SUPPORTING INFORMATION

Inorganic-Organic Hybrid High-dimensional Polyoxotantalates and Their Structural Transformations Triggered by Water

Zhong Li, Jing Zhang, Li-Dan Lin, Jin-Hua Liu, Xin-Xiong Li* and Shou-Tian Zheng*

State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
E-mail: lxx@fzu.edu.cn; stzheng@fzu.edu.cn

This file includes:

Section S1 Syntheses and Methods
Section S2 Additional Tables
Section S3 Additional Figures
Section S4 Characterization Spectra of Compounds 1 to 6
Section S5 Proton conductivities of the reported main POM-based materials
Section S1: Syntheses and Methods

1. Solvothermal Syntheses:

Synthesis of $\text{H}_2[\text{Cu(en)}_2(\text{H}_2\text{O})_2]([\text{Cu(en)}_2]\text{Na}_2(\text{H}_2\text{O})_2][\text{Cu(en)}\text{Ta}_6\text{O}_{19})_2]\cdot 14\text{H}_2\text{O}$ (1): A mixture of $\text{Na}_8[\text{Ta}_6\text{O}_{19})_2 24.5\text{H}_2\text{O}$ (Ta_6) (0.055 g), $\text{CrCl}_3\cdot 6\text{H}_2\text{O}$ (0.025 g) and CuSCN (0.053 g) was added into 4 mL of $\text{C}_4\text{H}_8\text{O}_2/\text{H}_2\text{O}$ (1:1) ($\text{C}_4\text{H}_8\text{O}_2 = 1,4$-dioxane). Further, 0.10 mL en (en=ethylendiamine) was added to this solution and stirred for an hour, and then transferred into a Teflon-lined stainless steel autoclave (25 mL) and kept at 100 °C for 3 days, finally cooled to room-temperature. After washed by ethanol, violet bar crystals were obtained. Yield: 15 mg (25.8% based on Ta_6). Elemental analysis calcd (found %) for 1: C, 8.55 (6.80); H, 3.91 (3.09); N, 9.97 (7.93).

Synthesis of $\text{H}_2[\text{Cu(enMe)}_2(\text{H}_2\text{O})_2][\text{Na}_2(\text{H}_2\text{O})_2][\text{Cu(enMe)}_2][\text{Cu(enMe)}\text{Ta}_6\text{O}_{19})_2]\cdot 26\text{H}_2\text{O}$ (3): A mixture of Ta_6 (0.090 g), $\text{CrCl}_3\cdot 6\text{H}_2\text{O}$ (0.037 g) and CuSCN (0.057 g) was added into 4 mL of $\text{C}_4\text{H}_8\text{O}_2/\text{H}_2\text{O}$ (1:1). Further, 0.10 mL enMe (enMe= 1,2-Diaminopropane) was added to this solution and stirred for an hour, and then transferred into a Teflon-lined stainless steel autoclave (25 mL) and kept at 100 °C for 3 days, finally cooled to room-temperature. After washed by ethanol, violet slice crystals were obtained. Yield: 15 mg (15.3% based on Ta_6). Elemental analysis calcd (found %) for 3: C, 6.22 (5.47); H, 3.83 (4.13); N, 4.83(6.38).

Synthesis of $\text{H}_2[\text{Cu(en)}_2(\text{H}_2\text{O})_2][\text{Na}_2(\text{H}_2\text{O})_2][\text{Cu(en)}\text{Ta}_6\text{O}_{19})_2]\cdot 10\text{H}_2\text{O}$ (5): A mixture of Ta_6 (0.050 g), $\text{CrCl}_3\cdot 6\text{H}_2\text{O}$ (0.035 g), $\text{Na}_2\text{MoO}_4\cdot 2\text{H}_2\text{O}$ (0.040) and CuSCN (0.030 g) was added into 4 mL of $\text{C}_4\text{H}_8\text{O}_2/\text{H}_2\text{O}$ (1:1). Further, 0.10 mL en was added to this solution and stirred for an hour, and then transferred into a Teflon-lined stainless steel autoclave (25 mL) and kept at 100 °C for 3 days, finally cooled to room-temperature. After washed by ethanol, violet bar crystals were obtained. Yield: 20 mg (41.1% based on Ta_6). Elemental analysis calcd (found %) for 5: C, 4.64 (4.64); H, 2.88 (3.34); N, 5.41 (5.43).

Synthesis of $\text{H}_2[\text{Na}_2(\text{H}_2\text{O})_2][\text{Cu(en)}_2][\text{Cu(en)}\text{Ta}_6\text{O}_{19})_2]\cdot 8\text{H}_2\text{O}$ (6): A mixture of Ta_6 (0.130 g), $\text{CrCl}_3\cdot 6\text{H}_2\text{O}$ (0.021 g), $\text{NaBO}_3\cdot 4\text{H}_2\text{O}$ (0.035) and CuSCN (0.050 g) was added into 4 mL of $\text{NaCO}_3/\text{NaHCO}_3$ (0.5M, PH=10.5) buffer solution. Further, 0.10 mL en was added to this solution and stirred for an hour, and then transferred into a Teflon-lined stainless steel autoclave (25 mL) and kept at 100 °C for 3 days, finally cooled to room-temperature. After washed by ethanol,
violet bar crystals were obtained. Yield: 40 mg (29.6% based on Ta_6). Elemental analysis calcd (found %) for 6: C, 4.60 (5.83); H, 2.94 (3.74); N, 5.36 (6.75).

2. Structural transformations triggered by water

Synthesis of $\text{H}_2\{[\text{Cu}\text{(en)}]_3\text{[Cu}\text{(en)}\text{(H}_2\text{O})_2\text{Cu}\text{(en)}\text{(Ta}_6\text{O}_{19})]_2\}\cdot\text{30H}_2\text{O} \ (2)$: Violet bar of crystalline sample 1 was removed from the mother liquor and washed with ethanol. And then, the sample was dissolved in 2 ml water at room temperature. After more than one day, a spot of violet block crystals of 2 were obtained.

Synthesis of $\text{H}_4\{\text{Na}_4\text{(H}_2\text{O})_{18}\}\{[\text{Cu}\text{(enMe)}]_2\text{[Cu}\text{(enMe)}\text{(Ta}_6\text{O}_{19})]_2\}\cdot\text{10H}_2\text{O} \ (4)$: Violet slice of crystalline sample 3 was removed from the mother liquor and washed with ethanol. And then, the sample was dissolved in 2 ml water at room temperature. One week later, violet slice crystals of mixture 3 and 4 were obtained.

3. Synthetic Discussion

It has been known that the synthesis of novel polyoxotantalates (POTas) remains an enormous challenge in polyoxometalate chemistry. In this work, the successful syntheses of the series of novel transition-metal-bridged inorganic-organic hybrid POTas are attributed to the following considerations: 1) According to literature (*J. Struct. Chem.* 2011, **52**, 1012–1017), a kind of soluble tantalate salt $\text{Na}_8\text{[Ta}_6\text{O}_{19}]\cdot\text{24.5H}_2\text{O}$ was prepared as a precursor by using easily available but insoluble oxide Ta_2O_5 as raw material. 2) Owing to strong alkalinity of initial reaction solutions, we chose copper to react with $\text{Na}_8\text{[Ta}_6\text{O}_{19}]\cdot\text{24.5H}_2\text{O}$. Different from most 3d transition-metal cations, Cu ion is an amphoteric cation which can dissolve in both acidic and basic solutions. Additionally, Cu-en/enMe complexes can not only act as bridges in linking polyoxotantalate clusters into extended structures, but also serve as flexible charge compensation cations to meet the charge balance for growing bulk crystals. 3) The Cu1 salt is indispensable for the formation of these extended POTas. Parallel experiments showed that no crystals could be obtained if Cu1 species were removed from the reactions system. Parallel experiments showed that if the Cu1-containing reactant is replaced by CuII-containing reactant, nothing could be got but precipitates. 4) CrCl$_3$ is the other important additive for the formation these extended POTas, though it is not present in the final products. During our exploration, we also tried to replace Cr$^{3+}$ with different metals (e.g., Cs$^+$, Ca$^{2+}$, Ba$^{2+}$, Mn$^{2+}$, Fe$^{2+}$, Fe$^{3+}$, Co$^{2+}$, Ni$^{2+}$,
Ln$^{3+}$ Sc$^{3+}$, Ti$^{4+}$, Zr$^{4+}$) for making heterometallic POTas, but we are fruitless. 5) With the aim of increasing solubility and reaction activity of reactants, we adopted a mixed solvents strategy and thus systematically explored the combination of different solvents with water, such as dichloromethane, acetonitrile, acetone, ethanol, benzene, methylbenzene, N,N-Dimethylformamide, and N,N-Dimethylacetamide, etc. Interestingly, only the combination of 1,4-dioxane (boiling point: 101 °C) with water (boiling point: 100 °C), which are similar in boiling point, is likely to greatly increase solubility and reaction activity of reactants.

4. Characterization Methods

Single-crystal structure analysis: Crystal data were collected on a Bruker APEX II diffractometer at 175 K equipped with a fine focus, 2.0 kW sealed tube X-ray source (MoK radiation, $\lambda = 0.71073$ Å) operating at 50 kV and 30 mA. Structures were solved by direct methods followed by successive difference Fourier methods. Computations were performed using SHELXTL 2013 and final full-matrix refinements were against F^2. All non-hydrogen atoms were refined anisotropically. Due to porous structure and electron density of heavy atom, the guests within structure are highly disordered and thus couldn’t be exactly determined, which are finally evaluated by the results of TGA analysis. The contribution of these disordered solvent molecules to the overall intensity data of all structures were treated using the SQUEEZE method in PLATON. Crystallographic data for compounds 1-6 are given in Table S1. CCDC: 1866075-1866080 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Proton Conduction measurement: The dependence of the proton conduction on the relative humidity and temperature of sample were performed on Zennium/IM6 impedance analyzer over the frequency ranging from 0.1Hz to 5MHz with an applied voltage of 10 mV. The relative humidity and temperature was controlled by a STIKCorp CIHI-150BS3 incubator. The test sample was pressed to form a cylindrical pellet of crystalline powder sample (~1mm thickness × 5mm diameter) coated with C-pressed electrodes, and both sides of sample pellet were attached to two silver electrodes. The self-made device containing cylindrical pellet was placed in constant
temperature & humidity incubator before testing in a temperature range from 25 °C to 75 °C and relative humidity between 55% -98%.

Others: Powder XRD patterns were obtained using a Rigaku Ultima IV diffractometer with Cu Kα radiation (λ = 1.54056 Å). Elemental analyses (C, H and N) were performed by using a Vario EL III elemental analyzer. IR spectra were recorded on Nicolet iS50 FT-IR spectrometer in the range of 4000-450 cm⁻¹. Thermal analyses were performed from 30 °C to 600 °C in a dynamic air atmosphere with a heating rate of 10 °C/min, using a NETZSCH STA 449C thermal analyzer.

Section S2 Additional Tables

<table>
<thead>
<tr>
<th>Compounds</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>H₁₁₀C₂₄N₃₂O₆₄</td>
<td>H₁₁₀C₂₀N₂₀O₇₂</td>
<td>H₁₇₆C₂₄N₁₆O₈₅</td>
<td>H₁₂₀C₁₀N₁₂O₆₆</td>
<td>H₱₈C₁₆N₁₆O₆₄</td>
<td>H₁₂₂C₁₀N₁₉O₆₆</td>
</tr>
<tr>
<td>formula weight</td>
<td>4235.61</td>
<td>4439.69</td>
<td>4630.77</td>
<td>4078.70</td>
<td>4140.24</td>
<td>4176.27</td>
</tr>
<tr>
<td>crystal system</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Triclinic</td>
<td>Triclinic</td>
<td>Monoclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>space group</td>
<td>P₂₁/c</td>
<td>C2/m</td>
<td>P-1</td>
<td>P-1</td>
<td>C₂/m</td>
<td>P-1</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.4000(12)</td>
<td>27.114(5)</td>
<td>13.8976(9)</td>
<td>12.9552(16)</td>
<td>15.6559(11)</td>
<td>13.1771(15)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>14.4623(17)</td>
<td>27.532(5)</td>
<td>14.5477(9)</td>
<td>15.3682(19)</td>
<td>19.7079(14)</td>
<td>14.1882(15)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>30.300(4)</td>
<td>18.723(4)</td>
<td>15.7824(10)</td>
<td>16.483(2)</td>
<td>14.9410(10)</td>
<td>15.5444(17)</td>
</tr>
<tr>
<td>α (°)</td>
<td>90</td>
<td>90</td>
<td>79.5988(15)</td>
<td>65.831(2)</td>
<td>90</td>
<td>92.667(2)</td>
</tr>
<tr>
<td>β (°)</td>
<td>97.551(2)</td>
<td>129.823(2)</td>
<td>66.3800(13)</td>
<td>84.959(2)</td>
<td>94.2070(10)</td>
<td>100.540(2)</td>
</tr>
<tr>
<td>γ (°)</td>
<td>90</td>
<td>90</td>
<td>79.5988(15)</td>
<td>65.831(2)</td>
<td>90</td>
<td>92.667(2)</td>
</tr>
<tr>
<td>volume (Å³), Z</td>
<td>4517.8(9), 2</td>
<td>10735(3), 4</td>
<td>2701.1(3), 1</td>
<td>2740.7(6), 1</td>
<td>4597.5(6), 2</td>
<td>2653.8(5), 1</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>296</td>
<td>296</td>
<td>296</td>
<td>296</td>
<td>296</td>
<td>296</td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>16.168</td>
<td>13.602</td>
<td>13.168</td>
<td>12.772</td>
<td>15.453</td>
<td>13.397</td>
</tr>
<tr>
<td>θ range (°)</td>
<td>1.563 - 25.052</td>
<td>2.048 - 25.006</td>
<td>1.703 - 23.500</td>
<td>1.580 - 24.000</td>
<td>1.664 - 23.999</td>
<td>1.691 - 25.130</td>
</tr>
<tr>
<td>reflns collected / unique</td>
<td>15327 / 7928</td>
<td>23018 / 9596</td>
<td>14263 / 7691</td>
<td>15629 / 8423</td>
<td>12875 / 3674</td>
<td>18608 / 9320</td>
</tr>
<tr>
<td>restraints / parameters</td>
<td>66 / 547</td>
<td>54 / 508</td>
<td>366 / 571</td>
<td>377 / 487</td>
<td>145 / 273</td>
<td>49 / 550</td>
</tr>
<tr>
<td>completeness / %</td>
<td>98.9%</td>
<td>99.1%</td>
<td>96.1%</td>
<td>98.0%</td>
<td>98.3%</td>
<td>98.2%</td>
</tr>
<tr>
<td>GOF on F²</td>
<td>0.999</td>
<td>0.998</td>
<td>1.091</td>
<td>1.008</td>
<td>1.078</td>
<td>1.078</td>
</tr>
<tr>
<td>R int</td>
<td>0.0594</td>
<td>0.0509</td>
<td>0.393</td>
<td>0.0368</td>
<td>0.0341</td>
<td>0.0314</td>
</tr>
<tr>
<td>R1, wR2 [I > 2σ(I)]</td>
<td>R₁ = 0.0520</td>
<td>R₁ = 0.0430</td>
<td>R₁ = 0.0490</td>
<td>R₁ = 0.0483</td>
<td>R₁ = 0.0301</td>
<td>R₁ = 0.0489</td>
</tr>
</tbody>
</table>
Table S2 Comparison of the proton conductivity of some POM-based conducting materials.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Conductivity [S cm⁻¹]</th>
<th>Condition (Temp., RH)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₄[Na₃(H₂O)₁₂₄][K₂Ge₄W₂O₇(K₂O)₆₀]:solvent</td>
<td>6.80 × 10⁻² S cm⁻¹</td>
<td>85 °C, 98% RH</td>
<td>S1</td>
</tr>
<tr>
<td>K₅Na₅Li₅[[Na(NO₃)₃(H₂O)]₁₂₄[Al₁₄(OH)₂₄(H₂O)₆O₆P₃W₄O₁₈]₆₆H₂O</td>
<td>4.50 × 10⁻² S cm⁻¹</td>
<td>85 °C, 70% RH</td>
<td>S2</td>
</tr>
<tr>
<td>Na₃[H₃[N(CH₂PO₃)₃]]Mo₇O₁₆[OH][H₂O]₄·18H₂O</td>
<td>2.55 × 10⁻² S cm⁻¹</td>
<td>100 °C, 98% RH</td>
<td>S3</td>
</tr>
<tr>
<td>[P₂Mo₅O₁₆]₃[C₆H₄N₂]₂·H₂O</td>
<td>1.91 × 10⁻² S cm⁻¹</td>
<td>50 °C, 98% RH</td>
<td>S4</td>
</tr>
<tr>
<td>[La₃(H₂O)₁₆][P₃W₁₅Ta₄O₆₂]·16H₂O</td>
<td>1.26 × 10⁻² S cm⁻¹</td>
<td>95 °C, 98% RH</td>
<td>S5</td>
</tr>
<tr>
<td>[(CH₃)₄N]₃·K₆·Na₃·Li₃·C[(MoV₅O₂S₄)₈(Se₄O₈)₆(OH)₂]·25H₂O</td>
<td>1.20 × 10⁻² S cm⁻¹</td>
<td>55 °C, 97% RH</td>
<td>S6</td>
</tr>
<tr>
<td>H₂[Cu(en)]₂(H₂O)₃[[Cu(en)]₂₄[Cu(en)][Ta₆O₁₉]₃]·14H₂O</td>
<td>1.04× 10⁻² S cm⁻¹</td>
<td>75 °C, 98% RH</td>
<td>This work</td>
</tr>
<tr>
<td>{Na₂[[nBu₄N]₁₂][Zn(P₃Mo₅O₁₆)₂]₂}</td>
<td>1.04 × 10⁻² S cm⁻¹</td>
<td>80 °C, 75% RH</td>
<td>S7</td>
</tr>
<tr>
<td>Na₄K₄(H₂pip)₃H₂₅[[Cu(pip)]₃₄[La₃Ge₄W₁₆O₄₉(OH)₄(H₂O)₂₆]·127H₂O</td>
<td>5.30 × 10⁻³ S cm⁻¹</td>
<td>85 °C, 98% RH</td>
<td>S5</td>
</tr>
<tr>
<td>[Sm(H₂O)₃(CO₂CH₂NH₂)]₃[Al(OH)₃Mo₃O₁₈]·10H₂O</td>
<td>4.53 × 10⁻³ S cm⁻¹</td>
<td>80 °C, 95% RH</td>
<td>S8</td>
</tr>
<tr>
<td>[H₃(3-PyBim)₃][PMo₁₂O₄₀]·3.5H₂O·CH₃CN·CH₃OH</td>
<td>3.34 × 10⁻³ S cm⁻¹</td>
<td>100 °C, 98% RH</td>
<td>S9</td>
</tr>
<tr>
<td>Na₆[NH₄]₁₆[WAY₄O₁₆]₃[[W₅B₆O₄₆]₃[Mo₃W₃O₂₄]·[Bi₃W₆O₂₄]₃·ca₃8H₂O</td>
<td>2.40 × 10⁻³ S cm⁻¹</td>
<td>25 °C, 98% RH</td>
<td>S10</td>
</tr>
<tr>
<td>[Co(bpz)][Hbpz)]₃[Co(SO₄)₂][H₂O]₂(bpz)]₄[PMO₁₂Mo₄V₄O₄₄]·13H₂O</td>
<td>1.50 × 10⁻³ S cm⁻¹</td>
<td>75 °C, 98% RH</td>
<td>S11</td>
</tr>
<tr>
<td>[H₃(3-PyBim)₃][PMo₁₂O₄₀]·4H₂O·CH₃CN</td>
<td>1.36 × 10⁻³ S cm⁻¹</td>
<td>100 °C, 98% RH</td>
<td>S9</td>
</tr>
<tr>
<td>[H₃Ni(Hbpdc)(H₂O)₉][PW₁₂O₄₀]·8H₂O·H₂O·n</td>
<td>1.35 × 10⁻³ S cm⁻¹</td>
<td>100 °C, 98% RH</td>
<td>S12</td>
</tr>
<tr>
<td>[M(H₂O)₉][H(H₂O)₉][HINO]₃[PO₄]₆(M=Zn, Mn, Cu; X=W, Mo)</td>
<td>1.30 × 10⁻³ S cm⁻¹</td>
<td>100 °C, 98% RH</td>
<td>S13</td>
</tr>
</tbody>
</table>
Section S3 Additional Figures

Figure S1 View of 2D layer built by the dimers \(\text{CuTa}_6\)\(_2\) and Cu3 complexes in compound 1

Figure S2 View of 1D chain built by the dimers \(\text{CuTa}_6\)\(_2\) and Cu1 complexes in compound 1
Figure S3 View of the 1D channels of framework 1 filled with [Cu(en)$_2$(H$_2$O)$_2$]$^{2+}$ complexes and lattice water molecules.

Figure S4 The crystal morphology of 3 and 4.

Figure S5 Structures of the 1D chain of a) compound 5; b) compound 6
Section S4 Characterization Spectra of Compounds 1-6

Figure S6 PXRD patterns of compounds 1-6.

PXRD patterns show that as-synthesized samples 1 to 3 and samples 5 to 6 are pure phases. While the pure phase of sample 4 cannot be obtained since only part of compound 3 could transform into compound 4. As the obtained product contains mixed phases, the following characterization spectra (IR, TG) for compound 4 are not provided.
Figure S7 Thermodiffactograms of the as-synthesized sample 3.

In the IR spectra, the CH$_2$ and NH$_2$ stretching bands are observed at $\tilde{\nu} = 2900$ to 3200, and their bending bands are observed at $\tilde{\nu} = 1100$ to 1600 cm$^{-1}$. These signals confirm the presence of organic amine species in the products. The peaks at $\tilde{\nu} = 1060$-450 cm$^{-1}$ are assigned to the ν(Ta–O$_t$) and ν(Ta–O$_b$–M) stretching vibrations. The peak at $\tilde{\nu} = 3400$ cm$^{-1}$ is assigned to the water molecules.

Figure S8 IR spectra of as-synthesized samples
The guests in the formulas include water molecules. One of that is the water ligands linking to alkali metal ions or copper ions, which are determined by single-crystal X-ray diffraction, and the other ones are free water guests. It is hard to confirm the exact amount of isolated guests. So, TG analyses were performed to roughly calculate the amount of guests in compounds. As shown in Figure S9, The TG curves of compounds indicate that the first weight loss stage occurring from RT to 200 °C should be attributed to the loss of free water guests. Based on the first weight losses of ca. 7.8% for 1, 15.2% for 2, 10.1% for 3, 5.6% for 5 and 3.7% for 6, it can be found that there are about 10, 30, 26, 10 and 8 water guests, respectively.

Figure S10 The solid-state diffuse reflectance UV–vis spectra of as-synthesized samples
The UV diffuse spectra of compounds show three absorption bands in the range 200 to 800 nm. The absorption peak around 270 nm attribute to oxide-to-metal (O→Ta) charge transfer (OMCT) transitions.514 There are two characteristic absorptions at in the range of 350 and 700 nm, which can be ascribed to the ligand-to-metal charge-transfer and the d–d transition of \([\text{Cu(en)}_2(\text{H}_2\text{O})]^{2+}/[\text{Cu(enMe)}_2(\text{H}_2\text{O})]^{2+}\) complexes.515-516

![Figure S11](image)

Figure S11 Simulated and experimental PXRD patterns of 1 after proton conductivity test, showing that the framework of 1 is intact during the measurement process.

References