{~g}(72 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 3.28(\mathrm{~s}, 12 \mathrm{H}), 3.50(\mathrm{~m}, 8 \mathrm{H}), 3.61(\mathrm{~m}, 8 \mathrm{H}), 3.65(\mathrm{~m}, 8 \mathrm{H}), 3.73(\mathrm{~m}, 8 \mathrm{H}), 3.95(\mathrm{t}$, $8 \mathrm{H}), 4.43(\mathrm{t}, 8 \mathrm{H}), 7.46(\mathrm{~d}, 8 \mathrm{H}), 8.18(\mathrm{~d}, 8 \mathrm{H}), 9.05(\mathrm{~s}, 8 \mathrm{H}) \mathrm{ppm}$.
trans-Bis(1-(4-Carboxybenzyl)-1'-methyl-4,4'-bipyridinium)[tetrakis\{4-(2-(2-(2methoxyethoxy)ethoxy)ethoxy)phenyl\}porphyrinato]tin(IV) hexafluorophosphate (1): To a solution of (por)Sn(OH) $)_{2}(0.05 \mathrm{~g}, 0.04 \mathrm{mmol})$ in 40 mL of THF, 1-(4-carboxybenzyl)-4,4'-bipyridinium
hexafluorophosphate ($0.05 \mathrm{~g}, 0.08 \mathrm{mmol}$) was added. After refluxing for 48 h , the solvent was evaporated under reduced pressure. The residue was recrystallized from THF/n-hexane to produce 1. Yield: $0.07 \mathrm{~g}(80 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 3.28(\mathrm{~s}, 12 \mathrm{H}), 3.50(\mathrm{~m}, 8 \mathrm{H}), 3.61(\mathrm{~m}, 8 \mathrm{H}), 3.65$ $(\mathrm{m}, 8 \mathrm{H}), 3.73(\mathrm{~m}, 8 \mathrm{H}), 3.95(\mathrm{t}, 8 \mathrm{H}), 4.37(\mathrm{~s}, 6 \mathrm{H}), 4.43(\mathrm{t}, 8 \mathrm{H}), 4.76(\mathrm{~s}, 4 \mathrm{H}), 5.42(\mathrm{~d}, 4 \mathrm{H}), 6.61(\mathrm{~d}, 4 \mathrm{H})$, $7.95(\mathrm{~m}, 16 \mathrm{H}), 8.16(\mathrm{~d}, 4 \mathrm{H}), 8.52(\mathrm{~d}, 4 \mathrm{H}), 8.54(\mathrm{~d}, 4 \mathrm{H}), 9.02(\mathrm{~d}, 4 \mathrm{H}), 9.22(\mathrm{~s}, 8 \mathrm{H}) \mathrm{ppm}$.

1:2 Supramolecular complex of 1 and cucurbit[8]uril (1•CB[8]): ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 3.28(\mathrm{~s}, 12 \mathrm{H}), 3.50(\mathrm{~m}, 8 \mathrm{H}), 3.61(\mathrm{~m}, 8 \mathrm{H}), 3.65(\mathrm{~m}, 8 \mathrm{H}), 3.73(\mathrm{~m}, 8 \mathrm{H}), 3.95(\mathrm{t}, 8 \mathrm{H}), 4.21(\mathrm{~d}, 32 \mathrm{H}$, CB[8]), 4.43 (t, 8H), 4.53 (s, 6H), 5.39 ($\mathrm{s}, 32 \mathrm{H}, \mathrm{CB}[8]), 5.58$ (d, 32H, CB[8]), 6.08 (s, 4H), $6.99(\mathrm{~d}, 4 \mathrm{H})$, $7.08(\mathrm{~d}, 4 \mathrm{H}), 7.30(\mathrm{~d}, 4 \mathrm{H}), 7.97(\mathrm{~m}, 8 \mathrm{H}), 8.12(\mathrm{~d}, 8 \mathrm{H}), 8.31(\mathrm{~d}, 4 \mathrm{H}), 8.91(\mathrm{~d}, 4 \mathrm{H}), 8.96(\mathrm{~d}, 4 \mathrm{H}), 9.25(\mathrm{~s}$, 8H) ppm.

Scheme S1. A series of reactions for the synthesis of 1.

Fig. S1 Job's plot of $1(c=2 \mathrm{mM})$ with CB[8] in DMSO- d_{6}. Considering $\Delta \delta\left(=\delta_{\text {free }}-\delta_{\text {complex }}\right)$ of α protons from the $\mathrm{N}-\mathrm{CH}_{3}$ end of bipyridinium moiety of 1 . Showing the maximum $\Delta \delta$ at ~ 0.33.

Fig. S2 Absorption spectra of 1, CB[8], and HQ in water. All spectra were recorded with $2 \mu \mathrm{M}$ solutions.

Fig. S3 Fluorescence spectral changes for 1 in aqueous solutions ($c=2 \mu \mathrm{M}$, using sodium phosphate buffer at pH 7.0) upon the supramolecular complexation. Each black and red curve correspond to 1 itself and the complexation with 2 equivalents of $C B[8]$, respectively. The blue curves depict in the additional presence of 2 equivalent aromatic compounds; (a) 2,6-dihydroxynaphthalene, (b) tyrosine, (c) tryptophan, and (d) dopamine. The fluorescence was yielded by the excitation at 422 nm .

Fig. S4 Fluorescence titration experiment of $1 \cdot \mathrm{CB}[8](c=2 \mu \mathrm{M}$, using sodium phosphate buffer at pH 7.0) and hydroquinone in water ($\lambda_{\mathrm{ex}}=422 \mathrm{~nm}$). The inset shows the linear fitting curve.

Fig. S5 Fluorescence titration experiment of $1 \cdot \mathrm{CB}[8](c=2 \mu \mathrm{M}$, using sodium phosphate buffer at pH 7.0) and 2,6-dihydroxynaphthalene in water ($\lambda_{\mathrm{ex}}=422 \mathrm{~nm}$). The inset shows the linear fitting curve.

Fig. S6 Fluorescence titration experiment of $1 \cdot \mathrm{CB}[8](c=2 \mu \mathrm{M}$, using sodium phosphate buffer at pH 7.0) and dopamine in water ($\lambda_{\mathrm{ex}}=422 \mathrm{~nm}$). The inset shows the linear fitting curve.

Fig. S7 Fluorescence titration experiment of $\mathbf{1}^{\bullet} \mathrm{CB}[8](c=2 \mu \mathrm{M}$, using sodium phosphate buffer at pH 7.0) and tyrosine in water ($\lambda_{\mathrm{ex}}=422 \mathrm{~nm}$). The inset shows the linear fitting curve.

Fig. S8 Fluorescence titration experiment of $1 \cdot \mathrm{CB}[8](c=2 \mu \mathrm{M}$, using sodium phosphate buffer at pH 7.0) and tryptophan in water ($\lambda_{\mathrm{ex}}=422 \mathrm{~nm}$). The inset shows the linear fitting curve.

Fig. S9 ESI-MS spectrum for 1.

Fig. S10 ESI-MS spectrum for the 1:2 complex of $\mathbf{1}$ and CB[8].

Fig. S11 ESI-MS spectrum for the 1:2:2 complex of 1, CB[8], and hydroquinone (HQ).

