Electronic Supporting Information for

Wide-pH-range stable crystalline framework based on the largest tin-oxysulfide cluster [Sn₂₀O₁₀S₃₄]

Shan-Lin Huang,^{a,b} Liang He,^a Er-Xia Chen,^a Heng-Dong Lai,^a Jian Zhang,^{*,a} and Qipu Lin^{*,a}

^aState Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China ^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding Author: Email: zhj@fjirsm.ac.cn; lingipu@fjirsm.ac.cn; lingipu@fjirsm.ac.cn; <a href="mailto:lingipu@fjirsm.ac.cn"/

Table of Contents

- Section S1: General Methods
- Section S2: Synthetic Procedures
- Section S3: Crystallographic Data
- Section S4: Structural Pictures
- Section S5: Powder X-ray Diffraction (PXRD)
- Section S6: Fourier-Transform Infrared (FT-IR) Spectroscopy
- Section S7: Thermostability/Chemostability
- Section S8: Photoluminescence (PL)
- Section S9: Photocatalytic degradation
- Section S10: References

Section S1: General Methods

Chemicals: Tin tetrachloride (SnCl₄·5H₂O, 99%, powder) was purchased from J&K, dimethylamine (C₂H₇N, 40% in water, liquid) was purchased from Aladdin, propylamine (C₃H₇N, \geq 98%, liquid) and diethylamine (C₄H₁₁N, \geq 98%, liquid) were purchased from Meryer, sulfur (S, 99.9%, powder), stannous chloride dihydrate (SnCl₂·2H₂O, 99%, powder), ethanol (C₂H₆O, EtOH, 97%, liquid) and *N*,*N*-dimethylacetamide (C₄H₉NO, DMA, 97%, liquid) were purchased from Sinopharm. All chemical reagents were obtained from commercial supply without further purification.

Instrumentation: Elemental analysis (EA, with C/H/N) was carried out on a Vario EL-Cube. Powder X-ray diffraction (PXRD) patterns of the samples were recorded by a Rigaku Dmax 2500 X-ray diffractometer with Cu $K\alpha$ radiation (λ = 1.54056 Å). Thermal gravimetric analysis (TGA) was carried out on a Netzsch STA449F3 thermal analyzer at a temperature range of 25 to 800 °C under N₂ atmosphere with a heating rate of 10 °C min⁻¹. Fourier-transform infrared (FT-IR) spectra were recorded using a Nicolet iS10 spectrophotometer in 3750~450 cm⁻¹ region. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy images were obtained by a JSM-6700F. N₂ adsorption-desorption isotherms were performed on a Micromeritics ASAP 2020 surface area and pore size analyzer. Ultraviolet-visible (UV-Vis) diffuse-reflectance spectra (DRS) were performed on a Shimadzu UV-1201PC spectrophotometer. Single crystals X-ray diffraction (SCXRD) data were collected on a SuperNova diffractometer by using Cu K α radiation (λ = 1.54178 Å). The structure was solved by direct method with SHELXT program and refined by full matrix least-squares (L.S.) methods with SHELXL program of SHELX-2014 package.^[1] Mott-Schottky (MS) plots were measured on an IM 6 electrochemical system in 0.2 M Na_2SO_4 electrolyte at room temperature with Ag/AgCl electrode as the reference electrode and Pt plate as the counter electrode, at the frequencies of 1500, 2000 and 2500 Hz. Before testing, the slurry was prepared by mixing 5 mg sample with 480 μ L ethanol and 20 μ L Nafion, then the working electrodes were prepared by depositing 10 µL of the prepared slurry on the surface of FTO glass plates. Photocurrent density was obtained in the presence of 0.2 M Na₂SO₄-H₂O using a three-electrode cell, consisting of an F-doped SnO₂ (FTO) electrode coated with a thin layer of ground sample, a Pt-foil counter-electrode, and an Ag/AgCl reference electrode. Photocatalytic reactions were carried out in a quartz reactor with a water-cooling system. Prior to irradiation, the 3D-T4-SnOS/RhB suspension (30 mg of 3D-T4-SnOS in 50 mL of rhodamine B of 0.202 mmol L⁻¹) was magnetically stirred for 1 hour and then stood for 10 hours in the dark to establish the adsorption/desorption equilibrium. Then, a 300 W Xe lamp with a 420 nm cut-off filter was used as illuminating source. At a regular interval of time (0.5 hour), 1 mL of reaction solution was extracted and filtrated to remove the solid-state species. The absorbance of the filtrated solution was measured by using UV-Vis spectroscopy. After reaction, the mixture was centrifuged and the powder was collected for the PXRD testing.

Section S2: Synthetic Procedures

(1) Synthesis of 3D-T4-SnOS

S powder (60 mg, 1.88 mmol), SnCl₂·2H₂O, (54 mg, 0.24 mmol), SnCl₄·5H₂O (428 mg, 1.22 mmol), propylamine (C₃H₇N, 3.0 mL), *N*,*N*-dimethylacetamide (C₄H₉NO, 3.0 mL) and ethanol (C₂H₆O, 1.0 mL) were mixed in a 23 mL teflon-lined stainless autoclave and stirred for about 30 minutes. The vessel was sealed and heated at 160 °C for 7 days. After cooling to room temperature, yellow octahedral crystals of 3D-T4-SnOS were obtained after washing with DMA and EtOH to remove precipitates, and then dried in air (ca. 42% yield based on sulfur). EA data: C 11.52, H 2.12, N 3.04, S 22.95%, calculated for C₄₈H₁₂₅N₉O₂₃S₃₂Sn₂₀ C 11.31, H 2.33, N 3.14, S 23.04%. IR: *v* (cm⁻¹) = 2923 (w), 1610 (m), 1458 (w), 1395 (w), 1262 (w), 1115 (w), 1015 (w), 630 (s), 556 (w), 420 (w).

(2) Synthesis of 2D-T3-SnOS (with the same T3-Sn₁₀O₄S₂₀ cluster and two-dimensional network as TMA-SnOS-SB3)^[2]

S powder (110 mg, 3.44 mmol), $SnCl_4 \cdot 5H_2O$ (383 mg, 1.09 mmol), dimethylamine (C_2H_7N , 2.0 mL) and diethylamine ($C_4H_{11}N$, 4.0 mL) were mixed in a 23 mL teflon-lined stainless autoclave and stirred for about 30 minutes. The vessel was sealed and heated at 180 °C for 8 days. After cooling to room temperature, pale-yellow octahedral crystals of 2D-T3-SnOS were obtained after washing with EtOH to remove precipitate, and then dried in air (ca. 27% yield based on sulfur). IR: v (cm⁻¹) = 3490 (w), 3046 (m), 2974 (m), 2762 (w), 1569 (w), 1442 (m), 1383 (w), 1053 (w), 1020 (w), 773(w), 570 (s).

Section S3: Crystallographic Data

Table S1	Crystallographic data of 3D-T4-SnOS
----------	-------------------------------------

Compound Reference	3D-T4-SnOS
Chemical Formula	$(C_{3}H_{8}N)_{4}[Sn_{20}O_{10}S_{32}]\cdot(C_{4}H_{9}NO)_{5}(C_{2}H_{6}O)_{8}$
Formula Mass	4604.35
Crystal System	Tetragonal
a/Å	23.5105(5)
b/Å	23.5105(5)
c/Å	40.205(3)
<i>α/</i> °	90
в/°	90
γ/°	90
Unit-Cell Volume/ Å ³	22223(2)
Temperature/K	293(2)
Space Group	I4 ₁ /acd
No. of Formula Units Per Unit-Cell, Z	8
No. of Reflections Measured	20736
No. of Independent Reflections	5597
R _{int}	0.0384
Final R_1 Values ($l > 2\sigma(l)$)	0.0410
Final $wR(F^2)$ Values ($I > 2\sigma(I)$)	0.1077
Final R_1 Values (all data)	0.0539
Final <i>wR</i> (<i>F</i> ²) Values (all data)	0.1173
Goodness of Fit on <i>F</i> ²	1.012
CCDC Number	1909342

Section S4: Structural Pictures

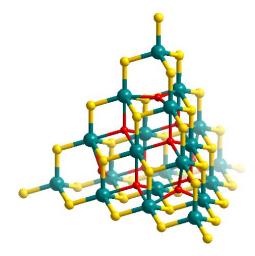


Fig. S1 Supertetrahedral filled-T4 " $[Sn_{20}O_{10}S_{34}]$ " cluster with the missing of the central sulfide anion of 3D-T4-SnOS.

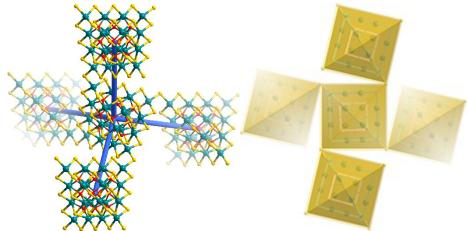


Fig. S2 Linkage mode between filled-T4 " $[Sn_{20}O_{10}S_{34}]$ " clusters, each of which connects to four neighbors via four μ_2 -S²⁻-linkers of 3D-T4-SnOS.

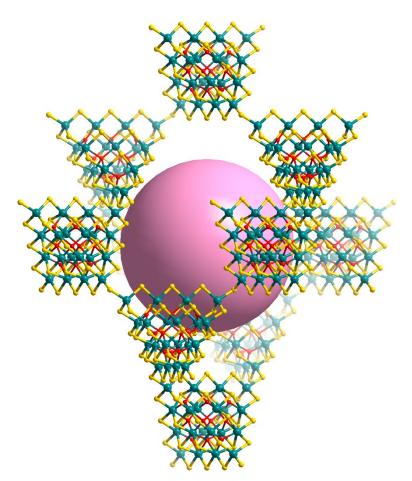


Fig. S3 Adamantane cage surrounded by 10 supertetrahedral filled-T4-" $[Sn_{20}O_{10}S_{34}]$ " clusters of 3D-T4-SnOS.

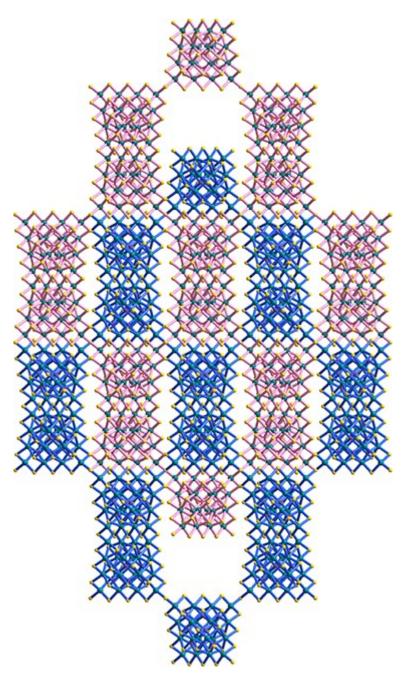


Fig. S4 Two-interpenetrated dia-typed framework of 3D-T4-SnOS in ball-stick fashion.

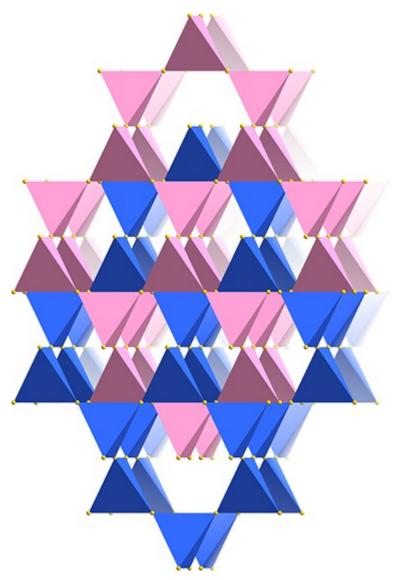


Fig. S5 Polyhedral scheme of two-interpenetrated dia-network of 3D-T4-SnOS.

Section S5: Powder X-ray Diffraction (PXRD)

Fig. S6 Experimental and simulated PXRD patterns of 3D-T4-SnOS.

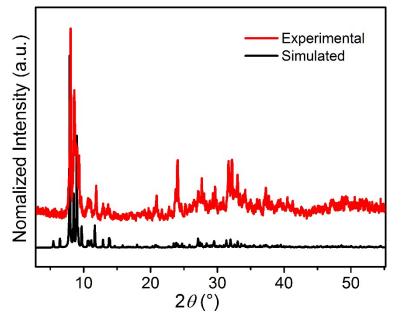
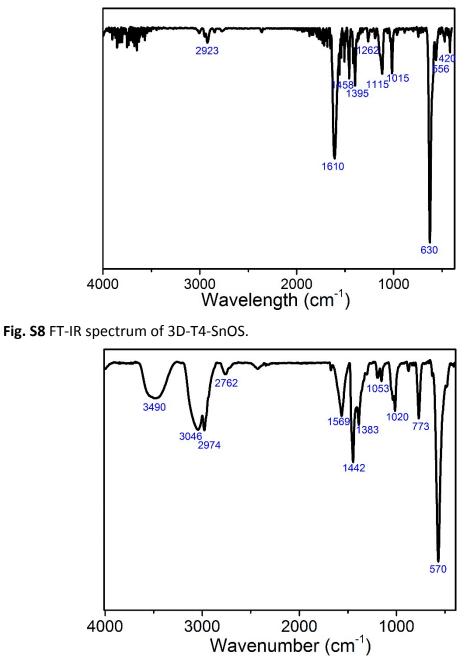



Fig. S7 Experimental and simulated PXRD patterns of 2D-T3-SnOS.

Section S6: Fourier-Transform Infrared Spectroscopy (FT-IR)

Fig. S9 FT-IR spectrum of 2D-T3-SnOS.

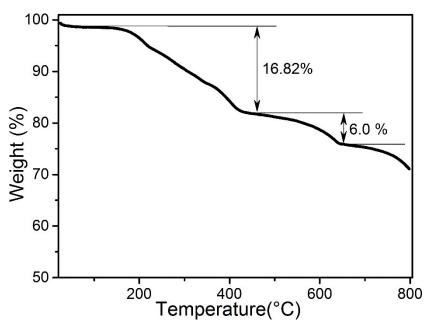


Fig. S10 TGA curve of 3D-T4-SnOS under N_2 atmosphere.

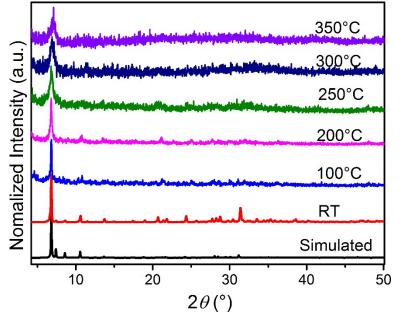


Fig. S11 Temperature-dependent PXRD patterns of 3D-T4-SnOS under N_2 atmosphere.

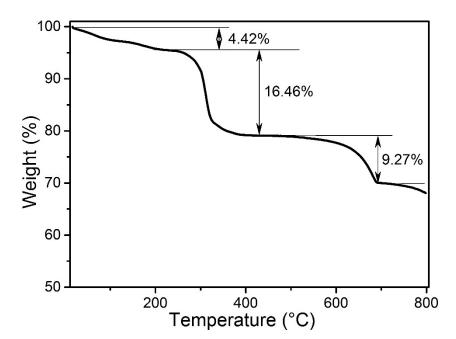
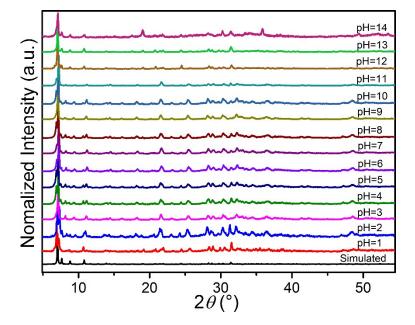



Fig. S12 TGA curve of 2D-T3-SnOS under N_2 atmosphere.

Fig. S13 PXRD patterns of 3D-T4-SnOS after immersion in aqueous solution with pH of 1~14 for 7 days.

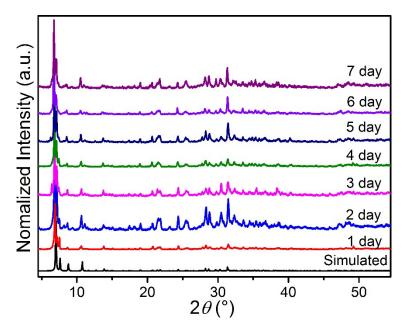


Fig. S14 PXRD patterns of 3D-T4-SnOS after immersion in pH = 1 aqueous solution for

1~7 days.

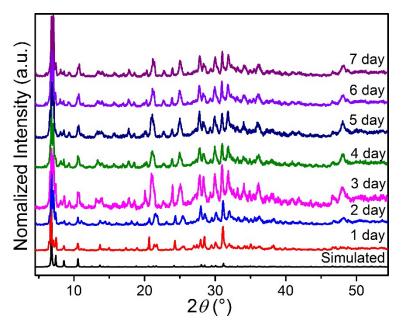
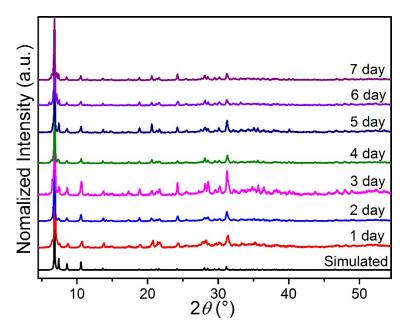
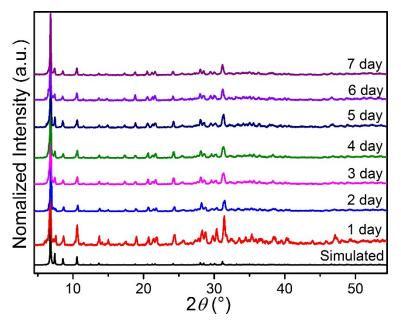
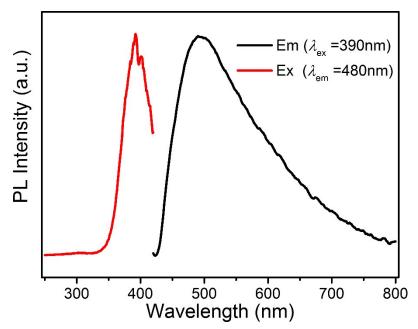


Fig. S15 PXRD patterns of 3D-T4-SnOS after immersion in pH = 2 aqueous solution for $1\sim7$ days.


Fig. S16 PXRD patterns of 3D-T4-SnOS after immersion in pH = 12 aqueous solution

for 1~7 days.

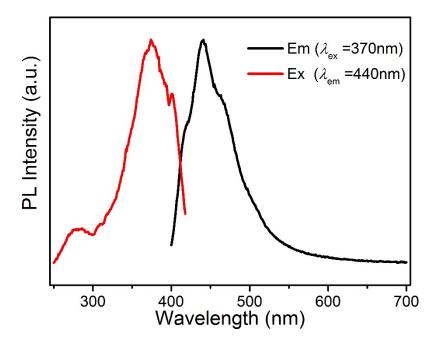


Fig. S17 PXRD patterns of 3D-T4-SnOS after immersion in pH = 13 aqueous solution for 1~7 days.

Section S8: Photoluminescence (PL)

Fig. S18 PL excitation (λ_{em} = 490 nm) and emission (λ_{ex} = 391 nm) spectra of 3D-T4-SnOS at room temperature.

Fig. S19 PL excitation (λ_{em} = 440 nm) and emission (λ_{ex} = 375 nm) spectra of 2D-T3-SnOS at room temperature.

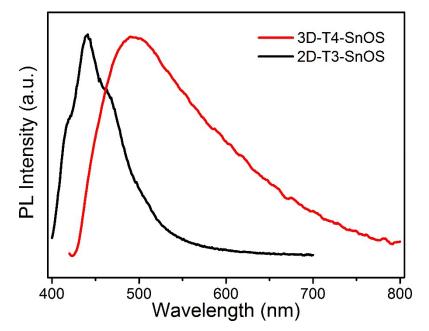
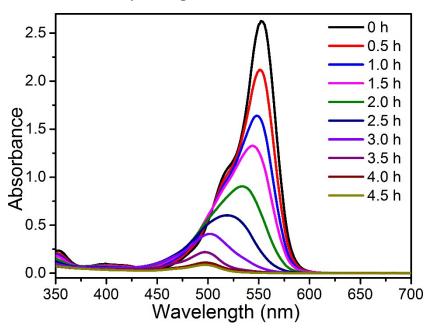
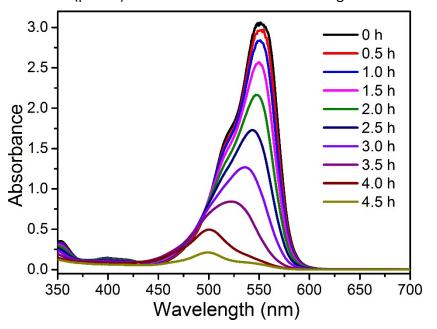
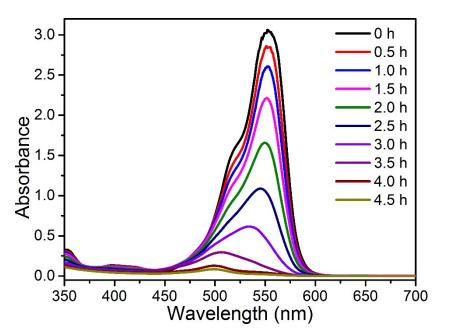
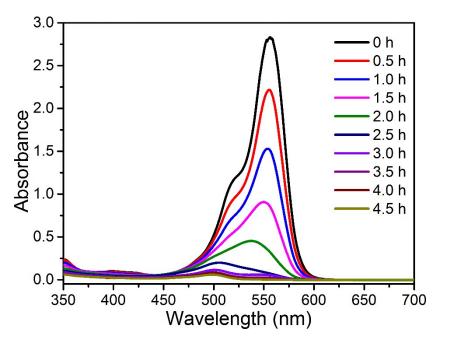




Fig. S20 PL emission spectra of 3D-T4-SnOS (λ_{ex} = 391 nm) and 2D-T3-SnOS (λ_{ex} = 375 nm) at room temperature.


Section S9: Photocatalytic degradation


Fig. S21 UV-Vis absorption spectra during the photodegradation of rhodamine B in aqueous solution (pH = 7) over 3D-T4-SnOS under visible light irradiation.

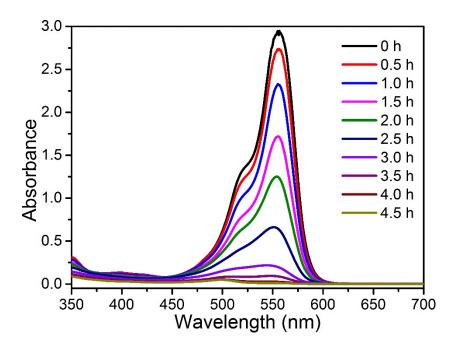

Fig. S22 UV-Vis absorption spectra during the photodegradation of rhodamine B in aqueous solution (pH = 5) over 3D-T4-SnOS under visible light irradiation.

Fig. S23 UV-Vis absorption spectra during the photodegradation of rhodamine B in aqueous solution (pH = 3) over 3D-T4-SnOS under visible light irradiation.

Fig. S24 UV-Vis absorption spectra during the photodegradation of rhodamine B in aqueous solution (pH = 2) over 3D-T4-SnOS under visible light irradiation.

Fig. S25 UV-Vis absorption spectra during the photodegradation of rhodamine B in aqueous solution (pH = 1) over 3D-T4-SnOS under visible light irradiation.

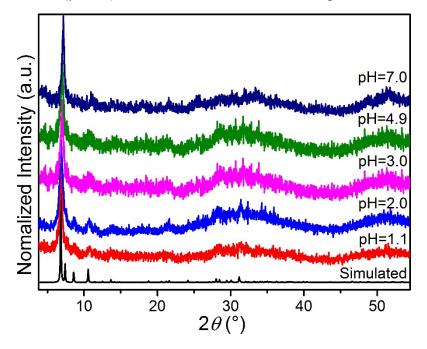


Fig. S26 PXRD patterns of 3D-T4-SnOS after photodegradation reactions.

Section S10: References

[1] J. B. Parise, Y Ko, K. Tan, D. M. Nellis and S. Koch, *J. Solid State Chem.*, 1995, **117**, 219-228.

[2] G. M. Sheldrick, Program for Crystal Structure Solution (University of Göttingen: Göttingen, Germany, 1997); SHELXT-Integrated Space-Group and Crystal-Structure Determination, *Acta Cryst.*, 2015, **A71**, 3-8; O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, 2009, **42**, 339-341.