Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supporting information

Table of Contents

1.	Reagents	S2
2.	Instruments	S2
3.	Details for optimization	S2
4.	General procedure for substrates 1	S3
5.	Procedure for other directing group protected vinyl acetic acid	S9
6.	General procedures for β-lactam	S12
7.	NOE of 3b	S13
8.	Gram scale reaction and further application	S27
9.	Preliminary mechanistic study	S30
10.	Stereochemistry Determination of 8d via X-ray Crystallographic Analysis.	S32
11.	References	\$32
12.	NMR spectra	\$33

- 1. **Reagents:** Unless otherwise noted, all reagents were purchased from commercial suppliers and used without further purification. Column chromatography purifications were performed using 200–300 mesh silica gel.
- 2. Instruments: NMR spectra were recorded on Varian Inova–400 MHz, Inova–300 MHz, Bruker DRX–400 or Bruker DRX–500 instruments and calibrated using residual solvent peaks as internal reference. Multiplicities are recorded as: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet. HRMS analysis were carried out using a BrukermicrOTOF–Q instrument or a TOF–MS instrument.

3. Details for optimization

Table S1. Optimization of reaction conditions in article.^[a]

Entry	R	Catalyst	Oxidant	Base	Yield(%) ^b
1	Н	Cu(OAc) ₂ •H ₂ O	DTBP	/	26
2	Н	CuBr ₂	DTBP	/	56
3	Н	Cu(OTf) ₂	DTBP	/	68
4	Н	CuBr	DTBP	/	20
5	Н	CuSCN	DTBP	/	34
6	Н	Cu(CH ₃ CN) ₄ PF ₆	DTBP	/	85
7	Н	Cu(CH ₃ CN) ₄ PF ₆	DTBP	K ₂ CO ₃	20
8	Н	Cu(CH ₃ CN) ₄ PF ₆	DTBP	NaOAc	12
9	Н	/	DTBP	/	0
10	Н	Cu(CH ₃ CN) ₄ PF ₆	/]	/	0
11	OCH ₃	Cu(CH ₃ CN) ₄ PF ₆	DTBP	1	80
		DG= KeS	λ _t Ts λ _t		_F `F
		0% 0%	0% 0%	É 0% 0%	

^[a]Reaction conditions: **1a** (0.2 mmol), DTBP (0.6 mmol), Cu salt (0.02 mmol) in 1 mL toluene at 130 °C for 8 h; Isolated yield.

Entry	Oxidant (3 eq)	Cu (10 mol%)	Solvent	Base(2 eq)	T (°C)	Yield (%) ^b
1	ТВНР	Cul	toluene	1	110	0
2	ТВРВ	Cul	toluene	1	110	0
3	K ₂ S ₂ O ₈	Cul	toluene	1	110	0
4	H ₂ O ₂	Cul	toluene	/	110	0
5	PhI(OAc) ₂	Cul	toluene	1	110	0
6	DTBP	Cul	toluene	1	110	55
c 7	DTBP	Cul	toluene	/	110	32
^d 8	DTBP	Cul	toluene	/	110	38
9	1	Cul	toluene	/	110	0

 Table S2. Screening of oxidant^{a,b}

^aReaction conditions: 1a (0.2 mmol), Oxidant (0.6 mmol), Cul (0.02 mmol) in 1ml toluene at 110 ^oC for 8 h. ^bIsolated yield. ^cDTBP (0.4 mmol). ^dDTBP (0.8 mmol).

Table S3. Screening of T ^{a, b}	
--	--

Entry	Oxidant (3 eq)	Cu (10 mol%)	Solvent	Base(2 eq)	T (°C)	Yield (%) ^b
1	DTBP	Cul	toluene	/	50	0
2	DTBP	Cul	toluene	/	70	0
3	DTBP	Cul	toluene	/	90	22
4	DTBP	Cul	toluene	1	130	72
5	DTBP	Cul	toluene	/	140	68

^aReaction conditions: 1a (0.2 mmol), DTBP (0.6 mmol), Cul (0.02 mmol) in 1ml toluene at T for 8 h. ^bIsolated yield.

Entry	Oxidant (3 eq)	Cu (10 mol%)	Solvent	Base(2 eq)	T (⁰ C)	Yield (%) ^b
1	DTBP	CuBr	toluene	1	130	20
2	DTBP	CuCl	toluene	1	130	16
3	DTBP	Cu(CH ₃ CN) ₄ PF ₆	toluene	1	130	85
4	DTBP	CuSCN	toluene	1	130	34
5	DTBP	Cu(OAc) ₂ .H ₂ 0	toluene	1	130	26
6	DTBP	Cu(OTf) ₂	toluene	/	130	68
7	DTBP	CuBr ₂	toluene	/	130	56
8	DTBP	Cu(acac) ₂	toluene	/	130	12
9	DTBP	CuS0 ₄ ,5H ₂ O	toluene	/	130	11
10	DTBP	CuO	toluene	/	130	<5
°11	DTBP	Cu(CH ₃ CN) ₄ PF ₆	toluene	1	130	45
^d 12	DTBP	Cu(CH ₃ CN) ₄ PF ₆	toluene	1	130	68
13	DTBP	/	toluene	1	130	68

^aReaction conditions: 1a (0.2 mmol), DTBP (0.6 mmol), Cu salt (0.02 mmol) in 1ml toluene at 130 0 C for 8 h. ^bIsolated yield. ^cCu(CH₃CN)₄PF₆ (0.01 mmol). ^dCu(CH₃CN)₄PF₆ (0.04 mmol).

Table S5. Screening of base^{a, b}

Entry	Oxidant (3 eq)	Cu (10 mol%)	Solvent	Base(2 eq)	T (⁰ C)	Yield (%) ^b
1	DTBP	Cu(CH ₃ CN) ₄ PF ₆	toluene	K ₂ CO ₃	130	20
2	DTBP	Cu(CH ₃ CN) ₄ PF ₆	toluene	Na ₂ CO ₃	130	14
3	DTBP	Cu(CH ₃ CN) ₄ PF ₆	toluene	NaOAc	130	12
4	DTBP	Cu(CH ₃ CN) ₄ PF ₆	toluene	Na ₂ HPO ₄	130	32
5	DTBP	Cu(CH ₃ CN) ₄ PF ₆	toluene	DBU	130	0

6	DTBP	Cu(CH ₃ CN) ₄ PF ₆	toluene	Et ₃ N	130	0

^aReaction conditions: 1a (0.2 mmol), DTBP (0.6 mmol), Cu(CH₃CN)₄PF₆ (0.02 mmol) in 1ml toluene at 130 $^{\circ}$ C for 8 h. ^bIsolated yield.

4. a).General procedure for substrates 1

Vinyl acetic acid (12 mmol) was charged into a 250 mL RB flask containing 30 mL DCM. 8-Aminoquinoline (1.44 g, 10 mmol), pyridine (2.6 mL, 20 mmol), and HATU (4.94 g, 13 mmol) were added sequentially, and the reaction was stirred at ambient temperature for 16 h. The deep brown solution was diluted with EtOAc (200 mL), washed with sat. NaHCO₃ (100 mL, \times 2) and brine (100 mL, \times 1), and purified by column chromatography (10–15% EtOAc in Hexanes) to afford **1a** as a yellow oil¹.

b).General procedure for α -substituted vinylacetic acids

A solution of commercial LDA 2 M (11.8 mL, 23.5 mmol) in THF was cooled to ice-water temperature and a solution of 3-butenoic acid (1 mL, 11.77 mmol) in 10 mL of THF was added slowly over a period of 15 min. The resulting mixture was stirred at the same temperature for 45 min to obtain a deep yellow solution. A total of 1.1 eq. (12.9 mmol) of the alkylating agent was added, whereupon the reaction mixture immediately turned colorless. After 30 min at the same temperature and 1 h at room temperature, the pH of the solution was adjusted to 2.5 with 10% HCl. The organic phase was separated. The aqueous layer was saturated with solid NaCl and the mixture was extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and filtered. Removal of solvents under reduced pressure followed by chromatography on silica gel (10 - 20% ethyl acetate/hexanes) produced the targeted molecules (28%-78% yield)².

c).General procedure for γ -substituted vinylacetic acids

To a stirred solution of aldehyde in DMSO (1M), malonic acid (1.1 equiv), acetic acid (6 μ L) and piperidine (10 μ L) were added in one portion. The mixture was heated at 100 °C for 8 h and then poured into brine. After extraction with ethyl acetate for several times, the organic layer was dried over Na₂SO₄, and concentrated. Crude material was purified by column chromatography to give the target carboxylic acid (56%-82% yield)³.

N-(quinolin-8-yl)but-3-enamide(1a):

¹H NMR (400 MHz, CDCl₃) δ 9.90 (s, 1H), 8.78 – 8.60 (m, 2H), 8.02 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.46 – 7.36 (m, 2H), 7.33 (dd, *J* = 8.2, 4.0 Hz, 1H), 6.16 – 6.01 (m, 1H), 5.37 – 5.24 (m, 2H), 3.31 – 3.29 (m, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 168.7, 147.7, 137.9, 135.7, 133.8, 130.5, 127.4, 126.8, 121.1, 121.0, 119.5, 115.9, 42.6.

2-methyl-N-(quinolin-8-yl)but-3-enamide(1b):

¹**H NMR (400 MHz, CDCl₃)** δ 10.03 (s, 1H), 8.81 – 8.70 (m, 2H), 8.13 (dd, J = 8.2, 1.6 Hz, 1H), 7.54 – 7.46 (m, 2H), 7.42 (dd, J = 8.2, 4.0 Hz, 1H), 6.15 – 6.06 (m, 1H), 5.22 – 5.15 (m, 2H), 3.32 – 3.40 (m, 1H), 1.45 (d, J = 7.0 Hz, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 172.0, 147.7, 138.1, 137.5, 135.8, 134.0, 127.4, 126.9, 121.1, 121.0, 116.8, 115.8, 46.5, 16.5. **HRMS(ESI-TOF):** [M+H]⁺ m/z calcd for C₁₄H₁₅N₂O⁺: 227.1184, found: 227.1183.

2-ethyl-N-(quinolin-8-yl)but-3-enamide(1c):

¹**H NMR** (400 MHz, CDCl₃) δ 9.97 (s, 1H), 8.80 – 8.72 (m, 2H), 8.09 (dd, J = 8.2, 1.6 Hz, 1H), 7.52 – 7.42 (m, 2H), 7.39 (dd, J = 8.2, 4.0 Hz, 1H), 6.06 – 5.57 (m, 1H), 5.37 – 5.26 (m, 2H), 3.09 (dd, J = 15.2, 7.6 Hz, 1H), 2.08 – 1.98 (m, 1H), 1.72 (dt, J = 13.6, 7.6 Hz, 1H), 1.00 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 172.1, 148.2, 138.5, 136.8, 136.3, 134.5, 127.9, 127.3, 121.6, 121.5, 118.2, 116.4, 76.8, 55.1, 25.1, 11.8. **HRMS(ESI-TOF)**: [M+Na]⁺ m/z calcd for C₁₅H₁₆N₂ONa⁺: 263.1160, found: 263.1167.

2-isopropyl-N-(quinolin-8-yl)but-3-enamide(1d):

¹**H** NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 8.82 – 8.78 (m, 2H), 8.11 (dd, J = 8.2, 1.6 Hz, 1H), 7.53 – 7.44 (m, 2H), 7.41 (dd, J = 8.2, 4.0 Hz, 1H), 6.09 – 6.00 (m, 1H), 5.33 – 5.27 (m, 2H), 2.88 – 2.84 (m, 1H), 2.31 – 2.25 (m, 1H), 1.04 (d, J = 6.8 Hz, 3H), 0.99 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 147.7, 138.0, 135.8, 135.3, 134.0, 127.4, 126.9, 121.1, 120.9, 118.3, 115.9, 60.9, 29.8, 20.5, 19.2. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₁₆H₁₈N₂ONa⁺: 277.1317, found: 277.1323.

N-(quinolin-8-yl)-2-vinylpent-4-enamide(1e):

¹**H NMR** (400 MHz, CDCl₃) δ 10.00 (s, 1H), 8.80 – 8.72 (m, 2H), 8.08 (dd, J = 8.4, 1.6 Hz, 1H), 7.52 – 7.42 (m, 2H), 7.39 (dd, J = 8.4, 4.0 Hz, 1H), 6.06 – 5.99 (m, 1H), 5.88 – 5.80 (m, 1H), 5.39 – 5.31 (m, 2H), 5.20 – 5.12 (m, 2H), 3.28 (dd, J = 15.2, 7.6 Hz, 1H), 2.76 – 2.68 (m, 1H), 2.50 – 2.44 (m, 1H). ¹³C **NMR (101 MHz, CDCl₃)** δ 171.2, 148.2, 138.5, 136.4, 136.3, 135.4, 134.4, 128.5, 127.9, 127.3, 121.6, 118.5, 117.1, 116.4, 53.0, 36.2. **HRMS(ESI-TOF)**: [M+H]⁺ m/z calcd for C₁₆H₁₇N₂O⁺: 253.1341, found: 253.1340.

2-benzyl-N-(quinolin-8-yl)but-3-enamide(1f):

¹**H NMR** (400 MHz, CDCl₃) δ 9.96 (s, 1H), 8.82 (dd, J = 7.6, 1.2 Hz, 1H), 8.75 (dd, J = 4.0, 1.6 Hz, 1H), 8.11 – 8.05 (m, 1H), 7.54 – 7.50 (m, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.41 – 7.36 (m, 1H), 7.31 – 7.25 (m, 4H), 7.18 (m, 1H), 6.13 – 6.04 (m, 1H), 5.32 – 5.24 (m, 2H), 3.53 (dd, J = 15.2, 7.6 Hz, 1H), 3.42 (dd, J = 13.6, 6.8 Hz, 1H), 3.01 (dd, J = 13.6, 7.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 147.7, 138.7, 138.0, 135.8, 135.8, 133.9, 128.8, 127.9, 127.4, 126.9, 125.8, 121.1, 121.1, 118.2, 115.96, 54.7, 37.7. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₂₀H₁₈N₂ONa⁺: 325.1317, found: 325.1313.

2-phenethyl-N-(quinolin-8-yl)but-3-enamide(1g):

¹**H NMR** (400 MHz, CDCl₃) δ 10.07 (s, 1H), 8.90 – 8.83 (m, 2H), 8.18 (dd, J = 8.4, 1.6 Hz, 1H), 7.65 – 7.56 (m, 2H), 7.48 (dd, J = 8.4, 4.0 Hz, 1H), 7.40 – 7.34 (m, 2H), 7.33 – 7.24 (m, 3H), 6.19 – 6.10 (m, 1H), 5.44 (t, J = 13.6 Hz, 2H), 3.29 (dd, J = 15.2, 7.6 Hz, 1H), 2.84 – 2.76 (m, 2H), 2.52 – 2.42 (m, 1H), 2.11 (dd, J = 14.8, 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 147.8, 141.1, 138.1, 136.3, 135.8, 134.0, 128.1, 127.9, 127.5, 126.9, 125.5, 121.2, 118.1, 116.0, 52.1, 32.9, 32.8. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₁H₂₁N₂O⁺: 317.1654, found: 317.1670.

2-(cyclopropylmethyl)-N-(quinolin-8-yl)but-3-enamide(1h):

¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 8.89 – 8.72 (m, 2H), 8.05 (dd, J = 8.4, 1.6 Hz, 1H), 7.50 –

7.42 (m, 2H), 7.36 (dd, J = 8.4, 4.0 Hz, 1H), 6.12 – 6.03 (m, 1H), 5.37 – 5.25 (m, 2H), 3.30 (dd, J = 15.6, 7.6 Hz, 1H), 1.82 (dt, J = 14.4, 7.2 Hz, 1H), 1.66 (dt, J = 14.0, 6.8 Hz, 1H), 0.85 – 0.72 (m, 1H), 0.51 – 0.34 (m, 2H), 0.17 – 0.06 (m, 2H). ¹³**C NMR (101 MHz, CDCl₃)** δ 172.0, 148.2, 138.5, 137.1, 136.2, 134.5, 127.9, 127.3, 121.5, 121.5, 117.7, 116.3, 53.9, 37.3, 9.1, 4.8, 4.7. **HRMS(ESI-TOF)**: [M+Na]⁺ m/z calcd for C₁₇H₁₈N₂ONa⁺: 289.1317, found: 289.1323.

2-(cyclobutylmethyl)-N-(quinolin-8-yl)but-3-enamide(1i):

¹**H NMR** (400 MHz, CDCl₃) δ 9.93 (s, 1H), 8.82 – 8.69 (m, 2H), 8.04 (dd, J = 8.8, 3.6 Hz, 1H), 7.51 – 7.42 (m, 2H), 7.34 (dd, J = 8.0, 4.0 Hz, 1H), 6.05 – 5.92 (m, 1H), 5.46 – 5.10 (m, 2H), 3.10 (m, 1H), 2.38 (dt, J = 16.0, 8.0Hz, 1H), 2.11 – 1.96 (m, 3H), 1.85 – 1.59 (m, 5H). ¹³**C NMR** (101 MHz, CDCl₃) δ 172.0, 148.2, 138.5, 137.1, 136.2, 134.5, 127.8, 127.3, 121.5, 121.5, 117.6, 116.3, 51.7, 39.2, 33.9, 28.5, 28.2, 18.5. **HRMS(ESI-TOF)**: [M+Na]⁺ m/z calcd for C₁₈H₂₀N₂ONa⁺: 303.1473, found: 303.1479.

ethyl 3-(quinolin-8-ylcarbamoyl)pent-4-enoate(1j):

¹**H NMR** (400 **MHz**, **CDCl**₃) δ 10.09 (s, 1H), 8.77 (dd, J = 4.0, 1.6 Hz, 1H), 8.73 (dd, J = 7.2, 2.0 Hz, 1H), 8.11 – 8.07 (m, 1H), 7.50 – 7.43 (m, 2H), 7.39 (dd, J = 8.4, 4.0 Hz, 1H), 6.08 – 5.99 (m, 1H), 5.48 – 5.44 (m, 1.0 Hz, 1H), 5.34 (dd, J = 10.0, 0.4 Hz, 1H), 4.13 (q, J = 7.2 Hz, 2H), 3.74 (dd, J = 8.4, 7.2 Hz, 1H), 3.06 (dd, J = 16.4, 7.6 Hz, 1H), 2.64 (dd, J = 16.4, 6.4 Hz, 1H), 1.22 (t, J = 7.2 Hz, 3H). ¹³**C NMR (101 MHz, CDCl**₃) δ 171.2, 169.9, 147.8, 138.0, 135.7, 134.8, 133.9, 127.4, 126.8, 121.2, 121.1, 118.9, 115.9, 60.2, 48.3, 35.6, 13.7.

2-(methoxymethyl)-N-(quinolin-8-yl)but-3-enamide(1k):

¹**H NMR (400 MHz, CDCl₃)** δ 10.30 (s, 1H), 8.76 (dd, J = 7.6, 1.6 Hz, 1H), 8.69 (dd, J = 4.0, 1.6 Hz, 1H), 7.98 (dd, J = 8.4, 1.2 Hz, 1H), 7.44 – 7.40 (m, 1H), 7.36 (dd, J = 8.0, 1.2 Hz, 1H), 7.29 (dd, J = 8.0, 4.0 Hz, 1H), 6.09 – 6.01 (m, 1H), 5.39 – 5.29 (m, 2H), 3.80 (dd, J = 9.2, 7.2 Hz, 1H), 3.66 (dd, J = 9.2, 5.2 Hz, 1H), 3.48 – 3.42 (m, 1H), 3.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 148.1, 138.5, 136.1, 134.5, 133.6, 127.8, 127.2, 121.6, 121.5, 119.3, 116.5, 73.1, 59.1, 53.1.

2,2-dimethyl-N-(quinolin-8-yl)but-3-enamide(11):

¹**H NMR (400 MHz, CDCl₃)** δ 10.24 (s, 1H), 8.84 – 8.72 (m, 2H), 8.05 (dd, J = 8.4, 1.6 Hz, 1H), 7.50 – 7.38 (m, 2H), 7.35 (dd, J = 8.4, 4.0 Hz, 1H), 6.23 (dd, J = 17.6, 10.4 Hz, 1H), 5.48 – 5.33 (m, 2H), 1.48 (s, 6H). ¹³**C NMR (101 MHz, CDCl₃)** δ 174.7, 148.3, 142.9, 138.8, 136.2, 134.7, 127.9, 127.3, 121.5, 121.4, 116.2, 115.0, 46.8, 24.9. **HRMS(ESI-TOF)**: [M+Na]⁺ m/z calcd for C₁₅H₁₆N₂ONa⁺: 263.1160, found: 263.1168.

N-(quinolin-8-yl)pent-3-enamide(1m):

¹H NMR (400 MHz, CDCl₃) δ 9.95 (s, 1H), 8.76 (dd, J = 7.6, 1.2 Hz, 1H), 8.70 (dd, J = 4.0, 1.6 Hz, 1H), 8.00 (dd, J = 8.4, 1.6 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.37 (dd, J = 8.4, 1.2 Hz, 1H), 7.31 (dd, J = 8.4, 4.0 Hz, 1H), 5.78 – 5.69 (m, 2H), 3.22 (dd, J = 4.0, 2.0 Hz, 2H), 1.78 (d, 3H). ¹³C NMR (101

MHz, **CDCl**₃) δ 169.4, 147.6, 137.9, 135.6, 133.9, 130.6, 127.3, 126.7, 123.0, 120.9, 120.9, 115.7, 41.5, 17.6. **HRMS(ESI-TOF)**: [M+Na]⁺ m/z calcd for C₁₄H₁₄N₂ONa⁺: 249.1004, found: 249.0997.

N-(quinolin-8-yl)hex-3-enamide(1n):

¹**H NMR (400 MHz, CDCl₃)** δ 10.06 (s, 1H), 8.79 – 8.72 (m, 2H), 8.09 (dd, J = 8.4, 1.6 Hz, 1H), 7.52 – 7.46 (m, 1H), 7.44 (dd, J = 8.4, 1.6 Hz, 1H), 7.39 (dd, J = 8.4, 4.0 Hz, 1H), 5.84 (dd, J = 14.0, 7.6 Hz, 1H), 5.76 – 5.69 (m, 1H), 3.25 (dd, J = 7.2, 0.8 Hz, 2H), 2.22 – 2.13 (m, 2H), 1.11 (t, J = 7.6 Hz, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 170.0, 148.1, 138.7, 138.5, 136.2, 134.5, 127.9, 127.3, 121.5, 121.5, 121.8, 116.3, 42.1, 25.8, 13.6. **HRMS(ESI-TOF)**: [M+Na]⁺ m/z calcd for C₁₅H₁₆N₂ONa⁺: 263.1160, found: 263.1151.

5-phenyl-N-(quinolin-8-yl)pent-3-enamide(1o):

¹**H NMR** (400 MHz, CDCl₃) δ 10.06 (s, 1H), 8.83 (dd, J = 7.6, 1.6 Hz, 1H), 8.76 (dd, J = 4.0, 1.6 Hz, 1H), 8.10 (dd, J = 8.4, 1.6 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.47 (dd, J = 8.4, 1.6 Hz, 1H), 7.43 – 7.39 (m, 1H), 7.33 – 7.31 (m, 4H), 7.27 – 7.21 (m, 1H), 6.08 – 5.93 (m, 1H), 5.88 – 5.74 (m, 1H), 3.52 (d, J = 6.8 Hz, 2H), 3.32 (dd, J = 7.2, 0.8 Hz, 2H). ¹³C **NMR** (101 MHz, CDCl₃) δ 169.7, 148.2, 139.9, 138.5, 136.3, 135.4, 134.5, 128.8, 128.5, 128.5, 127.9, 127.4, 126.2, 123.8, 121.6, 116.4, 42.1, 39.1. **HRMS(ESI-TOF)**: [M+Na]⁺ m/z calcd for C₂₀H₁₈N₂ONa⁺: 325.1317, found: 325.1318.

N-(quinolin-8-yl)non-3-enamide(1p):

¹**H NMR (400 MHz, CDCl₃)** δ 10.03 (s, 1H), 8.76 (dd, J = 7.2, 1.6 Hz, 1H), 8.72 (dd, J = 4.0, 1.6 Hz, 1H), 8.06 (dd, J = 8.4, 1.6 Hz, 1H), 7.49 – 7.44 (m, 1H), 7.42 (dd, J = 8.4, 1.6 Hz, 1H), 7.37 (dd, J = 8.4, 4.0 Hz, 1H), 5.85 – 5.66 (m, 2H), 3.29 – 3.16 (m, 2H), 2.12 (dd, J = 14.0, 6.8 Hz, 2H), 1.48 (dd, J = 10.0, 5.2 Hz, 2H), 1.36 – 1.27 (m, 4H), 0.90 – 0.85 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 147.6, 138.0, 136.7, 135.7, 133.9, 127.4, 126.8, 121.7, 121.0, 120.9, 115.8, 41.7, 32.2, 30.9, 28.5, 22.1, 13.6. **HRMS(ESI-TOF)**: [M+Na]⁺ m/z calcd for C₁₈H₂₂N₂ONa⁺: 305.1630, found: 305.1624.

5. Procedure for other directing group protected vinyl acetic acid ³

N-phenylbut-3-enamide: Vinyl acetic acid (430 mg, 5 mmol) was charged into a 50 mL RB flask containing 20 mL DCM at 0 °C. Aniline (418 mg, 4.5 mmol), EDCl (958 mg, 5 mmol), HOBt (765 mg, 5 mmol), and DMAP (56 mg, 0.45 mmol) were added sequentially, and the reaction was stirred at 0 °C for 16 h. The solution was diluted with DCM (100 mL), washed with sat. NaHCO₃ (100 mL, ×2) and brine (100 mL, ×1), and purified by column chromatography (EA: PE=1: 5) to afford 594 mg (82%) yield of product as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.55 (d, *J* = 7.6 Hz, 2H), 7.32 – 7.28 (m, 2H), 7.12 (t, *J* = 7.6 Hz, 1H), 6.09 – 5.95 (m, 1H), 5.32 – 5.22 (m, 2H), 3.20 – 3.14 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.5, 137.9, 131.2, 128.9, 124.4, 120.2, 119.9, 42.5. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₀H₁₂NO⁺: 162.0910, found: 162.0930.

N-(naphthalen-1-yl)but-3-enamide: Vinyl acetic acid (430 mg, 5 mmol) was charged into a 50 mL RB flask containing 20 mL DCM at 0 °C. Naphthalen-1-amine (643 mg, 4.5 mmol), EDCl (958 mg, 5 mmol), HOBt (765 mg, 5 mmol), and DMAP (56 mg, 0.45 mmol) were added sequentially, and the reaction was stirred at 0 °C for 16 h. The solution was diluted with DCM (100 mL), washed with sat. NaHCO₃ (100 mL, \times 2) and brine (100 mL, \times 1), and purified by column chromatography (EA: PE=1: 5)

to afford 807 mg (85%) yield of product as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.6 Hz, 1H), 7.89 – 7.81 (m, 2H), 7.78 – 7.74 (m, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.52 – 7.43 (m, 3H), 6.25 – 6.08 (m, 1H), 5.44 (d, J = 12.0 Hz, 2H), 3.31 (d, J = 7.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 134.1, 132.0, 131.4, 128.8, 127.1, 126.4, 126.0, 125.8, 125.8, 121.1, 120.7, 120.4, 42.6. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₁₄H₁₃NONa⁺: 234.0905, found: 234.0895.

N-(pyridin-2-ylmethyl)but-3-enamide: Vinyl acetic acid (430mg, 5 mmol) was charged into a 50 mL RB flask containing 20 mL DCM at 0 °C. Oxalyl chloride (401mg, 4.5 mmol) was added dropwise to the solution, followed by 15 drops of N,N-dimethylformamide. The reaction was allowed to warm to room temperature and was stirred for 3 h. The reaction was then cooled to 0 °C, and 2-(Aminomethyl)pyridine (486 mg, 4.5 mmol) was added. The reaction was allowed to warm to room temperature and was stirred for 3 h. The solution was diluted with DCM (100 mL), washed with sat. NaHCO₃ (100 mL, ×2) and brine (100 mL, ×1), and purified by column chromatography (EA: PE=1: 5) to afford 633 mg (80%) yield of product as a yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, *J* = 4.8 Hz, 1H), 7.58 – 7.52 (m, 1H), 7.25 (s, 1H), 7.16 (d, *J* = 7.6 Hz, 1H), 7.08 (dd, *J* = 7.2, 5.2 Hz, 1H), 5.92 – 5.82 (m, 1H), 5.15 – 5.05 (m, 2H), 4.43 (d, *J* = 5.2 Hz, 2H), 2.98 (d, *J* = 7.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 156.6, 148.8, 136.9, 131.3, 122.3, 122.0, 119.3, 44.5, 41.4. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₁₀H₁₂N₂ONa⁺: 199.0857, found: 199.0847.

N-(2-(methylthio)phenyl)but-3-enamide: Vinyl acetic acid (430mg, 5 mmol) was charged into a 50 mL RB flask containing 20 mL DCM at 0 °C. Oxalyl chloride (401mg, 4.5 mmol) was added dropwise to the solution, followed by 15 drops of N,N-dimethylformamide. The reaction was allowed to warm to room temperature and was stirred for 3 h. The reaction was then cooled to 0 °C, and 2-(methylthio)aniline (625 mg, 4.5 mmol) was added. The reaction was allowed to warm to room temperature and was stirred for 3 h. The solution was diluted with DCM (100 mL), washed with sat. NaHCO₃ (100 mL, ×2) and brine (100 mL, ×1), and purified by column chromatography (EA: PE=1: 5) to afford 670 mg (72%) yield of product as a colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 8.26 (d, *J* = 8.0 Hz, 1H), 7.39 (d, *J* = 7.6 Hz, 1H), 7.23 – 7.20 (m, 1H), 7.02 – 6.98 (m, 1H), 6.00 (dt, *J* = 14.8, 8.4 Hz, 1H), 5.36 – 5.25 (m, 2H), 3.18 (d, *J* = 7.2 Hz, 2H), 2.28 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 138.1, 132.7, 130.8, 128.7, 125.7, 124.5, 120.7, 120.6, 43.0, 18.6. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₁₁H₁₃NOSNa⁺: 230.0616, found: 230.0596.

N-tosylbut-3-enamide: Vinyl acetic acid (430mg, 5 mmol) was charged into a 50 mL RB flask containing 20 mL DCM at 0 °C. Oxalyl chloride (401mg, 4.5 mmol) was added dropwise to the solution, followed by 15 drops of N,N-dimethylformamide. The reaction was allowed to warm to room temperature and was stirred for 3 h. The reaction was then cooled to 0 °C, and 4-methylbenzenesulfonamide (769 mg, 4.5 mmol) was added. The reaction was allowed to warm to room temperature and was stirred for 3 h. The solution was diluted with DCM (100 mL), washed with sat. NaHCO₃ (100 mL, ×2) and brine (100 mL, ×1), and purified by column chromatography (EA: PE=1: 5) to afford 882 mg (82%) yield of product as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.10 (s, 1H), 7.94 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 5.85 – 5.75 (m, 1H), 5.23 – 5.12 (m, 2H), 3.05 (dd, *J* = 6.8, 1.2 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 145.3, 135.4, 129.7, 128.8, 128.4, 120.8, 41.1, 21.7. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₁₁H₁₃NO₃SNa⁺: 262.0514, found: 262.0527.

N-(perfluorophenyl)but-3-enamide: Vinyl acetic acid (430mg, 5 mmol) was charged into a 50 mL RB flask containing 20 mL DCM at 0 °C. Oxalyl chloride (401mg, 4.5 mmol) was added dropwise to the solution, followed by 15 drops of N,N-dimethylformamide. The reaction was allowed to warm to room temperature and was stirred for 3 h. The reaction was then cooled to 0 °C, and 2,3,4,5,6-pentafluoroaniline (823 mg, 4.5 mmol) was added. The reaction was allowed to warm to room temperature and was stirred for 3 h. The solution was diluted with DCM (100 mL), washed with sat. NaHCO₃ (100 mL, ×2) and brine (100 mL, ×1), and purified by column chromatography (EA: PE=1: 5) to afford 700 mg (62%) yield of product as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 1H), 6.14 – 5.82 (m, 1H), 5.43 – 5.12 (m, 2H), 3.21 (d, *J* = 7.2 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ - 144.4 – -145.7 (m, 2F), -156.4 (t, *J* = 21.2 Hz, 1F), -162.5 (t, *J* = 19.2 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 144.2 (dt, *J* = 13.4, 8.9 Hz), 141.74 (dt, *J* = 8.1, 6.4 Hz), 141.6 – 141.2 (m), 139.5 – 138.4 (m), 136.7 – 136.2 (m), 130.1, 120.5, 111.7 (t, *J* = 14.9 Hz), 40.8.

6. General procedures for β-lactam.

Synthesis of 4-phenethyl-1-(quinolin-8-yl)azetidin-2-one derivatives

A mixture of **1** (0.2 mmol), DTBP (110 μ L, 0.6 mmol), Cu(CH₃CN)₄PF₆ (7.4 mg, 0.02 mmol), and toluene(1 mL) in a 15 mL glass vial sealed under air atmosphere was heated at 130 °C for 8 hours. The reaction mixture cooled to room temperature and concentrated in vacuo. The resulting residue was purified by column chromatography (PE / EA = 20 / 1–5 / 1) on silica gel to give the product **3**.

4-phenethyl-1-(quinolin-8-yl)azetidin-2-one(3a):

yellow oil, 51 mg (85% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.78 (dd, J = 4.0, 1.6 Hz, 1H), 8.27 (dd, J = 7.6, 1.2 Hz, 1H), 8.11 (dd, J = 8.4, 1.6 Hz, 1H), 7.57 (dd, J = 8.0, 1.2 Hz, 1H), 7.54 – 7.47 (m, 1H), 7.40 – 7.37 (m, 1H), 7.29 – 7.21 (m, 2H), 7.20 – 7.15 (m, 1H), 7.14 – 7.10 (m, 2H), 5.20 (ddd, J = 12.0, 5.6, 2.8 Hz, 1H), 3.32 (dd, J = 15.2, 5.2 Hz, 1H), 2.82 (dd, J = 15.2, 2.4 Hz, 1H), 2.74 – 2.62 (m, 2H), 2.37 (tdd, J = 9.2, 7.2, 3.2 Hz, 1H), 1.84 (dtd, J = 13.2, 8.6, 6.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 148.9, 141.1, 140.6, 136.0, 133.6, 129.0, 128.4, 128.3, 126.7, 126.0, 124.0, 121.6, 121.3, 56.1, 43.1, 35.2, 31.6. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₀H₁₉N₂O⁺: 303.1497, found: 303.1512.

3-methyl-4-phenethyl-1-(quinolin-8-yl)azetidin-2-one(3b):

yellow oil, 50 mg (80% yield); ¹**H NMR (400 MHz, CDCl₃)** δ 8.77 (dd, J = 4.0, 1.6 Hz, 1H), 8.27 (dd, J = 7.2, 1.2 Hz, 1H), 8.11 (dd, J = 8.4, 1.6 Hz, 1H), 7.56 (dd, J = 8.0, 1.2 Hz, 1H), 7.53 – 7.47 (m, 1H), 7.40 – 7.37 (m, 1H), 7.28 – 7.25 (m, 2H), 7.22 – 7.12 (m, 3H), 4.84 – 4.80 (m, 1H), 3.03 (qd, J = 7.2, 2.0 Hz, 1H), 2.72 (m, 2H), 2.44 – 2.32 (m, 1H), 1.95 – 1.80 (m, 1H), 1.44 (d, J = 7.2 Hz, 3H). ¹³C

NMR (101 MHz, CDCl₃) δ 169.5, 148.4, 140.7, 140.2, 135.5, 133.1, 128.5, 127.9, 127.9, 126.2, 125.6, 123.3, 121.2, 120.8, 63.9, 50.7, 34.4, 31.3, 13.3. **HRMS(ESI-TOF)**: [M+H]⁺ m/z calcd for C₂₁H₂₁N₂O⁺: 317.1654, found: 317.1645.

7. NOE of 3b

3-ethyl-4-phenethyl-1-(quinolin-8-yl)azetidin-2-one(3c):

yellow oil, 51 mg (77% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.79 (dd, J = 4.0, 1.6 Hz, 1H), 8.30 (dd, J = 7.2, 0.8 Hz, 1H), 8.11 (dd, J = 8.4, 1.6 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.52 – 7.48 (m, 1H), 7.40 – 7.37 (m, 1H), 7.27 – 7.23 (m, 2H), 7.20 – 7.11 (m, 3H), 4.95 – 4.91 (m, 1H), 3.03 – 2.99 (m, 1H), 2.71 (dd, J = 8.4, 6.0 Hz, 2H), 2.40 – 2.28 (m, 1H), 2.06 – 1.93 (m, 1H), 1.91 – 1.80 (m, 2H), 1.15 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.5, 148.8, 141.3, 140.6, 135.9, 133.6, 129.0, 128.4, 128.2, 126.7, 125.9, 123.8, 121.6, 121.3, 62.5, 58.0, 35.0, 31.8, 22.2, 11.9. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₂₂H₂₂N₂ONa⁺: 353.1630, found: 353.1632.

3-isopropyl-4-phenethyl-1-(quinolin-8-yl)azetidin-2-one(3d):

yellow oil, 48 mg (70% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.82 (dd, J = 4.0, 1.6 Hz, 1H), 8.32 (dd, J = 7.2, 1.2 Hz, 1H), 8.11 (dd, J = 8.4, 1.6 Hz, 1H), 7.56 (dd, J = 8.0, 1.2 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.40 – 7.37 (m, 1H), 7.26 – 7.22 (m, 2H), 7.18 – 7.10 (m, 3H), 5.05 – 5.00 (m, 1H), 2.91 (dd, J = 7.6, 2.0 Hz, 1H), 2.72 – 2.68 (m, 2H), 2.38 – 2.28 (m, 1H), 2.25 – 2.19 (m, 1H), 1.95 – 1.83 (m, 1H), 1.22 (d, J = 6.8 Hz, 3H), 1.15 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 148.9, 141.3, 140.8, 135.9, 133.6, 129.0, 128.3, 128.2, 126.7, 125.9, 123.8, 121.6, 121.3, 63.3, 60.7, 35.1, 31.8, 28.5, 20.9, 20.4. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₃H₂₅N₂O⁺: 345.1967, found: 345.1977.

3-allyl-4-phenethyl-1-(quinolin-8-yl)azetidin-2-one(3e):

yellow oil, 51 mg (74% yield); ¹**H NMR (400 MHz, CDCl₃)** δ 8.78 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.30 (dd, *J* = 7.6, 1.2 Hz, 1H), 8.11 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.57 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.52 – 7.48 (m, 1H), 7.40 – 7.37 (m, 1H), 7.30 – 7.21 (m, 2H), 7.18 (d, *J* = 7.2 Hz, 1H), 7.15 – 7.10 (m, 2H), 6.01 – 5.91 (m, 1H), 5.24 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.15 (d, *J* = 10.0 Hz, 1H), 4.95 (dt, *J* = 9.2, 2.8 Hz, 1H), 3.27 – 2.87 (m, 1H), 2.88 – 2.64 (m, 3H), 2.63 – 2.49 (m, 1H), 2.40 – 2.32 (m, 1H), 1.93 – 1.84 (m, 1H). ¹³C **NMR (101 MHz, CDCl₃)** δ 168.7, 148.9, 141.3, 140.6, 135.9, 135.0, 133.5, 129.0, 128.4, 128.3, 126.7,

126.0, 123.9, 121.7, 121.3, 117.4, 62.4, 56.0, 34.9, 33.3, 31.8. **HRMS(ESI-TOF)**: [M+H]⁺ m/z calcd for C₂₃H₂₃N₂O⁺: 343.1810, found: 343.1802.

3-benzyl-4-phenethyl-1-(quinolin-8-yl)azetidin-2-one(3f):

yellow oil, 62 mg (79% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.68 (dd, J = 4.0, 1.6 Hz, 1H), 8.20 (dd, J = 7.6, 1.6 Hz, 1H), 8.00 (dd, J = 8.4, 1.6 Hz, 1H), 7.47 (dd, J = 8.0, 1.2 Hz, 1H), 7.43 – 7.37 (m, 1H), 7.33 – 7.22 (m, 5H), 7.20 – 7.13 (m, 1H), 7.11 – 7.06 (m, 2H), 7.06 – 7.00 (m, 1H), 6.85 – 6.74 (m, 2H), 4.91 – 4.87 (m, 1H), 3.32 – 3.13 (m, 2H), 2.94 (dd, J = 13.2, 9.2 Hz, 1H), 2.24 – 2.17 (m, 1H), 2.17 – 2.03 (m, 2H), 1.69 – 1.63 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 148.9, 141.3, 140.7, 139.2, 136.0, 133.5, 129.0, 128.7, 128.3, 128.1, 126.7, 126.6, 125.8, 124.1, 121.8, 121.3, 62.9, 58.3, 35.3, 34.8, 31.2. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₇H₂₅N₂O⁺: 393.1967, found: 393.1967.

3,4-diphenethyl-1-(quinolin-8-yl)azetidin-2-one(3g):

yellow oil, 61 mg (75% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.76 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.24 (dd, *J* = 7.6, 1.6 Hz, 1H), 8.07 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.53 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.50 – 7.42 (m, 1H), 7.37 – 7.34 (m, 1H), 7.26 (d, *J* = 7.2 Hz, 2H), 7.25 – 7.21 (m, 2H), 7.21 (d, *J* = 4.2 Hz, 2H), 7.20 – 7.16 (m, 1H), 7.13 (d, *J* = 7.2 Hz, 1H), 7.08 – 7.04 (m, 2H), 4.99 – 4.89 (m, 1H), 3.03 (td, *J* = 7.6, 2.0 Hz, 1H), 2.94 – 2.75 (m, 2H), 2.65 – 2.61 (m, 2H), 2.35 – 2.18 (m, 2H), 2.15 – 2.03 (m, 1H), 1.89 – 1.75 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 148.9, 141.4, 141.1, 140.7, 136.0, 133.5, 129.0, 128.6, 128.5, 128.5, 128.4, 128.3, 126.7, 126.0, 123.9, 121.7, 121.3, 62.9, 55.8, 34.8, 33.6, 31.7, 30.9. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₈H₂₇N₂O⁺: 407.2123, found: 407.2133.

3-(cyclopropylmethyl)-4-phenethyl-1-(quinolin-8-yl)azetidin-2-one(3h):

yellow oil, 52 mg (73% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.81 (dd, J = 4.0, 1.6 Hz, 1H), 8.30 (dd, J = 7.2, 1.2 Hz, 1H), 8.11 (dd, J = 8.4, 1.6 Hz, 1H), 7.56 (dd, J = 8.0, 1.4 Hz, 1H), 7.53 – 7.47 (m, 1H), 7.39 (m, 1H), 7.27 – 7.24 (m, 2H), 7.20 – 7.11 (m, 3H), 5.05 – 4.96 (m, 1H), 3.15 (ddd, J = 8.4, 6.0, 2.0 Hz, 1H), 2.80 – 2.71 (m, 2H), 2.45 – 2.33 (m, 1H), 1.89 (ddd, J = 13.2, 6.4, 3.2 Hz, 1H), 1.82 – 1.77 (m, 2H), 0.99 – 0.89 (m, 1H), 0.54 (dd, J = 8.0, 1.2 Hz, 2H), 0.24 – 0.16 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.5, 148.9, 141.3, 140.7, 135.9, 133.6, 129.0, 128.4, 128.2, 126.7, 125.9, 123.8, 121.7, 121.3, 62.8, 56.9, 35.1, 34.0, 31.8, 9.3, 5.1, 4.5. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₂₄H₂₄N₂ONa⁺: 379.1786, found: 379.1769.

3-(cyclobutylmethyl)-4-phenethyl-1-(quinolin-8-yl)azetidin-2-one(3i):

yellow oil, 53 mg (72% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.80 (dd, J = 4.0, 1.6 Hz, 1H), 8.28 (dd, J = 7.2, 1.2 Hz, 1H), 8.11 (dd, J = 8.4, 1.6 Hz, 1H), 7.56 (dd, J = 8.0, 1.2 Hz, 1H), 7.53 – 7.47 (m, 1H), 7.40 – 7.37 (m, 1H), 7.27 – 7.23 (m, 2H), 7.19 – 7.11 (m, 3H), 4.97 – 4.88 (m, 1H), 2.97 (ddd, J = 8.4, 6.0, 2.0 Hz, 1H), 2.70 – 2.66 (m, 2H), 2.57 (dt, J = 15.6, 7.6 Hz, 1H), 2.36 – 2.30 (m, 1H), 2.18 – 2.12 (m, 2H), 2.05 (ddd, J = 14.0, 8.4, 6.0 Hz, 1H), 1.96 – 1.90 (m, 2H), 1.89 – 1.83 (m, 2H), 1.76 – 1.68 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 148.9, 141.3, 140.7, 135.9, 133.6, 129.0, 128.4, 128.2, 126.7, 125.9, 123.8, 121.6, 121.3, 62.9, 54.7, 36.3, 35.1, 34.1, 31.6, 28.5, 28.4, 18.4. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₅H₂₇N₂O⁺: 371.2123, found: 371.2125.

ethyl 2-(2-oxo-4-phenethyl-1-(quinolin-8-yl)azetidin-3-yl)acetate(3j):

yellow oil, 50 mg (65% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.76 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.24 (dd, *J* = 7.6, 1.2 Hz, 1H), 8.11 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.58 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.55 – 7.46 (m, 1H), 7.41 – 7.37 (m, 1H), 7.25 – 7.19 (m, 2H), 7.17 – 7.12 (m, 1H), 7.11 – 7.06 (m, 2H), 5.07 – 4.96 (m, 1H), 4.22 (q, *J* = 7.2 Hz, 2H), 3.47 (ddd, *J* = 10.0, 4.4, 2.4 Hz, 1H), 2.99 (dd, *J* = 16.8, 4.4 Hz, 1H), 2.83 (dd, *J* = 16.8, 10.0 Hz, 1H), 2.77 – 2.67 (m, 2H), 2.39 – 2.31 (m, 1H), 2.04 – 1.92 (m, 1H), 1.29 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 167.6, 149.0, 141.4, 140.8, 136.0, 133.2, 129.0, 128.3, 128.3, 126.7, 125.9, 124.3, 122.0, 121.4, 63.4, 60.9, 51.9, 34.9, 33.7, 31.2, 14.2. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₂₄H₂₄N₂O₃Na⁺: 411.1685, found: 411.1675.

3-(methoxymethyl)-4-phenethyl-1-(quinolin-8-yl)azetidin-2-one(3k):

yellow oil, 48 mg (70% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.73 (dd, J = 4.0, 1.6 Hz, 1H), 8.28 (dd, J = 7.6, 1.2 Hz, 1H), 8.10 (dd, J = 8.4, 1.6 Hz, 1H), 7.56 (dd, J = 8.0, 1.2 Hz, 1H), 7.52 – 7.46 (m, 1H), 7.37 (dd, J = 8.4, 4.0 Hz, 1H), 7.28 – 7.23 (m, 2H), 7.19 – 7.13 (m, 3H), 5.09 (dt, J = 9.6, 2.8 Hz, 1H), 3.86 – 3.77 (m, 2H), 3.44 (s, 3H), 3.31 (ddd, J = 7.2, 4.8, 2.4 Hz, 1H), 2.76 – 2.70 (m, 2H), 2.44 – 2.33 (m, 1H), 1.93 – 1.82 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 148.9, 141.4, 140.5, 135.9, 133.5, 128.9, 128.4, 128.3, 126.6, 125.9, 123.9, 121.5, 121.3, 70.1, 61.3, 59.2, 57.1, 34.9, 31.5. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₂₂H₂₂N₂O₂Na⁺: 369.1579, found: 369.1570.

3,3-dimethyl-4-phenethyl-1-(quinolin-8-yl)azetidin-2-one(3l):

yellow oil, 36 mg (55% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.75 (dd, J = 4.0, 1.6 Hz, 1H), 8.17 (dd, J = 7.6, 1.2 Hz, 1H), 8.09 (dd, J = 8.4, 1.6 Hz, 1H), 7.56 (dd, J = 8.0, 1.2 Hz, 1H), 7.54 – 7.44 (m, 1H), 7.37 (dd, J = 8.4, 4.0 Hz, 1H), 7.27 – 7.23 (m, 2H), 7.22 – 7.16 (m, 1H), 7.13 – 7.06 (m, 2H), 4.91 (dd, J = 10.0, 3.6 Hz, 1H), 2.74 – 2.55 (m, 2H), 2.33 – 2.14 (m, 1H), 1.98 – 1.80 (m, 1H), 1.52 (s, 3H), 1.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 148.5, 141.0, 140.6, 135.5, 132.8, 128.6, 127.9, 127.9, 126.2, 125.5, 123.7, 122.2, 120.8, 67.3, 52.6, 32.3, 31.2, 23.0, 16.6. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₂₂H₂₂N₂ONa⁺: 353.1630, found: 353.1643.

4-(1-phenylpropan-2-yl)-1-(quinolin-8-yl)azetidin-2-one(3m):

yellow oil, 25 mg (40% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.86 (dd, J = 4.0, 1.6 Hz, 1H), 8.17 – 8.11 (m, 2H), 7.64 (dd, J = 8.0, 1.2 Hz, 1H), 7.53 – 7.51 (m, 1H), 7.42 (dd, J = 8.4, 4.0 Hz, 1H), 7.10 – 7.07 (m, 3H), 6.81 – 6.75 (m, 2H), 5.24 (td, J = 5.2, 2.8 Hz, 1H), 3.25 (dd, J = 15.2, 5.6 Hz, 1H), 2.96 (dd, J = 15.2, 2.8 Hz, 1H), 2.80 (dd, J = 12.8, 3.2 Hz, 1H), 2.35 – 2.27 (m, 1H), 2.22 (dd, J = 12.8, 10.4 Hz, 1H), 0.82 (d, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 149.2, 141.5, 140.3, 136.1, 133.9, 129.0, 128.8, 128.1, 126.7, 125.8, 124.7, 122.8, 121.4, 60.4, 39.4, 37.5, 36.8, 15.7. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₂₁H₂₀N₂ONa⁺: 339.1473, found: 339.1468.

4-(1-phenylbutan-2-yl)-1-(quinolin-8-yl)azetidin-2-one(3n):

yellow oil, 17 mg (25% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.84 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.17 – 8.12 (m, 2H), 7.62 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.50 (dd, *J* = 10.4, 5.6 Hz, 1H), 7.42 (dd, *J* = 8.4, 4.0 Hz, 1H), 7.05 – 7.00 (m, 3H), 6.71 – 6.67 (m, 2H), 5.45 (td, *J* = 5.6, 3.2 Hz, 1H), 3.21 (dd, *J* = 15.2, 5.6 Hz, 1H), 3.00 (dd, *J* = 15.2, 2.8 Hz, 1H), 2.76 (dd, *J* = 13.6, 4.0 Hz, 1H), 2.35 (dd, *J* = 13.6, 9.6 Hz, 1H), 2.22 (ddt, *J* = 12.4, 8.4, 4.0 Hz, 1H), 1.42 (dtd, *J* = 12.0, 7.6, 4.8 Hz, 1H), 1.24 – 1.18 (m, 1H), 0.93 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 148.5, 140.6, 140.1, 135.6, 133.3, 128.5, 128.3,

127.6, 126.3, 125.2, 123.8, 121.9, 120.9, 57.7, 41.9, 38.2, 33.6, 23.0, 11.0. **HRMS(ESI-TOF)**: [M+H]⁺ m/z calcd for C₂₂H₂₃N₂O⁺: 331.1810, found: 331.1813.

yellow oil, 15 mg (20% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.54 (dd, J = 4.0, 1.6 Hz, 1H), 8.16 – 8.12 (m, 2H), 7.57 (dd, J = 8.2, 1.2 Hz, 1H), 7.49 – 7.44 (m, 1H), 7.37 (dd, J = 8.4, 4.0 Hz, 1H), 7.33 – 7.28 (m, 2H), 7.22 (dd, J = 6.0, 3.6 Hz, 1H), 7.10 (d, J = 6.4 Hz, 2H), 7.06 – 7.00 (m, 3H), 6.71 (dd, J = 7.2, 2.4 Hz, 2H), 5.27 (dt, J = 6.0, 2.8 Hz, 1H), 3.15 (dd, J = 15.2, 5.6 Hz, 1H), 3.01 (dd, J = 15.2, 2.8 Hz, 1H), 2.87 – 2.79 (m, 2H), 2.77 (d, J = 4.0 Hz, 1H), 2.45 – 2.36 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 148.7, 140.6, 140.1, 139.8, 135.9, 133.7, 129.0, 128.8, 128.7, 128.3, 128.2, 126.8, 126.2, 125.8, 123.9, 121.6, 121.3, 57.9, 42.6, 38.3, 37.3, 34.1. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₇H₂₅N₂O⁺: 393.1967, found: 393.1972.

1-(5-methoxyquinolin-8-yl)-4-phenethylazetidin-2-one(4a):

yellow oil, 53 mg (80% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.80 (dd, J = 4.0, 1.6 Hz, 1H), 8.55 (dd, J = 8.4, 1.6 Hz, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.38 (dd, J = 8.4, 4.0 Hz, 1H), 7.25 – 7.21 (m, 2H), 7.17 (dt, J = 4.4, 1.6 Hz, 1H), 7.10 – 7.08 (m, 2H), 6.82 (d, J = 8.4 Hz, 1H), 5.11 – 5.03 (m, 1H), 3.98 (s, 3H), 3.30 (dd, J = 14.8, 5.2 Hz, 1H), 2.78 (dd, J = 14.8, 2.4 Hz, 1H), 2.69 – 2.62 (m, 2H), 2.30 – 2.21 (m, 1H), 1.84 (ddd, J = 6.4, 5.6, 2.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 152.5, 149.6, 142.2, 141.2, 130.8, 128.4, 128.3, 126.5, 126.0, 123.0, 120.9, 120.5, 104.1, 55.9, 55.6, 42.8, 35.1, 31.7. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₂₁H₂₀N₂O₂Na⁺: 355.1422, found: 355.1421.

3-isopropyl-4-phenethylazetidin-2-one(4b)

To an ice-water cooled solution of **4a** (66.4 mg, 0.2 mmol) in acetonitrile (1.5 mL) and water (0.5 mL) was added ceric ammonium nitrate (328.8 mg, 0.6mmol) in one portion. The reaction was kept in ice-water bath for 1 h. After completion, the reaction was diluted with ethyl acetate (25 mL), washed with saturated sodium thiosulfate (2 × 10 mL) and brine (10 mL), dried over anhydrous Na₂SO₄. Evaporation of the organic solvent and purification by silica gel column chromatography gave the desired product **4b** (19.6 mg, 56%). ¹**H NMR (400 MHz, CDCl₃)** ¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.26 (m, 2H), 7.24 – 7.19 (m, 1H), 7.18 – 7.13 (m, 2H), 6.12 (s, 1H), 3.65 – 3.57 (m, 1H), 3.03 (ddd, *J* = 14.8, 5.0, 2.2 Hz, 1H), 2.69 – 2.63 (m, 2H), 2.55 (ddd, *J* = 14.8, 2.3, 1.2 Hz, 1H), 2.02 – 1.92 (m, 2H).¹³**C NMR (101 MHz, CDCl₃)** ¹³**C NMR (101 MHz, CDCl₃)** δ 168.1, 140.6, 128.6, 128.3, 126.3, 47.8, 43.5, 36.9, 32.9. **HRMS(ESI-TOF)**: [M+Na]⁺ m/z calcd for C₁₁H₁₃NONa⁺:198.0895, found:198.0886.

A mixture of **1a** (0.2 mmol, 42 mg, 1.0 equiv), DTBP (110 μ L, 0.6 mmol), Cu(CH₃CN)₄PF₆ (7.4 mg, 0.02 mmol), and substituted toluene(1 mL) in a 15 mL glass vial sealed under air atmosphere was heated at 130 °C for 8 hours. The reaction mixture cooled to room temperature and concentrated in

vacuo. The resulting residue was purified by column chromatography (PE / EA = 20 / 1-5 / 1) on silica gel to give the product **5**.

4-(2-methylphenethyl)-1-(quinolin-8-yl)azetidin-2-one(5a):

yellow oil, 51 mg (81% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.79 (dd, J = 4.0, 1.6 Hz, 1H), 8.30 (dd, J = 7.6, 1.6 Hz, 1H), 8.11 (dd, J = 8.4, 1.6 Hz, 1H), 7.57 (dd, J = 8.0, 1.2 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.39 (dd, J = 8.4, 4.0 Hz, 1H), 7.11 – 7.05 (m, 4H), 5.25 (ddd, J = 11.6, 5.6, 3.2 Hz, 1H), 3.37 (dd, J = 15.2, 5.2 Hz, 1H), 2.88 (dd, J = 15.2, 2.4 Hz, 1H), 2.68 – 2.64 (m, 2H), 2.36 – 2.28 (m, 1H), 2.17 (s, 3H), 1.85 – 1.75 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.0, 148.4, 140.1, 138.8, 135.6, 135.2, 133.2, 129.7, 128.5, 128.2, 126.3, 125.7, 125.5, 123.5, 121.1, 120.8, 55.8, 42.6, 33.7, 28.4, 18.6. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₁H₂₁N₂O⁺: 317.1654, found: 317.1693.

4-(2-fluorophenethyl)-1-(quinolin-8-yl)azetidin-2-one(5b):

yellow oil, 50mg (78% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.73 (dd, J = 4.0, 1.6 Hz, 1H), 8.27 (dd, J = 7.6, 1.2 Hz, 1H), 8.10 (dd, J = 8.4, 1.6 Hz, 1H), 7.55 (dd, J = 8.0, 1.2 Hz, 1H), 7.52 – 7.45 (m, 1H), 7.37 (dd, J = 8.4, 4.0 Hz, 1H), 7.19 – 7.08 (m, 2H), 7.04 – 6.92 (m, 2H), 5.19 (ddd, J = 12.0, 5.6, 2.8 Hz, 1H), 3.33 (dd, J = 15.2, 5.2 Hz, 1H), 2.83 (dd, J = 15.2, 2.4 Hz, 1H), 2.73 – 2.69 (m, 2H), 2.37 (dtd, J = 11.2, 8.0, 3.2 Hz, 1H), 1.89 – 1.73 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -118.9. ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 160.6 (d, *J* = 244.8 Hz), 148.4, 140.0, 135.5, 133.1, 129.9 (d, *J* = 4.9 Hz), 128.5, 127.5 (d, *J* = 16.0 Hz), 127.3 (d, *J* = 8.0 Hz), 126.2, 123.5 (d, *J* = 4.0 Hz), 121.0, 120.8, 114.8, 114.6, 55.5, 42.8, 33.6, 24.5 (d, *J* = 2.4 Hz). HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₀H₁₈FN₂O⁺: 321.1403, found: 321.1398.

4-(2-chlorophenethyl)-1-(quinolin-8-yl)azetidin-2-one(5c):

yellow oil, 52mg (77% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.77 (dd, J = 4.0, 1.6 Hz, 1H), 8.28 (dd, J = 7.6, 1.2 Hz, 1H), 8.11 (dd, J = 8.4, 1.6 Hz, 1H), 7.57 (dd, J = 8.0, 1.2 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.39 (dd, J = 8.4, 4.0 Hz, 1H), 7.31 – 7.28 (m, 1H), 7.15 – 7.08 (m, 3H), 5.23 (ddd, J = 11.6, 5.6, 2.8 Hz, 1H), 3.36 (dd, J = 15.2, 5.2 Hz, 1H), 2.88 (dd, J = 15.2, 2.4 Hz, 1H), 2.79 (dd, J = 8.8, 6.8 Hz, 2H), 2.36 (dtd, J = 11.2, 8.0, 3.2 Hz, 1H), 1.90 – 1.78 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 148.4, 140.1, 138.3, 135.5, 133.4, 133.2, 129.8, 129.1, 128.5, 127.0, 126.3, 126.2, 123.5, 120.9, 120.8, 55.6, 42.7, 33.3, 28.9. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₀H₁₈ClN₂O⁺: 337.1108, found: 317.1122.

4-(2-bromophenethyl)-1-(quinolin-8-yl)azetidin-2-one(5d):

yellow oil, 57mg (75% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.77 (dd, J = 4.0, 1.6 Hz, 1H), 8.28 (dd, J = 7.6, 1.6 Hz, 1H), 8.10 (dd, J = 8.4, 1.6 Hz, 1H), 7.56 (dd, J = 8.4, 1.2 Hz, 1H), 7.52 – 7.45 (m, 2H), 7.38 (dd, J = 8.4, 4.0 Hz, 1H), 7.20 – 7.12 (n, 2H), 7.05 – 6.99 (m, 1H), 5.24 (ddd, J = 11.6, 5.6, 2.8 Hz, 1H), 3.36 (dd, J = 15.2, 5.2 Hz, 1H), 2.90 (dd, J = 15.2, 2.4 Hz, 1H), 2.78 (dd, J = 9.2, 7.2 Hz, 2H), 2.34 (dtd, J = 9.2, 8.0, 3.2 Hz, 1H), 1.87 – 1.80 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 148.5, 140.1, 140.0, 135.5, 133.2, 132.3, 129.8, 128.5, 127.3, 127.0, 126.2, 123.8, 123.5, 121.0, 120.8, 55.5, 42.7, 33.5, 31.5. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₀H₁₈BrN₂O⁺: 381.0603, found: 381.0607.

1-(quinolin-8-yl)-4-(2-(trifluoromethyl)phenethyl)azetidin-2-one(5e):

yellow oil, 53mg (71% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.81 (dd, J = 4.0, 1.6 Hz, 1H), 8.28 (dd, J = 7.6, 1.2 Hz, 1H), 8.11 (dd, J = 8.4, 1.6 Hz, 1H), 7.60 – 7.54 (m, 2H), 7.52 – 7.48 (m, 1H), 7.42 – 7.38 (m, 2H), 7.23 (dd, J = 13.6, 7.2 Hz, 2H), 5.26 (ddd, J = 11.6, 5.6, 2.8 Hz, 1H), 3.38 (dd, J = 15.2,

5.2 Hz, 1H), 2.88 (dd, J = 15.2, 2.4 Hz, 1H), 2.86 – 2.75 (m, 2H), 2.44 – 2.30 (m, 1H), 1.92 – 1.76 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.7. ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 148.9, 140.5, 140.0, 136.0, 133.5, 131.7, 130.9, 128.9, 128.3 (dd, J = 50.2, 20.6 Hz), 126.7, 126.1, 125.9 (q, J = 272.0 Hz), 125.9 (d, J = 5.7 Hz), 123.9, 121.5, 121.3, 56.1, 43.1, 35.9, 28.4. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₂₁H₁₇F₃N₂ONa⁺: 393.1191, found: 393.1196.

ethyl 2-(2-(2-(4-oxo-1-(quinolin-8-yl)azetidin-2-yl)ethyl)phenyl)acetate(5f):

yellow oil, 62mg (80% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.81 (dd, J = 4.0, 1.6 Hz, 1H), 8.27 (dd, J = 7.6, 1.2 Hz, 1H), 8.12 (dd, J = 8.4, 1.6 Hz, 1H), 7.57 (dd, J = 8.0, 1.2 Hz, 1H), 7.53 – 7.47 (m, 1H), 7.40 (dd, J = 8.4, 4.0 Hz, 1H), 7.20 – 7.09 (m, 4H), 5.25 (ddd, J = 11.6, 5.6, 3.2 Hz, 1H), 4.08 (q, J = 7.2 Hz, 2H), 3.62 – 3.42 (m, 2H), 3.36 (dd, J = 15.2, 5.2 Hz, 1H), 2.87 (dd, J = 15.2, 2.4 Hz, 1H), 2.78 – 2.59 (m, 2H), 2.38 – 2.24 (m, 1H), 1.80 (dtd, J = 13.2, 9.2, 6.8 Hz, 1H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 166.4, 148.9, 140.6, 139.6, 136.1, 133.6, 132.2, 130.6, 129.2, 129.1, 127.5, 126.7, 126.5, 124.0, 121.6, 121.3, 60.9, 56.2, 43.2, 38.5, 34.7, 28.6, 14.2. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₂₄H₂₄N₂O₃Na⁺: 411.1685, found: 411.1673.

4-(3-methoxyphenethyl)-1-(quinolin-8-yl)azetidin-2-one(5g):

yellow oil, 48mg (72% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.80 (dd, J = 4.0, 1.6 Hz, 1H), 8.25 (dd, J = 7.6, 1.2 Hz, 1H), 8.11 (dd, J = 8.4, 1.6 Hz, 1H), 7.57 (dd, J = 8.0, 1.2 Hz, 1H), 7.53 – 7.47 (m, 1H), 7.39 (dd, J = 8.4, 4.0Hz, 1H), 7.19 – 7.15 (m, 1H), 6.74 – 6.68 (m, 2H), 6.68 – 6.64 (m, 1H), 5.20 (ddd, J = 12.0, 5.6, 3.2 Hz, 1H), 3.76 (s, 3H), 3.32 (dd, J = 15.2, 5.2 Hz, 1H), 2.82 (dd, J = 15.2, 2.4 Hz, 1H), 2.71– 2.60 (m, 2H), 2.36 (tdd, J = 9.2, 7.2, 3.2 Hz, 1H), 1.84 (dtd, J = 13.2, 8.8, 6.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 159.2, 148.5, 142.3, 140.2, 135.5, 133.1, 128.8, 128.5, 126.2, 123.6, 121.2, 120.8, 120.2, 113.8, 110.6, 55.6, 54.7, 42.6, 34.6, 31.1. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₁H₂₁N₂O₂⁺: 333.1603, found: 333.1594.

4-(3-methylphenethyl)-1-(quinolin-8-yl)azetidin-2-one(5h):

yellow oil, 47 mg (75% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.80 (dd, J = 4.0, 1.6 Hz, 1H), 8.28 (dd, J = 7.6, 1.2 Hz, 1H), 8.11 (dd, J = 8.4, 1.6 Hz, 1H), 7.57 (dd, J = 8.0, 1.2 Hz, 1H), 7.54 – 7.46 (m, 1H), 7.39 (dd, J = 8.4, 4.0 Hz, 1H), 7.18 – 7.12 (m, 1H), 7.00 (d, J = 7.6 Hz, 1H), 6.93 (d, J = 6.4 Hz, 2H), 5.21 (ddd, J = 11.6, 5.6, 3.2 Hz, 1H), 3.33 (dd, J = 15.2, 5.2 Hz, 1H), 2.84 (dd, J = 15.2, 2.4 Hz, 1H), 2.69 – 2.63 (m, 2H), 2.41 – 2.34 (m, 1H), 2.31 (s, 3H), 1.93 – 1.78 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.0, 148.8, 140.6, 140.2, 137.5, 135.6, 133.2, 128.6, 128.5, 127.8, 1263, 126.2, 124.8, 123.6, 121.2, 120.8, 55.7, 42.6, 34.8, 31.1, 20.9. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₁H₂₁N₂O⁺: 317.1654, found: 317.1669.

4-(3-fluorophenethyl)-1-(quinolin-8-yl)azetidin-2-one(5i):

yellow oil, 38mg (60% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.79 (dd, J = 4.0, 1.6 Hz, 1H), 8.26 (dd, J = 7.6, 1.2 Hz, 1H), 8.12 (dd, J = 8.4, 1.6 Hz, 1H), 7.58 (dd, J = 8.0, 1.2 Hz, 1H), 7.53 – 7.47 (m, 1H), 7.40 (dd, J = 8.4, 4.0 Hz, 1H), 7.23 – 7.17 (m, 1H), 6.91 – 6.82 (m, 3H), 5.19 (ddd, J = 11.6, 5.6, 3.2 Hz, 1H), 3.32 (dd, J = 15.2, 5.2 Hz, 1H), 2.81 (dd, J = 15.2, 2.4 Hz, 1H), 2.75 – 2.62 (m, 2H), 2.45 – 2.31 (m, 1H), 1.90 – 1.77 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -113.6. ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 162.4 (d, *J* = 245.2 Hz), 148.5, 143.1 (d, *J* = 7.2 Hz), 140.1, 135.6, 133.1, 129.3 (d, *J* = 8.4 Hz), 128.5, 126.2, 123.67 – 123.38 (m), 121.0 (d, *J* = 19.2 Hz), 114.7, 114.5, 112.5, 112.3, 55.4, 42.6, 34.3, 30.8. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₀H₁₈FN₂O⁺: 321.1403, found: 321.1400.

4-(3-chlorophenethyl)-1-(quinolin-8-yl)azetidin-2-one(5j):

yellow oil, 48mg (72% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.79 (dd, J = 4.2, 1.6 Hz, 1H), 8.26 (dd, J = 7.6, 1.2 Hz, 1H), 8.13 (dd, J = 8.4, 1.6 Hz, 1H), 7.58 (dd, J = 8.0, 1.0 Hz, 1H), 7.54 – 7.47 (m, 1H), 7.41 (dd, J = 8.4, 4.0 Hz, 1H), 7.20 – 7.14 (m 2H), 7.12 (s, 1H), 7.01 – 6.97 (m, 1H), 5.19 (ddd, J = 11.6, 5.6, 3.2 Hz, 1H), 3.33 (dd, J = 15.2, 5.2 Hz, 1H), 2.82 (dd, J = 15.2, 2.4 Hz, 1H), 2.75 – 2.59 (m, 2H), 2.42 – 2.31 (m, 1H), 1.84 (dtd, J = 13.2, 8.8, 6.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 149.0, 143.1, 140.6, 136.1, 134.2, 133.5, 129.6, 129.0, 128.4, 126.7, 126.6, 126.2, 124.0, 121.6, 121.4, 55.8, 43.1, 34.8. 31.3. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₂₀H₁₇ClN₂ONa⁺: 359.0927, found: 359.0939.

1-(quinolin-8-yl)-4-(3-(trifluoromethyl)phenethyl)azetidin-2-one(5k):

yellow oil, 46mg (62% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.75 (dd, J = 4.0, 1.6 Hz, 1H), 8.25 (dd, J = 7.6, 1.2 Hz, 1H), 8.12 (dd, J = 8.4, 1.6 Hz, 1H), 7.58 (dd, J = 8.0, 1.0 Hz, 1H), 7.54 – 7.47 (m, 1H), 7.43 (d, J = 7.6 Hz, 1H), 7.40 (dd, J = 8.4, 4.2 Hz, 1H), 7.37 – 7.34 (m, 2H), 7.29 (d, J = 7.6 Hz, 1H), 5.21 (ddd, J = 11.6, 5.6, 3.2 Hz, 1H), 3.34 (dd, J = 15.2, 5.2 Hz, 1H), 2.83 (dd, J = 15.2, 2.4 Hz, 1H), 2.78 – 2.67 (m, 2H), 2.45 – 2.33 (m, 1H), 1.89 (dtd, J = 13.6, 8.8, 6.4 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5. ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 148.9, 141.9, 140.6, 136.1, 133.5, 131.7, 130.7 (q, J = 33.3 Hz), 129.0, 128.8, 126.7, 125.6 (q, J = 241.0 Hz), 124.9 (q, J = 3.7 Hz), 124.1, 122.9 (dd, J = 7.5, 3.6 Hz), 121.6, 121.4, 55.8, 43.1, 34.9, 31.4. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₁H₁₇F₃N₂ONa⁺: 393.1191, found: 393.1198.

4-(4-methylphenethyl)-1-(quinolin-8-yl)azetidin-2-one(5l):

yellow oil, 37 mg (58% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.80 (dd, J = 4.2, 1.6 Hz, 1H), 8.26 (dd, J = 7.6, 1.2 Hz, 1H), 8.12 (dd, J = 8.4, 1.6 Hz, 1H), 7.58 (dd, J = 8.0, 1.6 Hz, 1H), 7.54 – 7.47 (m, 1H), 7.39 (dd, J = 8.4, 4.0 Hz, 1H), 7.07 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 5.19 (ddd, J = 11.6, 5.6, 2.8 Hz, 1H), 3.32 (dd, J = 15.2, 5.2 Hz, 1H), 2.82 (dd, J = 15.2, 2.4 Hz, 1H), 2.69 – 2.60 (m, 2H), 2.45 – 2.32 (m, 1H), 2.30 (s, 3H), 1.90 – 1.76 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 148.9, 140.7, 138.0, 136.0, 135.5, 133.6, 129.1, 129.0, 128.2, 126.7, 124.0, 121.7, 121.3, 56.2, 43.1, 35.3, 31.1, 21.0. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₁H₂₁N₂O⁺: 317.1654, found: 317.1668.

4-(4-chlorophenethyl)-1-(quinolin-8-yl)azetidin-2-one(5m):

yellow oil, 36mg (53% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.76 (dd, J = 4.0, 1.6 Hz, 1H), 8.24 (dd, J = 7.6, 1.2 Hz, 1H), 8.12 (dd, J = 8.4, 1.6 Hz, 1H), 7.58 (dd, J = 8.0, 1.2 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.40 (dd, J = 8.4, 4.0 Hz, 1H), 7.22 – 7.18 (m, 2H), 7.03 (d, J = 8.4 Hz, 2H), 5.18 (ddd, J = 11.6, 5.6, 2.8 Hz, 1H), 3.32 (dd, J = 15.2, 5.2 Hz, 1H), 2.81 (dd, J = 15.2, 2.4 Hz, 1H), 2.69 – 2.58 (m, 2H), 2.33 (tdd, J = 9.2, 7.2, 3.2 Hz, 1H), 1.83 (dtd, J = 13.2, 8.8, 6.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 148.4, 140.1, 139.0, 135.6, 133.0, 131.3, 129.1, 128.5, 127.9, 126.2, 123.6, 121.1, 120.9, 55.4, 42.6, 34.6, 30.5. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₀H₁₈ClN₂O⁺: 337.1108, found: 337.1118.

1-(quinolin-8-yl)-4-(4-(trifluoromethyl)phenethyl)azetidin-2-one(5n):

yellow oil, 33mg (45% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.75 (dd, J = 4.0, 1.6 Hz, 1H), 8.24 (dd, J = 7.6, 1.2 Hz, 1H), 8.12 (dd, J = 8.4, 1.6 Hz, 1H), 7.58 (dd, J = 8.0, 1.2 Hz, 1H), 7.52 – 7.48 (m, 3H), 7.40 (dd, J = 8.4, 4.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 5.25 – 5.17 (m, 1H), 3.34 (dd, J = 15.2, 5.2 Hz, 1H), 2.84 (dd, J = 15.2, 2.4 Hz, 1H), 2.78 – 2.70 (m, 2H), 2.43 – 2.32 (m, 1H), 1.90 (dtd, J = 13.6, 8.8, 6.4 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.4. ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 148.8, 145.2, 140.6, 136.1, 133.5, 129.0, 128.6, 126.7, 125.6 (q, J = 268.7 Hz), 125.4 (d, J = 4.0 Hz), 125.3 (dd, J = 7.6, 3.8 Hz), 124.1, 121.6, 121.4, 55.8, 43.0, 34.9, 31.4. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₁H₁₈F₃N₂O⁺: 371.1371, found: 371.1382.

4-(2-iodophenethyl)-1-(quinolin-8-yl)azetidin-2-one(50):

yellow oil, 68mg (80% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.81 – 8.78 (m, 1H), 8.29 (dd, J = 7.6, 1.2 Hz, 1H), 8.10 (dd, J = 8.4, 1.6 Hz, 1H), 7.75 (dd, J = 8.2, 1.2 Hz, 1H), 7.56 (dd, J = 8.0, 1.6 Hz, 1H), 7.52 – 7.45 (m, 1H), 7.38 (dd, J = 8.4, 4.0 Hz, 1H), 7.24 – 7.18 (m, 1H), 7.12 (dd, J = 7.6, 1.6 Hz, 1H), 6.87 – 6.81 (m, 1H), 5.26 (ddd, J = 11.6, 5.6, 3.2 Hz, 1H), 3.37 (dd, J = 15.2, 5.2 Hz, 1H), 2.94 (dd, J = 15.2, 2.4 Hz, 1H), 2.83 – 2.65 (m, 2H), 2.41 – 2.17 (m, 1H), 1.89 – 1.73 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 148.5, 143.2, 140.1, 139.0, 135.5, 133.2, 128.8, 128.5, 127.9, 127.5, 126.2, 123.5, 121.1, 120.9, 99.8, 55.5, 42.7, 36.2, 33.8. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₀H₁₈IN₂O⁺: 429.0464, found: 429.0474.

4-(4-iodophenethyl)-1-(quinolin-8-yl)azetidin-2-one(5p):

yellow oil, 43mg (50% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.76 (dd, J = 4.0, 1.6 Hz, 1H), 8.23 (dd, J = 7.6, 1.2 Hz, 1H), 8.12 (dd, J = 8.4, 1.6 Hz, 1H), 7.58 (dd, J = 8.0, 1.2 Hz, 1H), 7.56 – 7.52 (m, 2H), 7.52 – 7.48 (m, 1H), 7.40 (dd, J = 8.4, 4.0 Hz, 1H), 6.85 (d, J = 8.4 Hz, 2H), 5.18 (ddd, J = 11.6, 5.6, 3.2 Hz, 1H), 3.32 (dd, J = 15.2, 5.2 Hz, 1H), 2.81 (dd, J = 15.2, 2.4 Hz, 1H), 2.68 – 2.54 (m, 2H), 2.36–2.28 (m, 1H), 1.86 – 1.80 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 148.9, 140.7, 140.6, 137.4, 136.1, 133.5, 130.4, 128.9, 126.7, 124.1, 121.6, 121.4, 91.1, 55.9, 43.0, 34.9, 31.1. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₀H₁₈IN₂O⁺: 429.0464, found: 429.0472.

4-(3-iodophenethyl)-1-(quinolin-8-yl)azetidin-2-one(5q):

yellow oil, 53mg (62% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.79 (dd, J = 4.0, 1.6 Hz, 1H), 8.24 (dd, J = 7.6, 1.2 Hz, 1H), 8.13 (dd, J = 8.4, 1.6 Hz, 1H), 7.58 (dd, J = 8.0, 1.2 Hz, 1H), 7.54 – 7.46 (m, 3H), 7.41 (dd, J = 8.4, 4.0 Hz, 1H), 7.07 (d, J = 8.0 Hz, 1H), 6.99 – 6.96 (m, 1H), 5.18 (ddd, J = 11.6, 5.6, 3.2 Hz, 1H), 3.32 (dd, J = 15.2, 5.2 Hz, 1H), 2.81 (dd, J = 15.2, 2.4 Hz, 1H), 2.70 – 2.52 (m, 2H), 2.37 – 2.31 (m, 1H), 1.85 – 1.79 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 149.1, 143.5, 140.6, 137.2, 136.1, 135.1, 133.5, 130.1, 129.0, 127.7, 126.7, 124.1, 121.6, 121.4, 94.5, 55.8, 43.1, 34.9, 31.2. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₀H₁₈IN₂O⁺: 429.0464, found: 429.0472.

4-(3,5-dimethylphenethyl)-1-(quinolin-8-yl)azetidin-2-one(5r):

¹**H NMR (400 MHz, CDCl₃)** δ 8.79 (dd, J = 4.0, 1.6 Hz, 1H), 8.24 (dd, J = 7.6, 1.2 Hz, 1H), 8.12 (dd, J = 8.4, 1.6 Hz, 1H), 7.58 (dd, J = 8.0, 1.2 Hz, 1H), 7.53 – 7.46 (m, 1H), 7.40 (dd, J = 8.4, 4.0 Hz, 1H), 6.80 (s, 1H), 6.72 (s, 2H), 5.30 – 5.04 (m, 1H), 3.32 (dd, J = 15.2, 5.2 Hz, 1H), 2.82 (dd, J = 15.2, 2.4 Hz, 1H), 2.62 – 2.58 (m, 2H), 2.33 (ddd, J = 13.6, 7.6, 3.6 Hz, 1H), 2.25 (s, 6H), 1.91 – 1.75 (m, 1H). ¹³**C NMR (101 MHz, CDCl₃)** δ 166.6, 148.9, 141.0, 140.8, 137.8, 136.1, 133.6, 129.0, 127.6, 126.7, 126.1, 124.1, 121.7, 121.3, 56.2, 43.1, 35.2, 31.4, 21.2. **HRMS(ESI-TOF)**: [M+Na]⁺ m/z calcd for C₂₂H₂₂N₂ONa⁺: 353.1630, found: 353.1639.

4-(2-methyl-2-phenylpropyl)-1-(quinolin-8-yl)azetidin-2-one(5s):

yellow oil, 55mg (84% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.72 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.18 (d, *J* = 6.8 Hz, 1H), 8.12 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.58 (d, *J* = 7.6 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.40 (dd, *J* = 8.4, 4.0 Hz, 1H), 7.36 – 7.28 (m, 4H), 7.22 (dd, *J* = 8.4, 4.4 Hz, 1H), 5.22 – 4.84 (m, 1H), 2.96 (dd, *J* = 15.2, 5.2 Hz, 1H), 2.42 (dd, *J* = 15.2, 2.4 Hz, 1H), 2.36 – 2.27 (m, 1H), 1.73 (dd, *J* = 13.2, 11.2

Hz, 1H), 1.43 (s, 3H), 1.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 148.4, 147.6, 140.2, 135.51, 132.6, 128.5, 127.7, 126.2, 125.5, 125.4, 123.5, 121.5, 120.8, 53.9, 46.9, 44.2, 36.6, 28.8, 27.9. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₂H₂₃N₂O⁺: 331.1810, found: 331.1807.

4-(2-methyl-2-(p-tolyl)propyl)-1-(quinolin-8-yl)azetidin-2-one(5t):

yellow oil, 45mg (66% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.78 – 8.69 (m, 1H), 8.20 – 8.10 (m, 2H), 7.57 (d, J = 8.0 Hz, 1H), 7.51 – 7.47 (m, 1H), 7.40 (dd, J = 8.4, 4.0 Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 5.19 – 5.01 (m, 1H), 2.96 (dd, J = 15.2, 5.2 Hz, 1H), 2.42 (dd, J = 15.2, 2.4 Hz, 1H), 2.34 (s, 3H), 2.29 (d, J = 13.2 Hz, 1H), 1.70 (dd, J = 13.2, 11.2 Hz, 1H), 1.40 (s, 3H), 1.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 148.4, 144.6, 140.3, 135.5, 134.9, 132.6, 128.5, 128.4, 126.2, 125.3, 123.5, 121.5, 120.8, 54.1, 46.8, 44.2, 36.3, 28.9, 27.9, 20.4. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₃H₂₅N₂O⁺: 345.1967, found: 345.1977.

4-(2,2-diphenylethyl)-1-(quinolin-8-yl)azetidin-2-one(5u):

yellow oil, 60 mg (80% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.73 (dd, J = 4.0, 1.6 Hz, 1H), 8.27 (dd, J = 7.6, 1.2 Hz, 1H), 8.10 (dd, J = 8.4, 1.6 Hz, 1H), 7.55 (dd, J = 8.0, 1.2 Hz, 1H), 7.51 – 7.46 (m, 1H), 7.38 (dd, J = 8.4, 4.0 Hz, 1H), 7.36 – 7.28 (m, 4H), 7.26 – 7.22 (m, 1H), 7.21 – 7.17 (m, 2H), 7.14 – 7.08 (m, 3H), 5.11 (ddt, J = 10.4, 5.2, 2.8 Hz, 1H), 4.01 (dd, J = 10.0, 5.6 Hz, 1H), 3.16 (dd, J = 15.2, 5.2 Hz, 1H), 2.94 (ddd, J = 13.2, 10.0, 2.8 Hz, 1H), 2.73 (dd, J = 15.2, 2.4 Hz, 1H), 2.10 (ddd, J = 13.2, 10.4, 5.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 148.9, 144.6, 143.4, 140.4, 136.1, 133.5, 129.0, 128.5, 128.2, 127.6, 126.7, 126.6, 126.4, 123.9, 121.5, 121.4, 55.7, 48.6, 43.4, 39.6. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₂₆H₂₂N₂ONa⁺: 401.1630, found: 401.1627.

4-(2-(naphthalen-1-yl)ethyl)-1-(quinolin-8-yl)azetidin-2-one(5v):

yellow oil, 55 mg (78% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.60 (dd, J = 4.0, 1.6 Hz, 1H), 8.30 (dd, J = 7.2, 1.6 Hz, 1H), 8.09 (dd, J = 8.4, 1.6 Hz, 1H), 7.84 – 7.78 (m, 2H), 7.70 (d, J = 8.0 Hz, 1H), 7.56 (dd, J = 8.0, 1.2 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.47 – 7.41 (m, 1H), 7.40 – 7.31 (m, 3H), 7.28 (d, J = 6.8 Hz, 1H), 5.62 – 5.07 (m, 1H), 3.37 (dd, J = 15.2, 5.2 Hz, 1H), 3.17 – 3.10 (m, 2H), 2.89 (dd, J = 15.2, 2.4 Hz, 1H), 2.51 (tdd, J = 9.2, 7.2, 3.2 Hz, 1H), 1.98 (dtd, J = 13.6, 8.8, 6.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 148.8, 140.5, 137.2, 135.9, 133.8, 133.7, 131.6, 128.9, 128.8, 126.9, 126.7, 125.9, 125.7, 125.5, 125.5, 123.9, 123.5, 121.5, 121.3, 56.3, 43.1, 34.5, 28.8. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₂₄H₂₁N₂O⁺: 353.1654, found: 353.1660.

1-(quinolin-8-yl)-4-(2-(thiophen-2-yl)ethyl)azetidin-2-one(5w):

yellow oil, 40 mg (65% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.81 (dd, J = 4.0, 1.6 Hz, 1H), 8.26 (dd, J = 7.6, 1.2 Hz, 1H), 8.13 (dd, J = 8.4, 1.6 Hz, 1H), 7.58 (dd, J = 8.0, 1.2 Hz, 1H), 7.54 – 7.48 (m, 1H), 7.40 (dd, J = 8.4, 4.0 Hz, 1H), 7.10 (dd, J = 5.2, 1.2 Hz, 1H), 6.89 (dd, J = 5.2, 3.6 Hz, 1H), 6.76 (dd, J = 2.4, 1.2 Hz, 1H), 5.25 (ddd, J = 11.6, 5.6, 3.2 Hz, 1H), 3.33 (dd, J = 15.2, 5.2 Hz, 1H), 2.93 – 2.89 (m, 2H), 2.83 (dd, J = 15.2, 2.4 Hz, 1H), 2.43 (dtd, J = 11.6, 8.0, 3.2 Hz, 1H), 1.92 (ddt, J = 13.6, 9.2, 7.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 148.5, 143.4, 140.1, 135.6, 133.1, 128.5, 126.3, 126.2, 123.9, 123.5, 122.8, 121.1, 120.8, 55.4, 42.6, 35.1, 25.2. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₈H₁₇N₂OS⁺: 309.1062, found: 309.1077.

4-(2-(furan-2-yl)ethyl)-1-(quinolin-8-yl)azetidin-2-one(5x):

yellow oil, 47 mg (80% yield); ¹**H NMR (400 MHz, CDCl₃)** δ 8.82 (dd, J = 4.0, 1.6 Hz, 1H), 8.25 (dd, J = 7.6, 1.2 Hz, 1H), 8.13 (dd, J = 8.4, 1.6 Hz, 1H), 7.58 (dd, J = 8.0, 1.2 Hz, 1H), 7.54 – 7.48 (m, 1H), 7.40 (dd, J = 8.4, 4.0 Hz, 1H), 7.28 – 7.26 (m, 1H), 6.26 (dd, J = 3.2, 1.2 Hz, 1H), 5.99 – 5.97 (m, 1H),

5.23 (ddd, J = 11.6, 5.6, 3.2 Hz, 1H), 3.31 (dd, J = 15.2, 5.2 Hz, 1H), 2.76 (dd, J = 15.2, 2.4 Hz, 1H), 2.72 - 2.68 (m, 2H), 2.41 - 2.33 (m, 1H), 1.93 - 1.83 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 154.3, 148.5, 140.5, 140.2, 135.6, 133.1, 128.5, 126.2, 123.6, 121.2, 120.8, 109.7, 104.7, 55.5, 42.6, 31.6, 23.5. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₈H₁₇N₂O₂⁺: 293.1290, found: 293.1300.

1-(quinolin-8-yl)-4-(2-(thiophen-3-yl)ethyl)azetidin-2-one(5y):

yellow oil, 34 mg (55% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.81 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.26 (dd, *J* = 7.6, 1.2 Hz, 1H), 8.13 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.58 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.40 (dd, *J* = 8.4, 4.0 Hz, 1H), 7.23 (dd, *J* = 4.8, 2.8 Hz, 1H), 6.92 (dd, *J* = 2.8, 1.2 Hz, 1H), 6.87 (dd, *J* = 4.8, 1.2 Hz, 1H), 5.22 (ddd, *J* = 11.6, 5.6, 3.2 Hz, 1H), 3.32 (dd, *J* = 15.2, 5.2 Hz, 1H), 2.81 (dd, *J* = 15.2, 2.4 Hz, 1H), 2.73 – 2.69 (m, 2H), 2.37 (dtd, *J* = 11.2, 8.0, 3.2 Hz, 1H), 1.85 (ddt, *J* = 13.2, 9.2, 7.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 148.9, 141.4, 140.7, 136.1, 133.6, 129.0, 128.0, 126.7, 125.5, 124.1, 121.6, 121.3, 120.2, 56.1, 43.0, 34.3, 26.0. **HRMS(ESI-TOF)**: [M+Na]⁺ m/z calcd for C₁₈H₁₆N₂OSNa⁺: 331.0866, found: 331.0881.

8. Gram scale reaction and further application

A mixture of **1a** (5 mmol, 1.05 g,), DTBP (3.7 ml, 20 mmol), $Cu(CH_3CN)_4PF_6$ (185 mg, 0.5 mmol), and toluene(15 mL) in a 50 mL round-bottom flask sealed under air atmosphere was heated at 130 °C for 8 hours. The reaction mixture cooled to room temperature and concentrated in vacuo. The resulting residue was purified by column chromatography (PE / EA = 20 / 1–5 / 1) on silica gel to give the product **3a** (68%, 1.02g).

To a dry tube was added **3a** (60.4 mg, 0.20 mmol), anhydrous Et₂O (1.0 mL), followed by the addition of LiAlH₄ (22.8 mg, 0.60 mmol) at 0 °C. After being stirred for 4 h, the reaction was slowly quenched with sat. NH₄Cl and then extracted with EA (3 x 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, concentrated in vacuo and purified by column chromatography (EA: PE=1: 4) to afford the desired product **6a** (49 mg, 85%)⁴. ¹H **NMR (400 MHz, CDCl₃)** δ 8.71 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.06 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.40 – 7.32 (m, 2H), 7.26 (d, *J* = 14.6 Hz, 1H), 7.20 – 7.14 (m, 3H), 7.04 (dd, *J* = 8.4, 0.8 Hz, 1H), 6.68 (d, *J* = 7.6 Hz, 1H), 6.13 (d, *J* = 8.4 Hz, 1H), 3.83 – 3.81 (m, 3H), 2.81 – 2.71 (m, 2H), 2.05 – 1.96 (m, 3H), 1.93 – 1.87 (m, 1H). ¹³C **NMR (101 MHz, CDCl₃)** δ 146.8, 144.4, 141.9, 138.3, 136.1, 128.9, 128.5, 128.4, 127.8, 125.8, 121.4, 113.9, 105.4, 60.6, 50.2, 37.9, 37.4, 32.4.

A mixture of **3a** (60.4 mg, 0.2 mmol), CH₃ONa (16.2 mg, 0.3 mmol), and CH₃OH (2 mL) in a 10 mL glass vial sealed under air atmosphere was heated at 90 °C for 2 hours. The reaction mixture cooled to room temperature and concentrated in vacuo. The resulting residue was purified by column chromatography (EA: PE=1: 10) on silica gel to give the product **6b** (50 mg, 75%)⁵. ¹H NMR (**400 MHz, CDCl₃**) δ 8.73 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.06 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.40 – 7.33 (m, 2H), 7.29 – 7.24 (m, 2H), 7.20 – 7.16 (m, 3H), 7.05 (d, *J* = 8.0 Hz, 1H), 6.69 (d, *J* = 7.6 Hz, 1H), 6.28 (d, *J* = 9.2 Hz, 1H), 4.07 (d, *J* = 6.8 Hz, 1H), 3.64 (s, 3H), 2.87 (ddd, *J* = 14.6, 8.8, 6.4 Hz, 1H), 2.81 – 2.72 (m, 2H), 2.59 (dd, *J* = 15.2, 7.2 Hz, 1H), 2.11 – 2.02 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 146.9, 143.6, 141.6, 138.3, 136.1, 128.8, 128.5, 128.4, 127.8, 125.9, 121.4, 114.1, 105.2, 51.7, 49.4, 39.6, 36.9, 32.4. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₂₁H₂₂N₂O₂Na⁺: 357.1579, found: 357.1593.

The synthetic application for 7f

2-isopropyl-N-(5-methoxyquinolin-8-yl)but-3-enamide(7b)

The compound **7b** was prepared according to **1**. Purified by silica gel column chromatography in petroleum ether : ethyl acetate = 2 : 1 gave **7b** as a yellow solid (0.720 g, 50 %). ¹H NMR (400 MHz, **CDCl₃**) δ 9.64 (s, 1H), 8.75 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.69 (d, *J* = 84 Hz, 1H), 8.47 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.34 (dd, *J* = 8.4, 4.0 Hz, 1H), 6.75 (d, *J* = 8.4 Hz, 1H), 6.07 – 5.98 (m, 1H), 5.31 – 5.23 (m, 2H), 3.89 (s, 3H), 2.83 – 2.74 (m, 1H), 2.31 – 2.19 (m, 1H), 1.02 (d, *J* = 6.8 Hz, 3H), 0.96 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 149.7, 148.1, 138.6, 135.5, 130.6, 127.4, 120.1, 119.9, 118.0, 116.1, 103.7, 60.8, 55.2, 29.8, 20.5, 19.2. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₁₇H₂₀N₂O₂Na⁺:307.1422, found:307.1407.

3-isopropyl-1-(5-methoxyquinolin-8-yl)-4-phenethylazetidin-2-one(7c)

The compound 7c was prepared according to 3. Purified by silica gel column chromatography in petroleum ether : ethyl acetate = 2 : 1 gave 7c as a yellow oil (0.580 g, 62 %). ¹H NMR (400 MHz,

CDCl₃) δ 8.84 (dd, J = 4.0, 1.6 Hz, 1H), 8.54 (dd, J = 8.4, 1.6 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.38 (dd, J = 8.4, 4.0 Hz, 1H), 7.24 – 7.20 (m, 2H), 7.15 (d, J = 7.2 Hz, 1H), 7.12 – 7.06 (m, 2H), 6.82 (d, J = 8.4 Hz, 1H), 4.95 – 4.86 (m, 1H), 3.98 (s, 3H), 2.87 (dd, J = 7.6, 2.0 Hz, 1H), 2.66 (ddd, J = 9.6, 6.4, 3.6 Hz, 2H), 2.28 – 2.18 (m, 2H), 1.92 – 1.83 (m, 1H), 1.22 (d, J = 6.8 Hz, 3H), 1.14 (d, J = 6.8 Hz, 3H). ¹³C **NMR (101 MHz, CDCl₃)** δ 168.3, 151.8, 149.1, 141.7, 141.0, 130.2, 127.8, 127.7, 126.0, 125.4, 122.4, 120.5, 112.0, 103.7, 62.6, 59.7, 55.4, 34.5, 31.3, 27.9, 20.5, 20.0. **HRMS(ESI-TOF)**: [M+Na]⁺ m/z calcd for C₂₄H₂₆N₂O₂Na⁺:397.1892, found:397.1875.

3-isopropyl-4-phenethylazetidin-2-one(7d)⁶

To an ice-water cooled solution of **7c** (74.8 mg, 0.2 mmol) in acetonitrile (1.5 mL) and water (0.5 mL) was added ceric ammonium nitrate (328.8 mg, 0.6mmol) in one portion. The reaction was kept in ice-water bath for 1 h. After completion, the reaction was diluted with ethyl acetate (25 mL), washed with saturated sodium thiosulfate (2 × 10 mL) and brine (10 mL), dried over anhydrous Na₂SO₄. Evaporation of the organic solvent and purification by silica gel column chromatography gave the desired product **7d** (26 mg, 60%). ¹**H NMR** (**400 MHz, CDCl₃**) δ 7.33 – 7.27 (m, 2H), 7.22 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.20 – 7.16 (m, 2H), 5.69 (s, 1H), 3.38 (ddd, *J* = 7.6, 5.6, 2.0 Hz, 1H), 2.75 – 2.62 (m, 2H), 2.62 – 2.57 (m, 1H), 2.04 – 1.89 (m, 3H), 1.07 (d, *J* = 6.8 Hz, 3H), 0.98 (d, *J* = 6.8 Hz, 3H). ¹³**C NMR** (**101 MHz, CDCl₃) \delta 170.3, 140.8, 128.7, 128.3, 126.3, 63.9, 52.8, 36.9, 33.2, 27.8, 20.6, 20.1. HRMS(ESI-TOF): [M+Na]⁺ m/z calcd for C₁₄H₁₉NONa⁺:240.1364, found:240.1349.**

tert-butyl 3-isopropyl-2-oxo-4-phenethylazetidine-1-carboxylate(7e)⁷

To a solution of compound **7d** (21.6 mg, 0.1 mmol) in anhydrous dichloromethane (2 mL) was added 4-(dimethylamino)pyridine (18.3 mg, 0.15 mmol) and Boc anhydride (87.3 mg, 0.4 mmol). The mixture was stirred at room temperature for 1 hour then concentrated under reduced pressure. A purification by silica gel column chromatography in petroleum ether : ethyl acetate = 5:1 gave **7e** (21.6 mg, 68%). ¹**H NMR (400 MHz, CDCl₃)** δ 7.30 (t, *J* = 7.4 Hz, 2H), 7.23 – 7.19 (m, 3H), 3.73 (dt, *J* = 8.4, 3.2 Hz, 1H), 2.71 – 2.65 (m, 2H), 2.62 (dd, *J* = 8.4, 2.8 Hz, 1H), 2.48 – 2.37 (m, 1H), 2.04 – 1.96 (m, 1H), 1.94 – 1.84 (m, 1H), 1.52 (s, 9H), 1.09 (d, *J* = 687 Hz, 3H), 1.00 (d, *J* = 6.8 Hz, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 167.3, 148.2, 140.8, 128.6, 128.2, 126.2, 83.1, 62.0, 55.8, 34.2, 31.6, 28.17, 28.1, 20.7, 20.1. **HRMS(ESI-TOF)**: [M+Na]⁺ m/z calcd for C₁₉H₂₇NO₃Na⁺:340.1889, found:340.1875.

9. Preliminary mechanistic study

a) Procedure for TEMPO inhibition experiment: A mixture of 1a (42 mg, 0.2 mmol), DTBP (110 μ L, 0.6 mmol), Cu(CH₃CN)₄PF₆ (7.4 mg, 0.02 mmol), TEMPO (62.4mg, 0.4mmol) and toluene (1 mL) in a 15 mL glass vial sealed under air atmosphere was heated at 130 °C for 8 hours. The reaction mixture cooled to room temperature and concentrated in vacuo. The resulting residue was purified by

column chromatography (PE / EA = 6 / 1) on silica gel to give the product **8a** (13.8 mg, 28%). ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.23 (m, 4H), 7.22 – 7.16 (m, 1H), 4.76 (s, 2H), 1.56 – 1.26 (m, 6H), 1.19 (s, 6H), 1.08 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 138.4, 128.3, 127.5, 127.3, 78.7, 60.1, 39.7, 33.1, 20.3, 17.2. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₆H₂₆NO⁺:248.2014, found:248.2004.

b). Control experiment: A mixture of 1a (42 mg, 0.2 mmol), DTBP (110 μ L, 0.6 mmol), Ferrocene (3.72 mg, 0.02 mmol), and toluene (1 mL) in a 15 mL glass vial sealed under air atmosphere was heated at 130 °C for 8 hours.

c) Parallel experiment: A mixture of N-(quinolin-8-yl)pent-4-enamide (45 mg, 0.2 mmol), DTBP (110 μ L, 0.6 mmol), Cu(CH₃CN)₄PF₆ (7.4 mg, 0.02 mmol), and toluene (1 mL) in a 15 mL glass vial sealed under air atmosphere was heated at 130 °C for 8 hours. The reaction mixture cooled to room temperature and concentrated in vacuo. The resulting residue was purified by column chromatography (PE / EA = 6 / 1) on silica gel to give the product **8c** (42.3 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 8.99 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.20 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.80 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.48 (dd, *J* = 8.4, 4.0 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.24 – 7.11 (m, 6H), 5.90 (d, *J* = 14.4 Hz, 1H), 5.72 – 5.62 (m, 1H), 4.85 (t, *J* = 13.6 Hz, 2H), 4.19 (d, *J* = 14.4 Hz, 1H), 2.44 – 2.25 (m, 2H), 2.15 – 2.04 (m, 1H), 2.03 – 1.91 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.6, 150.6, 143.9, 138.9, 137.8, 137.3, 135.8, 129.7, 129.6, 128.5, 127.9, 127.7, 126.6, 125.6, 121.4, 114.2, 52.1, 33.1, 28.9. HRMS(ESI-TOF): [M+H]⁺ m/z calcd for C₁₆H₂₆NO⁺: 248.2014, found: 248.2004.

N-(naphthalen-1-ylmethyl)-N-(quinolin-8-yl)pent-4-enamide(8d)

The compound **8d** was prepared according to **8c**. Purified by silica gel column chromatography in petroleum ether : ethyl acetate = 4 : 1 gave **8d** as a white soild (52 mg, 72%). ¹**H NMR (400 MHz, CDCl₃)** δ 9.01 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.25 (d, *J* = 8.2 Hz, 1H), 8.16 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.85 – 7.78 (m, 1H), 7.71 – 7.65 (m, 2H), 7.54 – 7.45 (m, 3H), 7.16 – 7.08 (m, 2H), 6.82 (d, *J* = 6.8 Hz, 1H), 6.67 (d, *J* = 6.8 Hz, 1H), 6.57 (d, *J* = 14.4 Hz, 1H), 5.69 (ddt, *J* = 16.8, 10.2, 6.4 Hz, 1H), 4.91 – 4.78 (m, 2H), 4.62 (d, *J* = 14.4 Hz, 1H), 2.48 – 2.30 (m, 2H), 2.15 – 2.06 (m, 1H), 1.99 (ddd, *J* = 15.2, 11.6, 7.2 Hz, 1H). ¹³**C NMR (101 MHz, CDCl₃)** δ 173.0, 151.1, 144.5 138.4, 137.7, 136.3, 133.7, 133.6,

132.0, 130.5, 129.4, 128.5, 128.3, 128.2, 126.3, 125.9, 125.7, 124.9, 124.6, 121.8, 114.7, 49.7, 33.8, 29.5. **HRMS(ESI-TOF)**: [M+H]⁺ m/z calcd for C₂₅H₂₃N₂O⁺: 367.1810, found: 367.1810.

10. Stereochemistry Determination of 8d via X-ray Crystallographic Analysis.

Product 8d was crystallized as colorless crystal via evaporation of a CH2Cl2/n-hexane solution, and its absolute configuration was determined by x-ray crystallography using Cu K α radiation. From the X-ray structure, the stereochemistry of product 7d was assigned as E configuration. CCDC 1876609 (8d) contains the supplementary crystallographic data that can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

11. References

(1) Gurak, J. A. Jr.; Yang, K. S.; Liu, Z.; Engle, K. M. Directed, Regiocontrolled Hydroamination of Unactivated Alkenes via Protodepalladation. *J. Am. Chem. Soc.* **2016**, *138*, 5805.

(2) Kawamata, Y.; Hashimoto, T.; Maruoka, K. Catalytic, Regioselective Hydrocarbofunctionalization of Unactivated Alkenes with Diverse C–H Nucleophiles. *J. Am. Chem. Soc.* **2016**, *138*, 5206.

(3) Yang, K. S.; Gurak, J. A. Jr.; Liu, Z.; Engle, K. M. A Chiral Electrophilic Selenium Catalyst for Highly Enantioselective Oxidative Cyclization. *J. Am. Chem. Soc.* **2016**, *138*, 14705.

(4) Tang, C.; Zhang, R.; Zhu, B.; Fu, J.; Deng, Y.; Tian, L.; Guan W.; Bi, X. Directed Copper-Catalyzed Intermolecular Heck-Type Reaction of Unactivated Olefins and Alkyl Halides. *J. Am. Chem. Soc.* **2018**.

(5) Pierre, D.; Mayrice, C. Hydrolytic behavior of two fl-lactams and their corresponding imidate salts. New evidence for stereoelectronic control. *Can. J. Chem.* **1980**, *58*, 2061.

(6) a). Berger, M.; Chauhan, R.; Rodrigues, C. A.; Maulide, N. Bridging C-H Activation:Mild and Versatile Cleavageofthe 8-AminoquinolineDirecting Group. *Chemistry*. **2016**, *22*, 16805. b). Wu, X.; Zhao, Y.; Ge, H. Use of a Readily Removable Auxiliary Group for the Synthesis of Pyrrolidones by the Palladium-Catalyzed Intramolecular Amination of Unactivated γ -C(sp³)H Bonds. *Chemistry*. **2014**, *20*, 9530. c). Sun, W. W.; Cao, P.; Mei, R. Q.; Li, Y.; Ma, Y. L.; Wu, B. Palladium-Catalyzed Unactivated C(sp³)–H Bond Activation and Intramolecular Amination of Carboxamides: A New Approach to β -Lactams. *Org. Lett.* **2014**, *16*, 480. d). He, G.; Zhang, S. Y.; Nack, W. A.; Li, Q.; Chen, G. Nickel-Catalyzed Site-Selective Amidation of Unactivated C(sp³)H Bonds. *Angew. Chem. Int. Ed. Engl.* **2013**, *52*, 11124.

(7) Xiang, G. L.; Maria, L.; Kanerva, L. T. Burkholderia cepacia lipase and activated β -lactams in β -dipeptide and β -amino amide synthesis. *Tetrahedron.* **2008**, *19*, 1857.

12. NMR spectra

¹H NMR of 1a

¹³C NMR of 1a

¹H NMR of 1b

¹H NMR of 1c

¹³C NMR of 1c

¹H NMR of 1d

¹³C NMR of 1d

¹H NMR of 1f

¹³C NMR of 1f

¹H NMR of 1g

10.07 10

¹³C NMR of 1g

¹H NMR of 1h

¹³C NMR of 1h

¹H NMR of 1i

¹³C NMR of 1i

¹H NMR of 1k

¹³C NMR of 1k

¹H NMR of 11

¹³C NMR of 11

¹H NMR of 1m

¹³C NMR of 1m

¹H NMR of 1n

¹³C NMR of 1n

¹H NMR of 10

10.06 10

¹³C NMR of 10

¹H NMR of 1p

10.08 10

¹³C NMR of 1p

¹H NMR of 3a

¹³C NMR of 3a

¹H NMR of 3b

¹³C NMR of 3b

¹H NMR of 3c

¹³C NMR of 3c

¹H NMR of 3d

¹³C NMR of 3d

¹H NMR of 3e

¹³C NMR of 3e

¹H NMR of 3f

¹³C NMR of 3f

¹H NMR of 3g

¹³C NMR of 3g

¹H NMR of 3h

8.88 8.88 8.88 8.88 8.88 8.88 8.81 8.82 8.810 8.810 8.812 8.

¹³C NMR of 3h

¹H NMR of 3i

¹³C NMR of 3i

¹H NMR of 3j

¹³C NMR of 3j

¹H NMR of 3k

¹³C NMR of 3k

¹H NMR of 3l

¹³C NMR of 31

¹H NMR of 3m

¹³C NMR of 3m

¹H NMR of 3n

¹³C NMR of 3n

¹H NMR of 30

¹³C NMR of 30

¹H NMR of 4a

¹³C NMR of 4a

¹H NMR of 4b

¹³C NMR of 4b

¹H NMR of 5a

¹H NMR of 5b

¹⁹F NMR of 5b

¹³C NMR of 5b

¹H NMR of 5c

8.77 8.877 8.877 8.876 8.877 8.828 8.828 8.828 8.828 8.828 8.828 8.828 8.828 8.828 8.828 8.828 8.828 7.755 5.527 7.715 5.522 7.715 5.522 7.715 5.522 7.715 5.522 7.715 5.522 7.715 5.522 7.715 5.522 7.715 5.522 7.715 5.522 7.715 5.522 7.715 5.522 7.715 5.522 7.715 7.715 5.522 7.715 7.715 7.715 5.522 7.715 7

¹³C NMR of 5c

¹H NMR of 5d

¹³C NMR of 5d

¹H NMR of 5e

¹⁹F NMR of 5e

¹³C NMR of 5e

¹H NMR of 5f

¹³C NMR of 5f

¹H NMR of 5g

2.25667 2.2566

¹³C NMR of 5g

¹H NMR of 5h

¹³C NMR of 5h

¹H NMR of 5i

¹⁹F NMR of 5i

¹³C NMR of 5i

¹H NMR of 5j

¹³C NMR of 5j

¹H NMR of 5k

¹⁹F NMR of 5k

¹³C NMR of 5k

¹H NMR of 5l

¹³C NMR of 5l

¹H NMR of 5m

¹³C NMR of 5m

¹H NMR of 5n

28,25 27,77 27,25 28,55 28

¹⁹F NMR of 5n

¹³C NMR of 5n

¹H NMR of 50

¹³C NMR of 50

¹H NMR of 5p

¹³C NMR of 5p

¹H NMR of 5q

¹³C NMR of 5q

¹H NMR of 5r

¹³C NMR of 5r

¹H NMR of 5s

¹³C NMR of 5s

¹H NMR of 5t

¹³C NMR of 5t

¹H NMR of 5u

¹³C NMR of 5u

¹H NMR of 5v

¹³C NMR of 5v

¹H NMR of 5w

¹³C NMR of 5w

¹H NMR of 5x

¹³C NMR of 5x

¹H NMR of 5y

¹³C NMR of 5y

¹H NMR of 6a

¹³C NMR of 6a

¹H NMR of 6b

¹³C NMR of 6b

¹H NMR of 7b

9.64 9.64 9.65 9.64 9.65 9.65 9.66 9.67 9.67 9.67 9.68 9.67 9.67 9.67 9.68 9.67 9.73 9.73

¹³C NMR of 7b

¹H NMR of 7c

¹³C NMR of 7c

¹H NMR of 7d

¹³C NMR of 7d

¹H NMR of 7e

¹³C NMR of 7e

¹H NMR of 8a

Tool of

¹³C NMR of 8a

¹H NMR of 8d

¹³C NMR of 8d

