Catalytic cross-dimerisation giving reactive borylated polyenes toward Cross-Coupling

Masafumi Hirano,* Ayumi Kuramochi, Keita, Shimada, Nobuyuki Komine, Sayori Kiyota, and Stephen A. Westcott

Abstract: A series of borylated conjugated trienes and skipped dienes is prepared by Ru-catalysed cross-dimerisation using alkynyl-, dienyl-, and vinyl boronate. As an example, cross-dimerisation of 1-pentynyl boronic acid diisopropyl ester (**2a**) with methyl (*E*)-pentadienoate (**3a**) was catalysed by [Ru(η^6 -naphthalene)(η^4 -1,5-cyclooctadiene)] (**1**: 10 mol %) at room temperature for 24 h produced a borylated conjugated triene, methyl (*2E*,4*E*,6*E*)-(7-diisopropoxylboraneyl)-6-propylhepta-2,4,6-trienoate in 93% yield. These products are used for synthetic building blocks of polyene substructures by subsequent Pd-catalysed cross-coupling in a one-pot vessel without deprotection. For example, after treatment of **2a** with **3a** in the presence of **1** in benzene for 24 h at room temperature, the subsequent cross-coupling of the product with phenyl iodide catalyzed by [Pd(PPh_3)₄] (**9**: 8 mol %)/NaOMe (1.2 equiv) in the same vessel produced methyl 7-phenyl-6-propylhepta-2,4,6-trienoate (**10**) in 79% yield [(*2E*,4*E*,6*E*)-**10**/(*2E*,4*E*,6*Z*)-**10** = 5/1]. This procedure provides a straightforward and efficient access to polyene substructures with high step economy.

Abbreviations used in this paper: cod: cyclooctadiene, Cp: cyclopentadienyl, dan: 2,3-dihydro-1*H*-naphtho[1,8-*de*][1,3,2]diazaborinin-2-yl, dba: dibenzylidene acetone, dmpu: *N*,*N*'-dimethylpropyleneurea, dppf: 1,1'-bis(diphenylphosphino)ferrocene, mida: *N*-methyliminodiacetato, pin: pinacolato, thf: tetrahydrofuran, TMS: trimethylsilyl.

DOI: 10.1039/c9cc.2019XXXXX

Table of Contents

Experimental Procedure General	S4 S4
cross-dimerisations of alkynyi boronates with conjugated dienes	
methyl (2E,4E,6E)-7-(diisopropoxyboraneyl)-6-propylhepta-2,4,6-trienoate [(2E,4E,6E)-4a]	S5
(1E,3E,5E)-1-(diisopropoxyboraneyl)-2-propylhepta-1,3,5-triene [(1E,3E,5E)-4b]	S5
methyl (2E,4E,6E)-7-(diisopropoxyboraneyl)-6-phenylhepta-2,4,6-trienoate [(2E,4E,6E)-4c]	S6
methyl (2E,4E,6E)-6-(diisopropoxyboraneyl)-7-phenylhepta-2,4,6-trienoate [(2E,4E,6E)-5c]	S6
methyl (2E,4E,6E)-6-(dimethoxyboraneyl)-7-phenylhepta-2,4,6-trienoate [(2E,4E,6E)-4d]	S7
methyl (2E,4E,6E)-6-(dimethoxyboraneyl)-7-phenylhepta-2,4,6-trienoate [(2E,4E,6E)-5d]	S7
methyl (2E,4E,6E)- 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-7-phenylhepta-2,4,6-trienoate [(2E,4E,6E)-5e]	S7
methyl (2E,4E,6E)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6-propylhepta-2,4,6-trienoate [(2E,4E,6E)-4f]	S7
methyl (2E,4E,6E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)deca-2,4,6-trienoate [(2E,4E,6E)-5f]	S8
(1Z,3E,5E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dphenylhexa-1,3,5-triene [(1Z,3E,5E)-4g]	S8
(1E,3E,5E)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-ethylocta-1,3,5-triene [(1E,3E,5E)-4h]	S9
(1E,3E,5E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-methyl-1-phenylhexa-1,3,5-triene [(1E,3E,5E)-4i]	S9
(1Z,3E,5E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenyl-2-trimethylsilylhexa-1,3,5-triene [(1Z,3E,5E)-4j]	S9
(1E.3E,5E)-1-(diisopropoxylboraneyl)-6-(4.4,5.5-tetramethyl-1.3.2-dioxaborolan-2-yl)-2-propylhexa-1.3.5-triene	
[(1E.3E.5E)-4k]	S10
(1Z.3E.5E)-1.6-bis(4.4.5.5-tetramethyl-1.3.2-dioxaborolan-2-yl)-2-phenylhexa-1.3.5-triene [(1Z.3E.5E)-4]]	S10
(1E 3E 5E)-2 6-bis $(4 4 5 5$ -tetramethyl-1,3 2-dioxaborolan-2-yl)-1-phenylhexa-1,3 5-triene [(1E 3E 5E)-5]	S11
(1 = 3E = 5E) - 1.6-bis $(4 = 4.5 = 5E) - 1.3 = 2$ -dioxaborolan $(2 = 5E) - 2$ -propylbexa $(1 = 3E = 5E) - 1.6$ -bis $(4 = 4.5 = 5E) - 1.6$ -bis $(4 = 5.5) -$	S11
(1E 3E 5E)-1 5-bis(4 4 5 5-tetramethyl-1 3 2-dioxaborolan-2-yl)nona-1 3 5-triene [(1E 3E 5E)-5m]	S11
$(1 \neq 47)$ -1./4 4 5 5-tetramethyl-1 3 2-diovaborolan-2-yl)-3-methylbeva-1 4-diene [(1 \neq 47)-7a]	S12
$(F)_1 - (A + 5.5 + tetramethyl - 1.3.2 - dioxaborolan - 2-yl)_5 - methylbexa - 1.4 - diene [(F)_7b]$	S12
$(E) = 1 - (dibutoxyboraneyl)_5-methylbeya_2 4 - diene [(E) - 7c]$	\$13
(1 - 1 - (1 - 1) - (1 -	Q13
$(12, 42)^{-1}(4, 4, 5, 5)$ -cetral interfigure 1, 5, 2-dioxaborolari 2-yi)itexa-1, 4-dicine [(12, 42)^{-1}d] methyl (2E, 6E), 5 methyl 7 (4, 4, 5, 5 tetramethyl 1, 2, 2 dioxaborolari 2, yi)benta 2, 6 dionasta [(2E, 6E), 7 0]	C12
methyl $(2E,6E)$ 7 (dibutovyboranov). 5 methylbonta 2.6 diaposto $I/2E,6E$ 7	Q14
$\frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{5} \frac{1}$	014 014
$(\Sigma - 1 - (4, 4, 5, 5) - lett anteting - 1, 5, 2 - uloxaborolari - 2 - yi) - 5 - {(\Sigma - but - 2 - yi) - 5 - lett anteting in Epide - 1, 5 - ulot energy (2) - 7 g]$	014
(12,42)-4-ethylidenyl-o-methyl-1-(4,4,5,5-tetramethyl-1,5,2-dioxaborolan-2-yi)nona-1,7-diene [(12,42)-11]	010
(12,42)-5,9-dimetriyi-1-(4,4,5,5-tetrametriyi-1,5,2-dioxaboroian-2-yi)deca-1,4,8-thene [($12,42$)- 6n]	515
(2E, 4E)-1-(dibutoxyboraneyi)- 5,9-dimethyldeca-2,4,8-triene [(2E, 4E)-8]]	S15
(1E,4Z)-3-methyl-1- $(4,4,5,5$ -tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,4-diene [$(1E,4Z)$ -7]	S16
(1 <i>E</i> ,4 <i>Z</i>)-3,8-dimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,4-diene [(1 <i>E</i> ,4 <i>Z</i>)-7 k]	S16
(1 <i>E</i> ,4 <i>Z</i>)-3,4,5-trimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,4-diene [(1 <i>E</i> ,4 <i>Z</i>)-7I]	S16
(1 <i>E</i> ,5 <i>E</i>)-3-methyl-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaboloran-2-yl)hexa-1,5-diene [(1 <i>E</i> ,5 <i>E</i>)-7 m]	S17
(1 <i>E</i> ,5 <i>E</i>)-3-methyl-1-(dibutoxyboraneyl)-6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaboloran-2-yl)hexa-1,5-diene [(1 <i>E</i> ,5 <i>E</i>)-7 n] (1 <i>E</i> ,5 <i>E</i>)-1-(2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinin-2-yl)-3-methyl-6-(4,4,5,5,-tetramethyl-1,3,2-	S17
	518
methyl (2E,4E,6E)-7-phenyl-6-propylhepta-2,4,6-trienoate [(2E,4E,6E)-10]	S18
(1E, 3E, 5E)-5-ethyl-1-phenylocta-1,3,5-triene [$(1E, 3E, 5E)$ -11]	S19
(1E,4Z)-3-methyl-1-phenylhexa-1,4-diene [(1E,4Z)-12]	S19
(3 <i>E</i> ,5 <i>E</i> ,7 <i>E</i>)-4-propyldeca-1,3,5,7,9-pentaene [(3 <i>E</i> ,5 <i>E</i> ,7 <i>E</i>)- 13]	S20
(3 <i>E</i> ,5 <i>E</i>)-4-propylocta-1,3,5,7-tetraene [(3 <i>E</i> ,5 <i>E</i>)- 14]	S20
(1 <i>E</i> ,5 <i>E</i>)-4-methyl-6-phenyl-1-(4-tolyl)hexa-1,5-diene [(1 <i>E</i> ,5 <i>E</i>)- 15]	S21
(1 <i>E</i> ,5 <i>E</i>)-3-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenyl-hexa-1,5-diene [(1 <i>E</i> ,5 <i>E</i>)- 16]	S21
Dibutyl {rac-(1S,2R)-4-methyl-1-phenyl-2-vinylpent-3-en-1-yl}boronate (17)	S22
rac-(1S,2R)-4-methyl-1-phenyl-2-vinylpent-3-en-1-ol (18)	S23
spectroscopic charts	604
(15.25,55) (1.(disopropov(b))) = 0 - propy(borto 1.25,4,0-(i)) = 0 - (15.25,55) (1.(disopropov(b))) = 0 - (1.5,25,55) (1.5,25,55) (1.(disopropov(b))) = 0 - (1.5,25,55) (1.5,25) (1.5,25,55) (1.5,25)	024 027
(12,52,52)-1-(disoproposybolarieyi)-2-piopyinepia-1,5,5-thene [(12,52,52)-4b]	321
(disopropoxyboraneyl)-7-phenylhepta-2,4,6-trienoate [$(2E,4E,6E)$ - 5c] (with $(2E,4E,6E)$ -2, (disopropoxyboraneyl)-7-phenylhepta-2,4,6-trienoate [$(2E,4E,6E)$ - 5c]	S28
(dimethow/boropoy/l) 7 phony/bonto 2.4.6 triangets (25.45-trienoate [(2E,4E,6E)-40] and methyl (2E,4E,6E)-6-	000
[(a) = a + b + b + b + b + b + b + b + b + b +	03U 000
memory $(2L, +L, 0L)^{-}$ $(-(+, +, 0, 0)^{-}$ lend memory $(-1, 0, 2^{-})$ unchapped of $(-2, -y)^{-}$ $(-y)^{-}$ lend $(-2, +L, 0L)^{-}$ $(-y)^{-}$ $(-$	332
methyl $(2E, 4E, 6E)$ -6- $(4, 4, 5, 5$ -tetramethyl-1,3,2-dioxaborolan-2-yl)deca-2,4,6-trienoate [$(2E, 4E, 6E)$ -4f] and methyl $(2E, 4E, 6E)$ -6- $(4, 4, 5, 5$ -tetramethyl-1,3,2-dioxaborolan-2-yl)deca-2,4,6-trienoate [$(2E, 4E, 6E)$ -5f]	S36

(1Z,3E,5E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dphenylhexa-1,3,5-triene [(1Z,3E,5E)-4g]	S41							
(1E,3E,5E)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-ethylocta-1,3,5-triene [(1E,3E,5E)-4h]	S46							
(1E,3E,5E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-methyl-1-phenylhexa-1,3,5-triene [(1E,3E,5E)-4i]	S51							
(1Z,3E,5E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenyl-2-trimethylsilylhexa-1,3,5-triene [(1Z,3E,5E)-4]]								
(1E,3E,5E)-1-(diisopropoxylboraneyl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-propylhexa-1,3,5-triene								
[(1 <i>E</i> ,3 <i>E</i> ,5 <i>E</i>)- 4 k]	S60							
(1Z,3E,5E)-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-phenylhexa-1,3,5-triene [(1Z,3E,5E)-4I] and								
(1E,3E,5E)-2,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenylhexa-1,3,5-triene [(1E,3E,5E)-5I]	S63							
(1E,3E,5E)-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-propylhexa-1,3,5-triene [(1E,3E,5E)-4m] and								
(1E,3E,5E)-1,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nona-1,3,5-triene [(1E,3E,5E)-5m]								
(1E,4Z)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-methylhexa-1,4-diene [(1E,4Z)-7a]								
(E)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-methylhexa-1,4-diene [(E)-7b]								
(E)-1-(dibutoxyboraneyl)-5-methylhexa-2,4-diene [(E)-7c]								
(1E,4Z)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,4-diene [(1E,4Z)-7d]								
methyl (2E,6E)-5-methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-2,6-dienoate [(2E,6E)-7e]								
methyl (2E,6E)-7-(dibutoxyboraneyl)- 5-methylhepta-2,6-dienoate [(2E,6E)-7f]								
(E)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-{(E)-but-2-en-2-yl}-6-methylhepta-1,5-diene [(E)-7g]	S88							
(1E,4Z)-4-ethylidenyl-8-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nona-1,7-diene [(1E,4Z)-7h]								
(1E,4E)-5,9-dimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)deca-1,4,8-triene [(1E,4E)-8h]								
(2E,4E)-1-(dibutoxyboraneyl)- 5,9-dimethyldeca-2,4,8-triene [(2E,4E)-8i]	S97							
(1E,4Z)-3-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,4-diene [(1E,4Z)-7j]	S99							
(1E,4Z)-3,8-dimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,4-diene [(1E,4Z)-7k]	S102							
(1E,4Z)-3,4,5-trimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,4-diene [(1E,4Z)-7I]	S105							
(1E,5E)-3-methyl-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaboloran-2-yl)hexa-1,5-diene [(1E,5E)-7m]	S109							
$(1E,5E)-3-methyl-1-(dibutoxyboraneyl)-6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaboloran-2-yl)hexa-1,5-diene\ [(1E,5E)-7n]$	S113							
(1E,5E)-1-(2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinin-2-yl)-3-methyl-6-(4,4,5,5,-tetramethyl-1,3,2-								
dioxaborolan-2-yl)hexa-1,5-diene [(1E,5E)-7o]	S114							
methyl (2E,4E,6E)-7-phenyl-6-propylhepta-2,4,6-trienoate [(2E,4E,6E)-10]	S117							
(1E,3E,5E)-5-ethyl-1-phenylocta-1,3,5-triene [(1E,3E,5E)-11]	S120							
(1E,4Z)-3-methyl-1-phenylhexa-1,4-diene [(1E,4Z)-12]	S121							
(3 <i>E</i> ,5 <i>E</i> ,7 <i>E</i>)-4-propyldeca-1,3,5,7,9-pentaene [(3 <i>E</i> ,5 <i>E</i> ,7 <i>E</i>)-13] and (3 <i>E</i> ,5 <i>E</i>)-4-propylocta-1,3,5,7-tetraene [(3 <i>E</i> ,5 <i>E</i>)-14]	S124							
(1E,5E)-4-methyl-6-phenyl-1-(4-tolyl)hexa-1,5-diene [(1E,5E)-15]	S129							
(1E,5E)-3-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenyl-hexa-1,5-diene [(1E,5E)-16]	S133							
Dibutyl {rac-(1S,2R)-4-methyl-1-phenyl-2-vinylpent-3-en-1-yl}boronate (17)	S136							
rac-(1S,2R)-4-methyl-1-phenyl-2-vinylpent-3-en-1-ol (18)	S138							

Experimental Procedures

1. General

All procedures described in this paper were carried out under a nitrogen or argon atmosphere by use of Schlenk and vacuum line techniques. Unless otherwise noted, all reactants or reagents were obtained from commercial suppliers and stored under a nitrogen atmosphere after three freeze-pump-thaw cycles. Solvents are dried and deoxygenized by Glass Contour Ultimate Solvent Purification System. [D₆]Benzene was dried over sodium wire and stored under vacuum, and was transferred into an NMR tube by distillation prior to use. [Ru(η^6 -naphthalene)(η^4 -1,5-cod)] (1),^{S1} 1-pentynyl boronic acid diisopropyl ester (2a),^{S2} phenylethynyl boronic acid diisopropyl ester (2b),^{S2} phenylethynyl boronic acid dimethyl ester (2c),^{S3} phenylethynyl boronic acid pinacol ester (2d),^{S4} pentynyl boronic acid pinacol ester (2e),^{S5} and butadienyl boronic acid pinacol ester (3d)^{S6} were prepared according to literature methods. Vinyl boronic acid pinacol ester (6a) and vinyl boronic acid dibutyl ester (6b) were purchased from commercial suppliers.

All work-up and purification procedures were carried out with reagent-grade solvents in air. Analytical thin-layer chromatography was performed using Merck silica gel 60 F254 precoated plates (0.25 mm). The developed chromatogram was analysed by UV lamp or phosphomolybdic acid/sulfuric acid solution. Flush column chromatography was performed with Merck silica gel 60. Preparative scale HPLC was performed with a Japan Analytica Industry LaboACE LC-5060 equipped with JAIGEL-1H and JAIGEL-2HR tandem columns using chloroform as the eluent.

¹H and ¹³C NMR spectra were measured on a JEOL ECX-400P spectrometer (400 MHz for ¹H). The chemical shifts were reported from tetramethylsilane (0.00 ppm). Coupling constants for the secondorder splitting were estimated by gNMR.^{S7} GC and GC-MS were performed on Shimadzu GC-2014 (FID) and Shimadzu GCMS-2010 (EI) instruments, respectively, equipped with a TC-1 column (0.25 mm i.d. x 30 m). HRMS (APCI) analysis was performed on a Bruker Daltonics micrOTOF-QII instrument.

^{S2} H. C. Brown, N. G. Bhat, M. Srebnik, *Tetrahedron Lett.*, 1988, 29, 2631.

^{S1} M. A. Bennett, H. Neumann, M. Thomas, X.-Q Wang, P. Pertici, P. Salvadori, G. Vitulli, Organometallics, 1991, 10, 3251.

^{S3} P. K. Elkin, V. V. Levin, A. D. Dilman, M. I. Struchkova, P. A. Belyakov, D. E. Arkhipov, A. A. Korlyukov, V. A. Tartakovsky, Tetrahedron Lett., 2011, 52, 5259.

^{S4} Y. Nishihara, JP2008-74711.

⁸⁵ Y. Nishihara, Y. Okada, J. Jiao, M. Suetsugu, M. T. Lan, M. Kinoshita, M. Iwasaki, K. Takagi, Angew. Chem. Int. Ed., 2011, 50, 8660. ^{S6} J. R. Coombs, L. Zhang, J. P. Morken, Org. Lett., 2015, 17, 1708.

2. Cross-dimerisations of alkynyl boronates with conjugated dienes

2-1. Reaction of 1-pentynyl boronic acid diisopropyl ester (2a) with methyl penta-2,4-dienoate (3a).

- (a) To an NMR tube were added [D₆]benzene (600 μL), 1-pentynyl boronic acid diisopropyl ester (2a) (20.25 μL, 0.08840 mmol), methyl penta-2,4-dienoate (3a) (10.25 μL, 0.08812 mmol), and [Ru(η⁶- naphthalene)(η⁴-1,5-cod)] (1) (2.99 mg, 0.00886 mmol). The solution was allowed to react at room temperature and the progress of the reaction was monitored by ¹H NMR. After 24 h, formation of (2*E*,4*E*,6*E*)-4a was observed in 93% yield.
- (b) A similar treatment using [D₂]dichloromethane (600 μL), **2a** (20.5 μL, 0.0894 mmol), **3a** (10.4 μL, 0.00873 mmol) and **1** (2.94 mg, 0.00873 mmol) at room temperature for 7 h gave (2*E*,4*E*,6*E*)-**4a** in 50% yield.
- (c) 2a (140.0 μL, 0.614 mmol), 3a (93.0 μL, 0.796 mmol) and 1 (20.26 mg, 0.0601 mmol) were dissolved in benzene (1 mL) in a Schlenk tube (25 mL). Reaction at room temperature for 24 h gave a black liquid. This compound was used for cross-coupling reaction without isolation.

Because the product 4a was decomposed during the purification process, this compound was characterised by NMR experiments in [D₆]benzene.

methyl (2E,4E,6E)-7-(diisopropoxyboraneyl)-6-propylhepta-2,4,6-trienoate [(2E,4E,6E)-4a]:

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.52 (dd, ³*J*_{H,H}=15.6, 11.0 Hz, 1H; 3-*CH*), 6.29 (dd, ³*J*_{H,H}=15.1, 11.0 Hz, 1H; 4-*CH*), 6.28 (d, ³*J*_{H,H}=15.1 Hz, 1H; 5-*CH*), 5.91 (d, ³*J*_{H,H}=15.6 Hz, 1H; 2-*CH*), 5.54 (s, 1H; 1-*CH*), 4.43 (sept, ³*J*_{H,H}=6.2 Hz, 2H; OCHMe₂), 3.45 (s, 3H; CO₂*M*e), 2.59 (t, ³*J*_{H,H}=7.7 Hz, 2H; 8-*CH*₂), 1.55 (sext, ³*J*_{H,H}=7.7 Hz, 2H; 9-*CH*₂), 1.13 (d, ³*J*_{H,H}=6.2 Hz, 12H; OCH*M*e₂), 0.98 (t, ³*J*_{H,H}=7.4 Hz, 3H; 10-*M*e); ¹³C{¹H} NMR (100 MHz, [D₆]benzene, r.t.): δ 167.0 (s), 155.3 (s), 146.3 (s), 145.2 (s), 142.9 (s), 126.0 (s), 121.5 (s), 65.5 (s), 51.1 (s), 32.7 (s), 24.5 (s), 23.7 (s), 14.4 (s).

2-2. Reaction of 1-pentynyl boronic acid diisopropyl ester (2a) with 1,3-pentadiene (3b).

Because the product **4b** was decomposed during the purification process, this compound was characterised by NMR experiments in $[D_6]$ benzene.

Yield: 36% (NMR).

(1E,3E,5E)-1-(diisopropoxyboraneyl)-2-propylhepta-1,3,5-triene [(1E,3E,5E)-4b]:

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 6.48 (ddd, ³*J*_{H,H}=15.4, 10.6 Hz, ⁴*J*_{H,H}=4.4 Hz, 1H; 4-C*H*), 6.28 (d, ³*J*_{H,H}=14.0 Hz, 1H; 3-C*H*), 5.99 (dd, ³*J*_{H,H}=15.2, 10.4 Hz, 1H; 5-C*H*), 5.60 (dqd, ³*J*_{H,H}=15.8, 6.0 Hz, ⁴*J*_{H,H}=4.4 Hz, 1H; 6-C*H*), 5.58 (s, 1H; 1-C*H*), 4.45 (sept, ³*J*_{H,H}=6.0 Hz, 2H; OC*H*Me₂), 2.80 (t, ³*J*_{H,H}=7.7 Hz, 2H; 8-C*H*₂), 1.55 (m, 2H; 9-C*H*₂), 1.17 (d, ³*J*_{H,H}=6.2 Hz, 12H; OCH*M*e₂), 1.15 (t, ³*J*_{H,H}=6.4 Hz, 3H; 10-*M*e), 0.94 (d, ³*J*_{H,H}=6.0 Hz, 3H; 7-*M*e).

2-3. Reaction of 2-phenylethynyl boronic acid diisopropyl ester (2b) with methyl 2,4-pentadienoate (3a).

Because the products **4c** and **5c** were decomposed during the purification process, this compound was characterised by NMR experiments in $[D_6]$ benzene.

Yield: 52% (NMR). 4c/5c = 37/63.

methyl (2E,4E,6E)-7-(diisopropoxyboraneyl)-6-phenylhepta-2,4,6-trienoate [(2E,4E,6E)-4c]:

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.50 (dd, ³*J*_{H,H}=15.5, 10.9 Hz, 3-C*H*), 7.18-7.28 (m, *Ph* overlapped with resonances of **5c**), 6.43-6.54 (obscured by overlapping with **5c**, 5-C*H*), 6.09 (dd, ³*J*_{H,H}=15.5, 11.5 Hz, 1H; 4-C*H*), 5.82 (s, 1H, obscured by overlapping with reactant, 7-C*H*), 5.59 (d, ³*J*_{H,H}=15.5 Hz, 1H; 2-C*H*), 4.37 (sept, ³*J*_{H,H}=5.8 Hz, 2H; C*H*Me₂), 3.36 (s, 3H; CO₂*Me*), 0.95 (d, ³*J*_{H,H}=6.3 Hz, 12H; CH*Me*₂).

methyl (2E,4E,6E)-6-(diisopropoxyboraneyl)-7-phenylhepta-2,4,6-trienoate [(2E,4E,6E)-5c]:

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.58 (dd, ³*J*_{H,H}=15.5, 10.9 Hz, 3-*CH* overlapped with resonances of **4c**), 7.18-7.28 (m, *Ph* overlapped with resonances of **4c**), 7.02 (t, ³*J*_{H,H}=6.9 Hz, 1H; *Ph*), 6.68 (s, 1H; 7-*CH*), 6.43-6.54 (m, 2H; obscured by overlapping with **4c** 4- and 5-*CH*), 5.96 (d, ³*J*_{H,H}=15.5 Hz, 1H; 2-*CH*), 4.37 (sept, ³*J*_{H,H}=5.8 Hz, 2H; *CH*Me₂), 3.45 (s, 3H; CO₂*Me*), 1.04 (d, ³*J*_{H,H}=5.7 Hz, 12H; *CHMe*₂).

2-4. Reaction of 2-phenylethynyl boronic acid dimethyl ester (2c) with methyl 2,4-pentadienoate (3a).

Because the products **4d** and **5d** were decomposed during the purification process, this compound was characterised by NMR experiments in $[D_6]$ benzene.

Yield: 68% (NMR). **4d/5d** = 19/81.

methyl (2E,4E,6E)-6-(dimethoxyboraneyl)-7-phenylhepta-2,4,6-trienoate [(2E,4E,6E)-4d]:

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.49 (dd, ³*J*_{H,H}=15.5, 11.0 Hz, 1H; 3-*CH*), 7.28-7.30 (m, obscured by overlapping with **5d** and reactant. *Ph*), 6.45 (d, ³*J*_{H,H}=15.5 Hz, 1H; 5-*CH*), 6.12 (dd, ³*J*_{H,H}=15.5, 11.0 Hz, 1H; 4-*CH*), 5.70 (s, 1H; 7-*CH*), 5.62 (d, ³*J*_{H,H}=15.5 Hz, 1H; 2-*CH*), 3.35 (s, 6H; *OMe*), 3.22 (s, 3H; CO₂*Me*).

methyl (2E,4E,6E)-6-(dimethoxyboraneyl)-7-phenylhepta-2,4,6-trienoate [(2E,4E,6E)-5d]:

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.55 (dd, ³*J*_{H,H}=15.5, 10.9 Hz, 1H; 3-C*H*), 7.28-7.30 (m, obscured by overlapping with **4d** and reactant. *Ph*), 6.70 (s, 1H; 7-C*H*), 6.46 (d, ³*J*_{H,H}=15.5 Hz, 1H; 5-C*H*), 6.28 (dd, ³*J*_{H,H}=15.5, 10.9 Hz, 1H; 4-C*H*), 5.82 (d, ³*J*_{H,H}=15.5 Hz, 1H; 2-C*H*), 3.32 (s, 6H; O*M*e), 3.23 (s, 3H; CO₂*M*e).

2-5. Reaction of 2-phenylethynyl boronic acid pinacol ester (2d) with methyl 2,4-pentadienoate (3a).

Yield: 47%. pale yellow oil.

methyl (2*E*,4*E*,6*E*)- 6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-7-phenylhepta-2,4,6-trienoate [(2*E*,4*E*,6*E*)-5e]:

$$\begin{array}{c}
9 \\
10 \\
6 \\
7 \\
5 \\
3 \\
1
\end{array}$$
B(pin)

6
4
2 CO₂Me

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.61 (dd, ${}^{3}J_{H,H}$ =15.2, 10.9 Hz, 1H; 3-*CH*), 7.39-7.40 (m, 1H; 8-*CH*), 7.00-7.13 (m, 3H; 9- and 10-*CH*), 6.80 (s, 1H; 6-*CH*), 6.80 (dd, ${}^{3}J_{H,H}$ =15.2, 10.9 Hz, 1H; 4-*CH*), 6.55 (d, ${}^{3}J_{H,H}$ =15.5 Hz, 1H; 5-*CH*), 6.07 (d, ${}^{3}J_{H,H}$ =14.9 Hz, 1H; 2-*CH*), 3.45 (s, 3H; CO₂*M*e), 1.02 (s, 12H; pinacolato-*M*e); ${}^{13}C{}^{1}H$ NMR (100 MHz, [D₆]benzene, r.t.): δ 167.1 (s), 147.3 (s), 147.1 (s), 145.7 (s) 138.7 (s), 129.1 (s), 128.9 (s), 120.5 (s), 83.9 (s, pinacolato-*CM*e₂), 51.0 (s), 24.9 (s, pinacolato-*M*e). HRMS (APCI): *m/z* calcd for C₂₀H₂₅BO₄+H⁺: 341.1922 [*M*+H]⁺; found: 341.1914.

2-6. Reaction of 1-pentynyl boronic acid pinacol ester (2e) with methyl 2,4-pentadienoate (3a).

Yield: 42% (NMR). 24% (isolated). This compound was isolated as a regioisomeric micture: (2E, 4E, 6E)-**4f**/(2E, 4E, 6E)-**5f** = 42/58. yellow oil.

methyl (2*E*,4*E*,6*E*)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6-propylhepta-2,4,6-trienoate [(2*E*,4*E*,6*E*)-4f]:

$$(\text{pin})B$$

 7 5 3 1 CO_2Me

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.38 (dd, ³*J*_{H,H}=15.2, 9.76 Hz, 1H; 3-*CH*), 6.15-6.25 (m, 2H; 4- and 5-*CH*), 5.87 (d, ³*J*_{H,H}=15.5 Hz, 1H; 2-*CH*), 5.71 (s, 3H; 7-*CH*), 3.43 (s, 3H; CO₂*M*e), 2.71 (t, ³*J*_{H,H}=7.44 Hz, 2H; 8-*CH*₂), 1.51 (sext, ³*J*_{H,H}=7.44 Hz, 2H; 9-*CH*₂), 1.06 (s, 12H; pinacolato-*M*e), 1.01 (t, ³*J*_{H,H}=7.44 Hz, 3H; 10-*M*e); ¹³C{¹H} NMR (100 MHz, [D₆]benzene, r.t.): δ 166.95 (s, 1-*CO*₂Me), 159.11 (s, 6-*C*Pr), 145.37 (s, 5- or 4-*C*H), 145.02 (s, 4- or 5-*C*H), 127-129 (3-*C*H obscured by overlapping with C₆D₆), 124 (br. coalesced with base line, 7-*C*H), 122.04 (s, 2-*C*H), 83.24 (s, pinacolato-*C*Me₂), 51.04 (s, CO₂*M*e), 32.19 (s, 8-*C*H₂), 24.81 (s, pinacolate-*M*e), 23.81 (s, 9-*C*H₂), 14.13 (s, 10-*M*e).

methyl (2*E*,4*E*,6*E*)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)deca-2,4,6-trienoate [(2*E*,4*E*,6*E*)-5f]:

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.64 (dd, ³*J*_{H,H}=15.5, 11.4 Hz, 1H; 3-C*H*), 6.97 (dd, ³*J*_{H,H}=15.2, 11.4 Hz, 1H; 4-C*H*), 6.49 (d, ³*J*_{H,H}=15.4 Hz, 1H; 5-C*H*), 6.20 (t, ³*J*_{H,H}=7.44 Hz, 1H; 7-C*H*), 6.06 (d, ³*J*_{H,H}=14.7 Hz, 1H; 2-C*H*), 3.43 (s, 3H; CO₂*Me*), 2.46 (q, ³*J*_{H,H}=7.44 Hz, 2H; 8-C*H*₂), 1.36 (sext, ³*J*_{H,H}=7.44 Hz, 2H; 9-C*H*₂), 1.01 (s, 12H; pinacolato-*Me*), 0.88 (t, ³*J*_{H,H}=7.48 Hz, 3H; 10-*Me*); ¹³C{¹H} NMR (100 MHz, [D₆]benzene, r.t.): δ 167.27 (s, 1-CO₂Me), 154.90 (s, 7-CH), 147.25 (s, 5-CH), 146.56 (s, 3-CH), 127-129 (4-CH obscured by overlapping with C₆D₆), 119.75 (s, 2-CH), 82.91 (s, pinacolato-CMe₂), 50.91 (s, CO₂*Me*), 34.06 (s, 8-CH₂), 24.74 (s, pinacolato-*Me*), 23.11 (s, 9-CH₂), 13.95 (s, 10-*Me*), 6-CB(pin) was not observed. HRMS (APCI): *m/z* calcd for C₁₇H₂₅BO₄+H⁺: 307.2078 [*M*+H]⁺; found: 307.2082.

2-7. Reaction of diphenylacetylene (2f) with (*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butadiene (3d).

Yield: 93%. pale yellow oil.

(1*Z*,3*E*,5*E*)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dphenylhexa-1,3,5-triene [(1*Z*,3*E*,5*E*)-4g]:

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.56 (dd, ³J_{H,H}=17.8, 10.9 Hz,1H; 5-CH), 7.04-7.10 (m, 5H; *Ph*), 6.8-6.9 (m, 5H; *-Ph*), 6.61 (d, ³J_{H,H}=14.9 Hz, 1H; 3-CH), 6.46 (s, 1H; 1-CH), 6.16 (dd, ³J_{H,H}=14.9, 10.9 Hz, 1H; 4-CH), 5.67 (d, ³J_{H,H}=17.8 Hz, 1H; 6-CH), 1.07 (s, 12H; pinacolato-*Me*); ¹³C{¹H} NMR (100 MHz, [D₆]benzene, r.t.): δ 50.41 (s, 5-CH), 141.98 (s, 3CH), 141.85 (s), 138.45 (s), 137.08 (s), 133.89 (s), 133.67 (s, 4-CH), 129.91 (s), 129.70 (s), 129.17 (s), 128 (obscured by overlapping with C₆D₆), 127.40 (s), 122 (br, 6-CH), 82.02 (s, pinacolato-CMe₂), 77.61 (s), 24.86 (s, pinacolato-*Me*), 24.55 (s). MS(EI): *m/z* = 358 (M+). HRMS (APCI): *m/z* calcd for C₂₄H₂₇BO₂+H⁺: 359.2181 [M+H]⁺; found: 359.2183.

2-8. Reaction of 3-hexyne (2g) with (E)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butadiene (3d).

Yield: 89%. pale yellow oil.

(1*E*,3*E*,5*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-ethylocta-1,3,5-triene [(1*E*,3*E*,5*E*)-4h]:

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.53 (dd, ³*J*_{H,H}=17.5, 9.7 Hz, 1H; 2-C*H*), 6.35 (dd, ³*J*_{H,H}=15.5, 9.8 Hz, 1H; 3-C*H*), 6.24 (d, ³*J*_{H,H}=15.5 Hz, 1H; 4-C*H*), 5.93 (d, ³*J*_{H,H}=17.8 Hz, 1H; 1-C*H*), 5.28 (t, ³*J*_{H,H}=7.4 Hz, 1H; 6-C*H*), 2.06 (q, ³*J*_{H,H}=7.4 Hz, 2H; 9-C*H*₂), 1.90 (quint, ³*J*_{H,H}=7.4 Hz, 2H; 7-C*H*₂), 1.11 (s, 12H; pinacolato-*M*e), 0.89 (t, ³*J*_{H,H}=7.4 Hz, 3H; 10-*M*e), 0.81 (t, ³*J*_{H,H}=7.4 Hz, 3H; 8-*M*e); ¹³C{¹H} NMR (100 MHz, [D₆]benzene, r.t.): δ 151.49 (s, 2-CH), 140.64 (s, 4-CH), 137.01 (s, 6-CH), 126.01 (s), 127-128 (obscured by overlapping with C₆D₆, 3-CH), 120 (br. almost obscured, 1-CH), 82.99 (s, pinacolato-CMe₂), 24.92 (s, pinacolato-*M*e), 19.94 (s, 9-CH₂), 21.69 (s, 7-CH₂), 14.14 (s, 8-*M*e), 13.84 (s, 10-*M*e). HRMS (APCI): *m/z* calcd for C₁₆H₂₈BO₂+H⁺: 263.2180 [*M*+H]⁺; found: 263.2177.

2-9. Reaction of 1-phenyl-1-propyne (2h) with (*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butadiene (3d).

Yield: 76%. pale yellow oil.

(1*E*,3*E*,5*E*)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-methyl-1-phenylhexa-1,3,5-triene [(1*E*,3*E*,5*E*)-4i]:

$$9 \xrightarrow{7} 10 \\ 1 \\ 3 \\ 5 \\ 6 \\ B(pin)$$

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.57 (dd, ³*J*_{H,H}=17.8, 9.8 Hz, 1H; 5-C*H*), 7.0-7.15 (partly obscured by overlapping with C₆D₅H, *Ph*), 6.42 (s, 1H; 1-C*H*), 6.36-6.42 (m, 2H; 3- and 4-C*H*), 6.00 (d, ³*J*_{H,H}=17.8 Hz, 1H; 6-C*H*), 1.12 (s, 12H; pinacolato-*Me*), 1.08 (s, 3H,; 10-*Me*); ¹³C{¹H} NMR (100 MHz, [D₆]benzene, r.t.): δ 150.96 (s, 5-CH), 142.08 (s, 4-CH), 138.00 (s), 136.01 (s), 134.09 (s), 130.68 (s), 129.60 (s), 127.00 (s), 121 (br. 6-CH), 83.08 (s, pinacolato-CMe₂), 24.94 (s, pinacolato-*Me*), 13.78 (s, 10-*Me*), 6-CH was not observed by HMQC probably due to broadening. HRMS (APCI): *m/z*. calcd for C₁₉H₂₅BO₂+H⁺: 297.2024 [*M*+H]⁺; found: 297.2010.

2-10. Reaction of 1-trimethylsilyl-2-phenylacetylene (2i) with (*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butadiene (3d).

Yield: 92 % (NMR), 59 % (isolated). pale yellow oil.

(1*Z*,3*E*,5*E*)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenyl-2-trimethylsilylhexa-1,3,5-triene [(1*Z*,3*E*,5*E*)-4j]:

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.44 (dd, ³*J*_{H,H}=17.2, 10.3 Hz, 1H; 5-C*H*), 7.24 (d, ³*J*_{H,H}=6.9 Hz, 2H; 7-C*H*), 7.0-7.1 (m, overlapped, *Ph*), 6.91(s, 1H; 1-C*H*), 6.66 (dd, ³*J*_{H,H}=15.8, 10.3 Hz, 1H; 4-C*H*), 6.53 (d, ³*J*_{H,H}=16.0 Hz, 1H; 3-C*H*), 5.91 (d, ³*J*_{H,H}=17.8 Hz, 1H; 6-C*H*), 1.08 (s, 12H; pinacolato-*Me*), 0.20 (s, 9H; TMS); ¹³C{¹H} NMR (100 MHz, [D₆]benzene, r.t.): δ =151.33 (s, 5-CH), 142.91 (s), 141.78 (s, 3-C*H*), 140.84 (s, 1-CH), 138.14 (s, *Ph*), 137.70 (s), 134.85 (s, 4-CH), 129.93 (s, 7-CH), 128 (overlapped with C₆D₆, *Ph*), 120.92 (br, 6-CH), 83.02 (s, pinacolato-*CMe*₂), 24.88 (s, pinacolato-*Me*), 0.45 (s, Si*Me*). HRMS (APCI): *m*/*z* calcd for C₂₁H₃₁BO₂Si+H⁺: 355.2263 [*M*+H]⁺; found: 355.2263.

2-11. Reaction of 1-pentynyl boronic acid diisopropyl ether (2a) with (*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butadiene (3d).

Because the product **4k** was decomposed during the purification process, this compound was characterised by NMR experiments in $[D_6]$ benzene.

Yield: 83% (NMR).

(1*E*,3*E*,5*E*)-1-(diisopropoxylboraneyl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-propylhexa-1,3,5-triene [(1*E*,3*E*,5*E*)-4k]:

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.45 (dd, ³J_{H,H}=17.2, 10.3 Hz, 1H; 5-CH), 6.52 (dd, ³J_{H,H}=15.5, 10.9 Hz, 1H, 4-CH), 6.34 (d, ³J_{H,H}=15.4 Hz, 1H; 3-CH), 5.92 (d, ³J_{H,H}=17.8 Hz, 1H; 6-CH), 5.51 (s, 1H; 1-CH), 4.42 (sept, ³J_{H,H}=6.28 Hz, 2H; OCHMe₂), 2.60-2.64 (m, 2H; 7-CH₂), 1.56-1.61 (m, 2H; 8-CH₂), 1.16 (d, ³J_{H,H}=8.6 Hz, 12H; OCHMe₂), 1.10 (s, 12H; pinacolato-Me), 0.96 (t, ³J_{H,H}=7.6 Hz, 3H; 9-Me); ¹³C{¹H} NMR (100 MHz, [D₆]benzene, r.t.): δ 156.18 (s), 150.92 (s), 142.42 (s), 131.45 (s), 126.01 (s), 122 (br, 6-CH), 83.05 (s, pinacolato-CMe₂), 65.56 (s, CHMe₂), 32.78 (s, 7-CH₂), 24.91 (s, pinacolato-Me), 24.86 (s, CHMe₂), 23.87 (s, 8-CH₂), 14.46 (s, 9-Me).

2-12. Reaction of 2-phenylethynyl boronic acid pinacol ester (2d) with (*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butadiene (3d).

Yield: 58%. This compound was isolated as a regioisomeric mixture: 41/51 = 23/77. pale yellow oil.

(1*Z*,3*E*,5*E*)-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-phenylhexa-1,3,5-triene [(1*Z*,3*E*,5*E*)-4l]:

(pin)B

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.77 (s, 1H; 1-C*H*), 7.53 (dd, ³*J*_{H,H}=17, 12 Hz, 1H; 5-C*H*), 7.27 (d, ³*J*_{H,H}=8.6 Hz, 2H, *o-Ph*), 7.21 (d, ³*J*_{H,H}=14.9 Hz, 1H, 3-C*H*), 7.1-6.9 (obscured by overlapping with **5**I), 6.09 (d, ³*J*_{H,H}=16.6 Hz, 1H; 6-C*H*), 1.06 (s, 12H; pinacolato-*Me*), 1.04 (s, 12H;

pinacolato-*Me*); ¹³C{¹H} NMR (100 MHz, [D₆]benzene, r.t.): δ 152.20 (s, 5-CH), 145.95 (s, 1-CH), 137.90 (s), 136.82 (s), 135.88 (s, 3-CH), 128.49 (s, *Ph*), 128-127.5 (obscured by overlapping with C₆D₆), 121 (br, 6-CH), 83.54 (s, pinacolato-CMe₂), 82.91 (s, pinacolato-CMe₂), 24.61 (s, pinacolato-*Me*).

(1*E*,3*E*,5*E*)-2,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenylhexa-1,3,5-triene [(1*E*,3*E*,5*E*)-5l]:

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.56 (dd, ³*J*_{H,H}=17.2, 10.3 Hz, 1H; 5-*CH*), 7.39 (d, ³*J*_{H,H}=6.9 Hz, 2H; 7-*CH*), 7.10 (t, ³*J*_{H,H}= 6.9 Hz, 2H; 8-*CH*), 7.03 (t, ³*J*_{H,H}=7.4 Hz, 1H; 9-*CH*), 6.96 (dd, ³*J*_{H,H}=15.4, 10.9 Hz, 1H; 4-*CH*), 6.86 (s, 1H; 1-*CH*), 6.59 (d, ³*J*_{H,H}=15.4 Hz, 1H; 3-*CH*), 6.04 (d, ³*J*_{H,H}=17.2 Hz, 1H; 6-*CH*), 1.10 (s, 12H; pinacolato-*Me*), 1.03 (s, 12H; pinacolato-*Me*); ¹³C{¹H}NMR (100 MHz, [D₆]benzene, r.t.): δ 151.24 (s, 5-*C*H), 144.78 (s, 1-*C*H), 143.07 (s, 3-*C*H), 133.91 (s, 4-*C*H), 128-130 (overlapped with C₆D₆, *Ph*), 121 (br, 6-*C*H), 83.83 (s, pinacolato-*C*Me₂), 83.02 (s, pinacolato-*C*Me₂), 24.91 (s, pinacolato-*Me*). HRMS (APCI): *m/z* calcd for C₂₄H₃₄B₂O₄+H⁺: 409.2724 [*M*+H]⁺; found: 409.2715.

2-13. Reaction of 1-pentynyl boronic acid pinacol ester (2e) with (*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butadiene (3d).

Yield: 34%. Isolated as a regioisomeric mixture: 4m/5m = 25/75. pale yellow oil.

(1*E*,3*E*,5*E*)-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-propylhexa-1,3,5-triene [(1*E*,3*E*,5*E*)-4m]:

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.36 (dd, ${}^{3}J_{H,H}$ =17.2, 11.5 Hz, 1H; 5-CH), 6.50 (dd, ${}^{3}J_{H,H}$ =15.5, 10.3 Hz, 1H; 4-CH), 6.27 (d, ${}^{3}J_{H,H}$ =15.5 Hz, 1H; 3-CH), 5.92 (d, ${}^{3}J_{H,H}$ =17.2 Hz, 1H; 6-CH), 5.70 (s, 1H; 1-CH), 2.75 (t, ${}^{3}J_{H,H}$ =7.4 Hz, 2H; 7-CH₂), 1.55 (sext, ${}^{3}J_{H,H}$ =7.4 Hz, 2H; 8-CH₂), 1.09 (obscured by overlapping with **5m**, pinacolato-*M*e), 1.05 (s, 12H; pinacolato-*M*e), 0.97 (t, ${}^{3}J_{H,H}$ =7.4 Hz, 3H; 9-*M*e); ${}^{13}C{}^{1}H{}$ NMR (100 MHz, [D₆]benzene, r.t.): δ 159.97 (s), 150.82 (s), 141.59 (s, 3-CH), 132.64 (s, 4-CH), 122 (br. 1-CH), 83.05 (pinacolato-CMe₂), 82.72 (s, pinacolato-CMe₂), 32.28 (s, 7-CH₂), 24.82 (s, pinacolato-*M*e), 23.91 (s, 8-CH₂), 14.14 (s, 9-*M*e), some resonances were obscured by overlapping with the resonances of **5m** and solvent.

(1*E*,3*E*,5*E*)-1,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nona-1,3,5-triene [(1*E*,3*E*,5*E*)-5m]:

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.56 (ddd, ³*J*_{H,H}=17.2, 10.3 Hz, ⁴*J*_{H,H}=2.3 Hz, 1H; 2-C*H*), 7.07 (dd, ³*J*_{H,H}=15.5, 10.9 Hz, 1H; 3-C*H*), 6.55 (d, ³*J*_{H,H}=15.5 Hz, 1H; 4-C*H*), 6.13-6.20 (obscured by

overlapping with an impurity, 6-C*H*), 6.02 (dd, ${}^{3}J_{H,H}$ =17.2 Hz, ${}^{4}J_{H,H}$ =1.7 Hz, 1H; 1-C*H*), 2.44 (q, ${}^{3}J_{H,H}$ =7.4 Hz, 2H; 7-C*H*₂), 1.36 (sext, ${}^{3}J_{H,H}$ =6.9 Hz, 2H; 8-C*H*₂), 1.09 (s, 12H; pinacolato-*M*e), 1.01 (s, 12H; pinacolato-*M*e), 0.88 (t, ${}^{3}J_{H,H}$ =7.4 Hz, 3H; 9-*M*e); ${}^{13}C{}^{1}H$ NMR (100 MHz, [D₆]benzene, r.t.): δ 151.9 (s, 2-C*H*), 151.8 (s, 6-CH), 142.84 (s, 4-CH), 132.23 (s, 3-CH), 120 (br. 1- and 5-C), 83.14 (s, pinacolato-*C*Me₂), 82.89 (s, pinacolato-*C*Me₂), 34.09 (s, 8-CH₂), 24.90 (s, pinacolato-*M*e), 24.61 (s, pinacolato-*M*e), 23.22 (s, 8-CH₂), 13.99 (s, 9-*M*e). HRMS (APCI): *m*/*z* calcd for C₂₁H₃₆B₂O₄+H⁺: 375.2880 [*M*+H]⁺; found: 365.2881.

2-14. Reaction of 1,3-pentadiene (3b) with vinyl boronic acid pinacol ester (6a).

Yield: 93%. pale yellow oil.

(1*E*,4*Z*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-methylhexa-1,4-diene [(1*E*,4*Z*)-7a]:

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 6.93 (dd, ³J_{H,H}=17.8, 5.7 Hz, 1H; 2-*CH*), 5.79 (dd, ³J_{H,H}=17.8 Hz, ⁴J_{H,H}=1.7 Hz, 1H; 1-*CH*), 5.36 (ddq, ³J_{H,H}=10, 9 Hz, ⁴J_{H,H}=1.7 Hz, 1H; 4-*CH*), 5.23 (dq, ³J_{H,H}=10, 7 Hz, 1H; 5-*CH*), 3.18 (br. sext, ³J_{H,H}=7 Hz, 1H; 3-*CH*), 1.42 (dd, ³J_{H,H}=6.8 Hz, ⁴J_{H,H}=1.7 Hz, 3H; 6-*M*e), 1.07 (s, 12H; pinacolato-*M*e), 0.99 (d, ³J_{H,H}=6.4 Hz, 3H; 7-*M*e); ¹³C{¹H} NMR (100 MHz, [D₆]benzene, r.t.): δ 157. 87 (s), 133.80 (s), 126.02 (s), 123.83 (s), 82.90 (s, pinacolato-*C*Me₂), 37.34 (s), 24.91 (s), 20.12(s), 12.92 (s), HRMS (APCI): *m/z* calcd for C₁₃H₂₃BO₂+H⁺: 223.1866 [*M*+H]⁺; found: 223.1864.

2-15. Reaction of isoprene (3e) with vinyl boronic acid pinacol ester (6a).

Yield: 59%. pale yellow oil.

(E)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-methylhexa-1,4-diene [(E)-7b]:

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 6.95 (dt, ³J_{H,H}=17.8, 6.3 Hz, 1H; 2-*CH*), 5.82 (dt, ³J_{H,H}=17.8 Hz, ⁴J_{H,H}=1.7 Hz, 1H; 1-*CH*), 5.16 (tq, ³J_{H,H}= 6.8 Hz, ⁴J_{H,H}=1.7 Hz, 1H; 4-*CH*), 2.77 (br.t, ³J_{H,H}=6.3 Hz, 2H; 3-*CH*₂), 1.56 (s, 3H; 7- or 6-*M*e), 1.40 (s, 3H; 6- or 7-*M*e), 1.08 (s, 12H; pinacolato-*M*e); ¹³C{¹H} NMR (100 MHz, [D]chloroform, r.t.): δ 152.77 (s), 133.49 (s), 120.44 (s), 118.17 (br. s), 83.01(s, pinacolato-*CM*e₂), 34.28 (s), 25.69 (s), 24.77 (s), 17.66 (s). HRMS (APCI): *m*/*z* calcd for C₁₃H₂₃BO₂+H⁺: 223.1866 [*M*+H]⁺; found: 223.1865.

2-16. Reaction of isoprene (3e) with vinyl boronic acid dibutyl ester (6b).

Because the product **7c** was decomposed during the purification process, this compound was characterised by NMR experiments in $[D_6]$ benzene.

Yield: 62% (NMR).

(E)-1-(dibutoxyboraneyl)-5-methylhexa-2,4-diene [(E)-7c]:

¹H NMR(400 MHz, [D₆]benzene, r.t.): δ 6.41 (dd, ${}^{3}J_{H,H}$ =14.9 ,10.7 Hz, 1H; 3-CH), 5.97 (d, ${}^{3}J_{H,H}$ =10.6 Hz, 1H; 4-CH), 5.91 (dt, ${}^{3}J_{H,H}$ =15.0, 7.6 Hz, 1H; 2-CH), 3.79 (t, ${}^{3}J_{H,H}$ =6.4 Hz, 4H; 8-CH₂), 1.82 (d, ${}^{3}J_{H,H}$ =7.0 Hz, 2H; 1-CH₂),1.65 (s, 3H; 6- or 7-Me), 1.49 (m, 4H; 9-CH₂), 1.3 (sext, ${}^{3}J_{H,H}$ =7.4 Hz, 4H; 10-CH₂), 0.84 (t, ${}^{3}J_{H,H}$ =7.3 Hz, 6H; 11-Me).

2-17. Reaction of butadiene (3f) with vinyl boronic acid pinacol ester (6a).

Yield: 24%. pale yellow oil.

(1*E*,4*Z*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,4-diene [(1*E*,4*Z*)-7d]:

6 5 3 1 B(pin)

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 6.93 (dt, ³J_{H,H}=17.8, 5.7 Hz, 1H; 2-*CH*), 5.81 (d, ³J_{H,H}=17.8 Hz, 1H; 1-*CH*), 5.43 (m, 2H; 4-*CH* and 5-*CH*), 2.78 (t, ³J_{H,H}=5.8 Hz, 2H; 3-*CH*₂), 1.40 (d, ³J_{H,H}=4.6 Hz, 3H; 6-*Me*), 1.07 (s, 12H; pinacolato-*Me*); ¹³C{¹H} NMR (100 MHz, [D₆]benzene, r.t.): δ 152.36 (s), 126.86 (s), 125.66 (s), 119.64 (br. s), 82.90 (s, pinacolato-*CMe*₂), 33.40 (s), 24.89 (s, pinacolato-*Me*), 12.67 (s). HRMS (APCI): *m/z* calcd for C₁₂H₂₁BO₂+H⁺; 209.1710 [*M*+H]⁺; found: 209.1709.

2-18. Reaction of methyl (2E,4E)-hepta-2,4-dienoate (3g) with vinyl boronic acid pinacol ester (6a).

Yield: 44%. pale yellow oil.

methyl (2*E*,6*E*)-5-methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-2,6-dienoate [(2*E*,6*E*)-7e]:

¹H NMR (400 MHz, [D]chloroform, r.t.): δ 6.89 (dt, ³*J*_{H,H}=15.5, 7.4 Hz, 1H; 3-*CH*), 6.73 (dd, ³*J*_{H,H}=17.8, 6.9 Hz, 1H; 6-*CH*), 5.75 (d, ³*J*_{H,H}=15.5 Hz, 1H; 2-*CH*), 5.64 (dd, ³*J*_{H,H}=17.8 Hz, ⁴*J*_{H,H}=1.7 Hz, 1H; 7-*CH*), 3.36 (s, 3H; CO₂*Me*), 2.02 (sept, ³*J*_{H,H}=6.9 Hz, 1H; 5-*CH*), 1.88 (dtd, ³*J*_{H,H}=15.5, 7.4 Hz, ⁴*J*_{H,H}=1.7 Hz, 1H; 4-*CH*₂), 1.70 (dtd, ³*J*_{H,H}=15.5, 7.4 Hz, ⁴*J*_{H,H}=1.7 Hz, 1H; 4-*CH*₂), 1.06 (s, 12H; pinacolato-*Me*), 0.73 (d, ³*J*_{H,H}=6.9 Hz, 3H; 8-*Me*); ¹³C{¹H} NMR (100 MHz, [D]chloroform, r.t.): δ 157.76 (s), 147.60 (s), 122.41 (s), 118.26 (br.s), 82.26 (s, pinacolato-*CMe*₂), 77.33 (s), 51.53 (s), 38.67 (s), 38.42 (s), 24.88 (s, pinacolato-*Me*), 19.12 (s). HRMS (APCI): *m*/*z* calcd for C₁₅H₂₅BO₄+H⁺: 281.1921 [*M*+H]⁺; found: 281.1913.

2-19. Reaction of methyl (2E,4E)-hexa-2,4-dienoate (3g) with vinyl boronic acid dibutyl ester (6b).

Because the products **7f** was decomposed during the purification process, this compound was characterised by NMR experiments in $[D_6]$ benzene.

Yield: 52% (NMR).

methyl (2E,6E)-7-(dibutoxyboraneyl)- 5-methylhepta-2,6-dienoate [(2E,6E)-7f]:

¹H NMR(400 MHz, [D₆]benzene, r.t.): δ 6.96 (dt, ³J_{H,H}=15.4, 7.5 Hz, 1H; 3-CH), 6.70 (dd, ³J_{H,H}=17.8, 7.4 Hz, 1H; 6-CH), 5.82 (d, ³J_{H,H}=15.5 Hz, 2H; 2-CH and 7-CH), 3.93 (t, ³J_{H,H}=6.3 Hz, 4H; 9-CH₂), 3.38 (s, 3H; CO₂Me), 1.94 (sept, ³J_{H,H}=6.9 Hz, 1H; 7-CH), 1.82 (m, 1H; 4-CH), 1.75 (m, 1H; 4-CH), 1.54 (m, 4H; 10-CH₂), 1.33 (m, 4H; 11-CH₂), 0.86 (t, ³J_{H,H}=7.4 Hz, 6H; 12-Me), 0.74 (d, ³J_{H,H}=6.9 Hz, 3H; 8-Me).

2-20. Reaction of (*E*)-3,7-dimethylocta-1,3,6-triene (β -ocimene) (3h) with vinyl boronic acid pinacol ester (6a).

Yield: 67%. pale yellow oil.

(*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-{(E)-but-2-en-2-yl}-6-methylhepta-1,5-diene [(*E*)-7g]:

7
$$6 \begin{bmatrix} 11 \\ 10 \\ 9 \\ 5 \\ 4 \end{bmatrix} \begin{bmatrix} 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 13 \end{bmatrix} B(pin)$$

¹H NMR(400 MHz, [D]chloroform, r.t.): δ 7.00 (dd, ³J_{H,H}=18.4, 6.3 Hz, 1H; 2-*CH*), 5.83 (dd, ³J_{H,H}=17.8, 1.7 Hz, 1H; 1-*CH*), 5.14 (t, ³J_{H,H}=5.7 Hz, 1H; 5-*CH*), 3.43 (q, ³J_{H,H}=6.9 Hz, 1H; 3-*CH*), 2.27 (dt, ³J_{H,H}=14, 7.4 Hz, 1H; 4-*CH*₂), 2.19 (dt, ³J_{H,H}=14, 7.4 Hz, 1H; 4-*CH*₂), 1.66 (d, ³J_{H,H}=9.2 Hz, 3H; 11-*M*e), 1.58 (s, 6H; 8-*M*e and 12-*M*e), 1.49 (s, 3H; 7-*M*e), 1.07 (s, 12H; pinacolato-*M*e); ¹³C {¹H} NMR (100 MHz, [D]chloroform, r.t.): δ 155.35 (s), 135.91 (s), 132.17 (s), 122.34 (s), 121.06 (s), 117.55 (br. s), 83.02 (s, pinacolato-*C*Me₂), 45.55 (s), 29.83 (s), 25.75 (s), 24.78 (s, pinacolato-*M*e), 19.13 (s), 17.90 (s), 12.98 (s). HRMS (APCI): *m/z* calcd for C₁₈H₃₁BO₂+H⁺: 291.2493 [*M*+H]⁺; found: 291.2494.

2-21. Reaction of 7-methyl-3-methyleneocta-1,6-diene (β -myrcene) (3i) with vinyl boronic acid pinacol ester (6a).

This product was isolated as a regioisomeric mixture of **7h** and **8h**.

8h: Yield: 43%. 7h: Yield: 15%. pale yellow oil.

(1*E*,4*Z*)-4-ethylidenyl-8-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nona-1,7-diene [(1*E*,4*Z*)-7h]:

¹H NMR (400 MHz, [D]chloroform, r.t.): δ 6.52 (dt, ³*J*_{H,H}=17.8, 6.3 Hz, 1H; 2-C*H*), 5.42 (dt, ³*J*_{H,H}=18.3 Hz, ⁴*J*_{H,H}=1.7 Hz, 1H; 1-C*H*), 5.30 (t, ³*J*_{H,H}=6.3 Hz, 1H; 7-C*H*), 5.14 (br.q, ³*J*_{H,H}=6 Hz, 1H; 10-C*H*), 2.86 (d, ³*J*_{H,H}=6.3 Hz, 2H; 3-C*H*₂), 2.1-1.9 (m, 4H; 5- and 6-C*H*₂), 1.65 (s, 3H; 12- or 9-*M*e), 1.55 (s, 3H; 9- or 12-*M*e), 1.55 (d, ³*J*_{H,H}=5.9 Hz, 3H; 11-*M*e), 1.23 (s, 12H; pinacolato-*M*e); ¹³C{¹H} NMR (100 MHz, [D]chloroform, r.t.): δ 151.4 (s), 136.6 (s), 131.4 (s), 124.3 (s), 120.3 (s), 83.0 (s, pinacolato-CMe₂), 37.2 (s), 36.6 (s), 31.6 (s), 25.7 (s, pinacolato-*M*e), 22.6 (s), 18.0 (s), 14.1 (s), 13.1 (s). HRMS (APCI): *m/z* calcd for C₁₈H₃₁BO₂+H⁺: 291.2493 [*M*+H]⁺; found: 291.2496.

(1*E*,4*E*)-5,9-dimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)deca-1,4,8-triene [(1*E*,4*E*)-8h]:

¹H NMR (400 MHz, [D]chloroform, r.t.): δ 6.59 (dt, ${}^{3}J_{H,H}$ =18.4, 5.6 Hz, 1H; 2-CH); 5.41 (dd, ${}^{3}J_{H,H}$ =17.6 Hz, ${}^{4}J_{H,H}$ =1.6 Hz, 1H; 1-CH), 5.14 (t, ${}^{3}J_{H,H}$ =7.2 Hz, 1H; 6-CH or 4-CH), 5.05 (t, ${}^{3}J_{H,H}$ =5.2 Hz, 1H; 4-CH or 8-CH), 2.82 (t, ${}^{3}J_{H,H}$ =6.8 Hz, 2H; 3-CH₂), 2.01 (m, 4H; 6-CH₂ and 7-CH₂), 1.65 (s, 3H; 10-, 12- or 9-*M*e), 1.56 (s, 6H; 9-, 10- or 12-*M*e), 1.23 (s, 12H; pinacolato-*M*e); ${}^{13}C{}^{1}H$ NMR (100 MHz, [D]chloroform, r.t.): δ 152.76 (s) 137.10 (s), 135.34 (s), 131.45 (s), 124.22 (s), 118.03 (br. s), 82.99 (s, pinacolato-CMe₂), 39.67 (s), 34.14 (s), 26.62 (s), 25.69 (s), 24.75 (s, pinacolato-*M*e), 17.68(s), 16.02 (s). HRMS (APCI): *m/z* calcd for C₁₈H₃₁BO₂+H⁺: 291.2493 [*M*+H]⁺; found: 291.2489.

2-22. Reaction of 7-methyl-3-methyleneocta-1,6-diene (β -myrcene) (3i) with vinyl boronic acid dibutyl ester (6b).

Because the product **8i** was decomposed during the purification process, this compound was characterised by NMR experiments in $[D_6]$ benzene.

Yield: 33% (NMR).

(2E,4E)-1-(dibutoxyboraneyl)- 5,9-dimethyldeca-2,4,8-triene [(2E,4E)-8i]:

¹H NMR(400 MHz, [D₆]benzene, r.t.): δ 6.44 (dd, ³*J*_{H,H}=14.9, 10.9 Hz, 1H; 3-C*H*), 6.05 (d, ³*J*_{H,H}=10.9 Hz, 1H; 4-C*H*), 5.94 (dt, ³*J*_{H,H}=14.9, 7.4 Hz, 1H; 2-C*H*), 5.20 (t, ³*J*_{H,H}=8 Hz, 1H; 8-C*H*), 3.79 (t, ³*J*_{H,H}=6.3 Hz, 4H; 13-C*H*₂), 2.14 (t, ³*J*_{H,H}=6.3 Hz, 2H; 7- or 6-C*H*₂), 2.08 (t, ³*J*_{H,H}=6.9 Hz, 2H; 6- or 7-C*H*₂), 1.83 (d, ³*J*_{H,H}=7.5 Hz, 2H; 1-C*H*₂), 1.71 (s, 3H; 12-, 10- or 11-*M*e), 1.64 (s, 3H; 11-, 12- or 10-

Me), 1.52 (s, 3H; 10-, 11- or 12-*Me*), 1.47 (quint, ${}^{3}J_{H,H}$ =6.3 Hz, 4H; 14-*CH*₂), 1.33 (m, 4H; 15-*CH*₂), 0.85 (t, ${}^{3}J_{H,H}$ =7.4 Hz, 6H; 16-*Me*).

2-23. Reaction of (2*E*,4*E*)-hexa-2,4-diene (3j) with vinyl boronic acid pinacol ester (6a).

Yield: 36%. brown oil.

(1*E*,4*Z*)-3-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,4-diene [(1*E*,4*Z*)-7j]:

6 5 3 2 1 B(pin)

¹H NMR (400 MHz, [D]chloroform, r.t.): δ 6.94 (dd, ³*J*_{H,H}=18, 6.1 Hz, 1H; 2-C*H*), 5.80 (dd, ³*J*_{H,H}=18 Hz, ⁴*J*_{H,H}=1.6 Hz, 1H; 1-C*H*), 5.31 (dtd, ³*J*_{H,H}=10.7, 7.2 Hz, ⁴*J*_{H,H}=0.9 Hz, 1H; 5-C*H*), 5.19 (ddt, ³*J*_{H,H}=9.2, 7.7 Hz, ⁴*J*_{H,H}=1.4 Hz, 1H; 4-C*H*), 3.18 (sext, ³*J*_{H,H}=6.9 Hz, 1H; 3-C*H*), 1.89 (quint, ³*J*_{H,H}=7.4 Hz, 2H; 6-C*H*₂), 1.07 (s, 12H; pinacolato-*M*e), 0.99 (d, ³*J*_{H,H}=6.9 Hz, 3H; 8-*M*e), 0.82 (t, ³*J*_{H,H}=7.6 Hz, 3H; 7-*M*e); ¹³C{¹H} NMR (100 MHz, [D]chloroform, r.t.): δ 157.78 (s), 131.88 (s), 131.37 (s), 115.89 (br.s), 83.02 (s, pinacolato-CMe₂), 37.21 (s), 24.75 (s, pinacolato-*M*e), 20.72 (s), 20.16 (s), 14.38 (s). HRMS (APCI): *m/z* calcd for C₁₄H₂₅BO₂+H⁺: 237.2023[*M*+H]⁺; found: 237.2016.

2-24. Reaction of (2E,4E)-hexa-2,4-diene (3k) with vinyl boronic acid pinacol ester (6a).

Yield: 30%. brown oil.

(1*E*,4*Z*)-3,8-dimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,4-diene [(1*E*,4*Z*)-7k]:

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 6.99 (dd, ³*J*_{H,H}=18.4, 5.6 Hz, 1H; 2-C*H*), 5.81 (dd, ³*J*_{H,H}=17.6 Hz, ⁴*J*_{H,H}=1.6 Hz, 1H; 1-C*H*), 5.19 (qd, ³*J*_{H,H}=6.8 Hz, ⁴*J*_{H,H}=1.2 Hz, 1H; 5-C*H*), 3.43 (quintd, ³*J*_{H,H}=7.2 Hz, ⁴*J*_{H,H}=2 Hz, 1H; 3-C*H*), 1.53 (q, ⁵*J*_{H,H}=1.7 Hz, 3H; 8-*M*e), 1.46 (dq, ³*J*_{H,H}=7.4 Hz, ⁵*J*_{H,H}=2 Hz, 3H; 6-*M*e), 1.07 (s, 12H; pinacolato-*M*e), 1.01 (d, ³*J*_{H,H}=7.2 Hz, 3H; 7-*M*e); ¹³C{¹H} NMR (100 MHz, [D₆]benzene, r.t.): δ 157.10 (s), 137.53 (s), 120.09 (s), 82.90 (s, pinacolato-CMe₂), 39.47 (s), 24.92 (s, pinacolato-*M*e), 24.92(s), 19.19 (s), 16.93 (s), 12.92 (s). HRMS (APCI): *m/z* calcd for C₁₄H₂₅BO₂+H⁺: 237.2023 [*M*+H]⁺; found: 237.2022.

2-25. Reaction of (2E,4E)-3,4-dimethylhexa-2,4-diene (3I) with vinyl boronic acid pinacol ester (6a).

Yield: 29%. brown oil.

(1*E*,4*Z*)-3,4,5-trimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,4-diene [(1*E*,4*Z*)-7l]:

¹H NMR(400 MHz, [D]chloroform, r.t.): δ 6.57 (dd, ³J_{H,H}=18.4, 5.2 Hz, 1H; 2-CH), 5.36 (dd, ³J_{H,H}=17.6 Hz, ⁴J_{H,H}=1.6 Hz, 1H; 1-CH), 3.44 (quintd, ³J_{H,H}=7.6 Hz, ⁴J_{H,H}=2 Hz, 1H; 3-CH), 2.03 (dq, ²J_{H,H}=14.3 Hz, ³J_{H,H}=7.4 Hz, 1H; 6-CH₂), 1.99 (dq, ²J_{H,H}=14.3 Hz, ³J_{H,H}=7.4 Hz, 1H; 6-CH₂), 1.60 (s, 3H; 10- or 9-*M*e), 1.44 (s, 3H; 9- or 10-*M*e), 1.24 (s, 12H; pinacolato-*M*e), 1.05 (d, ³J_{H,H}=6.8 Hz, 3H; 8-*M*e), 0.92 (t, ³J_{H,H}=7.4 Hz, 3H; 7-*M*e); ¹³C{¹H} NMR (100 MHz, [D]chloroform, r.t.): δ 158.05 (s), 131.05 (s), 128.88 (s), 116.47 (br. s), 83.09 (s, pinacolato *CM*e₂), 40.61 (s), 27.18 (s), 24.89 (s, pinacolato-*M*e), 18.56 (s), 17.27 (s), 13.58 (s), 13.46 (s). HRMS (APCI): *m/z* calcd for C₁₆H₃₀BO₂+H⁺: 265.2336 [*M*+H]⁺; found: 265.2324.

2-26. Reaction of (*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)penta-1,3-diene (3m) with vinyl boronic acid pinacol ester (6a).

Yield: 58%. brown oil.

(1*E*,5*E*)-3-methyl-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaboloran-2-yl)hexa-1,5-diene [(1*E*,5*E*)-7m]:

$$(pin)B\underbrace{5}_{6}\underbrace{5}_{4}\underbrace{3}_{2}\underbrace{1}_{1}B(pin)$$

¹H NMR (400 MHz, [D]chloroform, r.t.): δ 6.58 (dd, ${}^{3}J_{H,H}$ =17.8, 6.3 Hz, 1H; 2-C*H*), 6.57 (br.dt, ${}^{3}J_{H,H}$ =17, 6 Hz, 1H; 5-C*H*), 5.42(d, ${}^{3}J_{H,H}$ =17.8 Hz, 1H; 6- or 1-C*H*), 5.38 (d, ${}^{3}J_{H,H}$ =17.8 Hz, 1H; 1- or 6-C*H*), 2.34-2.32 (m, 2H; 4-C*H*₂ and 3-C*H*), 2.06 (dtd, ${}^{2}J_{H,H}$ =13.6 Hz, ${}^{3}J_{H,H}$ =7.6, 6,Hz, 1H; 4-C*H*₂), 1.24 (s, 24H; pinacolato-*M*e), 0.98 (d, ${}^{3}J_{H,H}$ =6 Hz, 3H; 3-*M*e); ${}^{13}C{}^{1}H{}$ NMR (100 MHz, [D]chloroform, r.t.): δ 158.90 (s). 152.34 (s), 120.60 (br. s), 116.41 (br. s), 83.01 (s, pinacolato-CMe₂), 42.47 (s), 38.32 (s), 24.75(s, pinacolato-*M*e), 18.77 (s, 7-*M*e). HRMS (APCI): *m*/*z* calcd for C₁₉H₃₄B₂O₄+H⁺: 349.2722 [*M*+H]⁺; found: 349.2715.

2-27. Reaction of (*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)penta-1,3-diene (3m) with vinyl boronic acid dibutyl ester (6b).

Yield: 60% (NMR).

(1*E*,5*E*)-3-methyl-1-(dibutoxyboraneyl)-6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaboloran-2-yl)hexa-1,5-diene [(1*E*,5*E*)-7n]:

$$(pin)B$$

 $\begin{array}{c} & & & \\ & & \\ & 5 & & \\ & 6 & & 4 \\ & & & 2 \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

¹H NMR(400 MHz, [D₆]benzene, r.t.): δ 6.93 (ddd, ${}^{3}J_{H,H}$ =18.0, 7.6, 6.4 Hz, 1H; 5-CH), 6.81 (dd, ${}^{3}J_{H,H}$ =18.0, 7.2 Hz, 2-CH), 5.78 (dt, ${}^{3}J_{H,H}$ =18.0 Hz, ${}^{4}J_{H,H}$ =0.8 Hz, 1H; 6-CH), 5.60 (d, ${}^{3}J_{H,H}$ =17.8 Hz, 1H; 1-CH), 3.89 (t, ${}^{3}J_{H,H}$ =7.5 Hz, partly obscured by overlapping with a reactant, 8-CH₂), 2.26 (m,

1H; 4-C H_2), 2.2 (m, 1H; 3-CH), 2.04 (dt, ${}^{3}J_{H,H}$ =15, 7Hz, 1H; 4-C H_2), 1.51 (m, obscured by overlapping with a reactant, 9-C H_2), 1.33 (m, obscured by overlapping with a reactant, 10-C H_2), 1.08 (s, 12H; pinacol-Me), 0.93 (d, ${}^{3}J_{H,H}$ =6.8 Hz, 3H; 7-Me), 0.86 (t, ${}^{3}J_{H,H}$ =6.8 Hz, 6H; 11-Me).

2-28. Reaction of (*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)penta-1,3-diene (3m) with (2,3-dihydro-1*H*-naphtho[1,8-*d*e][1,3,2]diazaborinin-2-yl)ethene (6c).

Yield: 89%. Brown oil.

(1*E*,5*E*)-1-(2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinin-2-yl)-3-methyl-6-(4,4,5,5,-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,5-diene [(1*E*,5*E*)-70]:

¹H NMR (400 MHz, [D]chloroform, r.t.): δ 7.08 (t, ³J_{H,H}=8 Hz, 2H; 9-*CH*), 6.98 (d, ³J_{H,H}=8.4 Hz, 2H; 8-*CH*), 6.58 (dt, ³J_{H,H}=17.6, 6.8 Hz, 1H; 5-*CH*), 6.30 (d, ³J_{H,H}=7 Hz, 2H; 8-*CH*), 6.29 (dd, ³J_{H,H}=17.6, 6.4 Hz, 1H; 2-*CH*), 5.70 (s, 2H; N*H*), 5.52 (d, ³J_{H,H}=18.4 Hz, 1H; 1-*CH*), 5.47 (d, ³J_{H,H}=18.4 Hz, 1H; 6-*CH*), 2.39 (sept, ³J_{H,H}=7.6 Hz, 1H; 3-*CH*), 2.23 (dtd, ²J_{H,H}=16.4 Hz, ³J_{H,H}=7.2 Hz, ⁴J_{H,H}=1.2 Hz, 1H; 4-*CH*₂), 2.16 (dtd, ²J_{H,H}=16.4 Hz, ³J_{H,H}=6.9 Hz, ⁴J_{H,H}=1.1 Hz, 1H; 4-*CH*₂), 1.26 (s, 12H; pinacolato-*M*e), 1.04 (d, ³J_{H,H}=6.8 Hz, 3H; 7-*M*e); ¹³C{¹H} NMR (100 MHz, [D]chloroform, r.t.): δ 152.50 (s), 152.29 (s), 141.35 (s), 136.41 (s), 127.66 (s), 121.88 (br.s), 120.80 (br.s), 117.44 (s), 115.98 (s), 105.67 (s), 83.23 (s, pinacolato-*C*Me₂), 42.90 (s), 38.51 (s), 24.89 (s, pinacolato-*M*e), 19.50 (s, 7-*M*e). HRMS (APCI): *m*/z calcd for C₂₃H₃₀B₂N₂O₂+H⁺: 389.2574 [*M*+H]⁺; found: 389.2566.

3. One pot cross-dimerization and cross-coupling

3-1. One pot reaction of 1-pentynyl boronic acid diisopropyl ester (2a), methyl (*E*)-penta-2,4-dienoate (3a) with phenyl iodide.

1-Pentynyl boronic acid diisopropyl ester (**2a**) (22.5 μ L, 0.0982 mmol) and methyl (*E*)-penta-2,4dienoate (**3a**) (11.5 μ L, 0.0987 mmol) were placed in benzene-*d*₆ (500 μ L) in the presence of [Ru(η^6 -naphthalene)(η^4 -1,5-cod)] (**1**) (3.35 mg, 0.00993 mmol) at room temperature for 24 h. Then, phenyl iodide (11.0 μ L, 0.0987 mmol), NaOMe (120 μ L in methanol, 0.120 mmol), and [Pd(PPh₃)₄] (**9**) (9.28 mg, 0.00803 mmol) were added in this order and warmed at 50 °C for 15 min. The product was purified by the recycle HPLC and was obtained as a stereoisomeric mixture of **10**.

Yield: 79%. (2*E*,4*E*,6*E*)-**10**/(2*E*,4*E*,6*Z*)-**10** = 5/1.

methyl (2E,4E,6E)-7-phenyl-6-propylhepta-2,4,6-trienoate [(2E,4E,6E)-10]:

¹H NMR (400 MHz, [D]chloroform, r.t.): δ 7.38 (dd, ³*J*_{H,H}=15.5, 10.9 Hz, 1H; 3-C*H*), 7.35-7.26 (m, 5H; *Ph*), 6.64 (d, ³*J*_{H,H}=15 Hz, 1H; 5-C*H*), 6.62 (s, 1H; 7-C*H*), 6.40 (dd, ³*J*_{H,H}=15.4, 10.9 Hz, 1H; 4-

CH), 5.91 (d, ${}^{3}J_{H,H}$ =15.5 Hz, 1H; 2-CH), 3.74 (s, 3H; CO₂Me), 2.43 (m, 2H; 8-CH₂), 1.56 (sext, ${}^{3}J_{H,H}$ =7.4 Hz, 9-CH₂ partly overlapped with an impurity), 0.99 (t, ${}^{3}J_{H,H}$ =7.4 Hz, 3H; 10-Me); ${}^{13}C{}^{1}H$ } NMR (100 MHz, [D]chloroform, r.t.): \bar{o} 167.68 (s, 1-CO₂Me), 145.67 (s), 145.42 (s), 140.18 (s), 137.03 (s), 135.64 (s), 128.91 (s), 128.40 (s), 127.33 (s), 125.45 (s), 119.81 (s), 51.53 (s, CO₂Me), 29.38 (s, 8-CH₂), 22.44 (s, 9-CH₂), 14.36 (s, 10-Me). HRMS (APCI): *m/z* calcd for C₁₇H₂₀O₂+H⁺: 257.1536 [*M*+H]⁺; found: 257.1528.

3-2. One pot reaction of 3-hexyne (2g), (E)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butadiene (3d) with phenyl iodide.

This reaction was performed as shown in the formation for **10**. Yield: 62%. yellow oil

(1E,3E,5E)-5-ethyl-1-phenylocta-1,3,5-triene [(1E,3E,5E)-11]:

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.30 (d, ${}^{3}J_{H,H}$ =7.5 Hz, 2H; *o-Ph*), 7.2-7.1 (overlapped with solvent, *Ph*), 7.05 (t, 1H, *p-Ph*), 6.85 (dd, ${}^{3}J_{H,H}$ =15.5, 10.3 Hz, 1H; 2-CH), 6.44 (d, ${}^{3}J_{H,H}$ =15.5 Hz, 1H; 1-CH), 6.39 (dd, ${}^{3}J_{H,H}$ =15.5, 10.3 Hz, 1H; 3-CH), 6.27 (d, ${}^{3}J_{H,H}$ =15.5 Hz, 1H; 4-CH), 5.45 (t, ${}^{3}J_{H,H}$ =7.44 Hz, 1H; 6-CH), 2.24 (q, ${}^{3}J_{H,H}$ =7.44 Hz, 2H; 9-CH₂), 2.03 (quint, ${}^{3}J_{H,H}$ =7.44 Hz, 2H; 7-CH₂), 1.05 (t, ${}^{3}J_{H,H}$ =7.48 Hz, 3H; 10-*M*e), 0.91 (t, ${}^{3}J_{H,H}$ =7.44 Hz, 3H; 8-*M*e).

lit.^[8] ¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.30 (d, ${}^{3}J_{H,H}$ =7.48 Hz, 2H), 7.16–7.12 (2H, overlapped with resonances for C₆D₅H), 7.04 (t, ${}^{3}J_{H,H}$ =7.44 Hz, 1H), 6.84 (dd, ${}^{3}J_{H,H}$ =15.5, 10.3 Hz, 1H), 6.44 (d, ${}^{3}J_{H,H}$ =15.5 Hz, 1H), 6.39 (dd, ${}^{3}J_{H,H}$ =15.5, 10.3 Hz, 1H), 6.27 (d, ${}^{3}J_{H,H}$ =15.5 Hz, 1H), 5.44 (t, ${}^{3}J_{H,H}$ =7.4 Hz, 1H), 2.24 (q, ${}^{3}J_{H,H}$ =7.5 Hz, 2H), 2.03 (quint, ${}^{33}J_{H,H}$ =7.4 Hz, 2H), 1.05 (t, ${}^{3}J_{H,H}$ =7.4 Hz, 3H), 0.92 (t, ${}^{3}J_{H,H}$ =7.4 Hz, 3H).

3-3. One pot reaction of (*E*)-1,3-pentadiene (3b), vinyl boronic acid pinacol ester (6a).with phenyl iodide.

This reaction was performed as shown in the formation for **10**. Yield: 81%. yellow oil,

(1*E*,4*Z*)-3-methyl-1-phenylhexa-1,4-diene [(1*E*,4*Z*)-12]:

^{S8} S. Kiyota, S. In, R. Saito, N. Komine, M. Hirano, *Organometallics* **2016**, *35*, 4033-4043.

¹H NMR (400 MHz, [D]chloroform, r.t.): δ 7.35 (d, ³*J*_{H,H}=7.4 Hz, 2H; *o-Ph*), 7.29 (t, ³*J*_{H,H}=6.9 Hz, 2H; *m-Ph*), 7.18 (t, ³*J*_{H,H}=6.9 Hz, 1H; *p-Ph*), 6.36 (d, ³*J*_{H,H}=16 Hz, 1H; 1-*CH*), 6.17 (dd, ³*J*_{H,H}=16.0, 6.3 Hz, 1H; 2-*CH*), 5.50 (dq, ³*J*_{H,H}=10.9, 6.9 Hz, 1H; 5-*CH*), 5.33 (ddq, ³*J*_{H,H}=10.9, 9.2 Hz, ⁴*J*_{H,H}=1.7 Hz, 1H; 4-*CH*), 3.36 (sext, ³*J*_{H,H}=7.4 Hz, 1H; 3-*CH*), 1.68 (dd, ³*J*_{H,H}=6.9 Hz, ⁴*J*_{H,H}=1.7 Hz, 3H; 6-*Me*), 1.16 (d, ³*J*_{H,H}=6.3 Hz, 3H; 7-*Me*). HRMS (APCI): *m/z* calcd for C₁₃H₁₆+H⁺: 173.1325 [*M*+H]⁺; found: 173.1320.

3-4. One pot reaction of 1-pentynyl boronic acid diisopropyl ester (2a), (*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butadiene (3d) with vinyl bromide

1-Pentynyl boronic acid diisopropyl ester (**2a**) (22.5 μ L, 0.0982 mmol) and (*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butadiene (**3d**) (22.0 μ L, 0.110 mmol), and [Ru(η^{6} -naphthalene)(η^{4} -1,5-cod)] (**1**) (3.34 mg, 0.00990 mmol) in [D₆]benzene were warmed at 50 °C for 3 h. Then, vinyl bromide (15.0 μ L, 0.212 mmol), NaOEt (240 μ L in EtOH, 0.240 mmol), and [Pd(PPh₃)₄] (**9**) (18.46 mg, 0.01597 mmol) were added and warmed at 50 °C for 5 h. After addition of 1,4-dioxane (5.0 μ L, 0.058 mmol)as an internal standard, the product yield was estimated. The products were purified by the recycle HPLC. The product was obtained as a mixture of (3*E*,5*E*,7*E*)-**13** and (3*E*,5*E*)-**14**.

Yields: (3E,5E,7E)-13: 46%, (3E,5E)-14: 20%. yellow oil.

(3E,5E,7E)-4-propyldeca-1,3,5,7,9-pentaene [(3E,5E,7E)-13]:

¹H NMR (400 MHz, [D]chloroform, r.t.): δ 6.60 (ddd, ³*J*_{H,H}=17.8, 11.5, 10.3 Hz, 1H; 2-C*H*), 6.38 (dddd, ³*J*_{H,H}=16.0, 11.8, 10.3 Hz, ⁴*J*_{H,H}=-1.0, -0.5 Hz, 1H; 8-C*H*), 6.32 (dd, ³*J*_{H,H}=17.8, 10.3 Hz, 1H; 9-C*H*), 6.30 (ddd, ³*J*_{H,H}=16.0, 10.5 Hz, ⁴*J*_{H,H}=-1.0 Hz, 1H; 7-C*H*), 6.28 (ddd, ³*J*_{H,H}=17.5, 10.5 Hz, ⁴*J*_{H,H}=-1.0 Hz, 1H; 6-C*H*), 6.19 (dd, ³*J*_{H,H}=17.5 Hz, ⁴*J*_{H,H}=-1.0 Hz, 1H; 5-C*H*), 6.08 (ddt, ³*J*_{H,H}=10.5, ⁴*J*_{H,H}=-2.5, ⁴*J*_{H,H}=-1.0 Hz, 1H; 3-C*H*), 5.23 (ddd, ³*J*_{H,H}=17.8, ²*J*_{H,H}=-0.5 Hz, 1H; 10-C*H*₂), 5.19 (dt, ³*J*_{H,H}=17.8, ²*J*_{H,H}=2.5 Hz, ⁴*J*_{H,H}=10.3 Hz, ²*J*_{H,H}=-0.9 Hz, 1H; 10-C*H*₂), 2.33 (t, ³*J*_{H,H}=7.4 Hz, 2H; 11-C*H*₂), 1.46 (sext, ³*J*_{H,H}=7.4 Hz, 2H; 12-C*H*₂), 0.92 (t, ³*J*_{H,H}=7.4 Hz, 3H; 13-*Me*); ¹³C{¹H} NMR (100 MHz, [D]chloroform, r.t.): δ 140.63 (s, 4-CPr), 137.13 (s, 7- or 6-CH), 137.02 (s, 5-CH), 134.04 (s, 8-CH), 133.97 (s, 9-CH), 133.05 (s, 2-CH), 132.32 (s, 3-CH), 128.21 (s, 6- or 7-CH), 117.92 (s, 10-CH₂), 117.00 (s, 1-CH₂), 28.89 (s, 11-CH₂), 22.70 (s, 12-CH₂), 14.22 (s, 13-*Me*). HRMS (APCI): *m/z* calcd for C₁₃H₁₈+H⁺: 175.1481 [*M*+H]⁺; found: 175.1474.

(3*E*,5*E*)-4-propylocta-1,3,5,7-tetraene [(3*E*,5*E*)-14]:

¹H NMR (400 MHz, [D]chloroform, r.t.): δ 6.82 (dt, ³J_{H,H}=16.7, 11 Hz, 1H; 2-CH), 6.4-6.2 (obscured by overlapping with **13**, 5-, 6- and 7-CH), 5.97 (d, ³J_{H,H}=11 Hz, 1H; 3-CH), 5.2-5.1 (obscured by overlapping with **13**, 1- and 8-CH₂), 2.21 (t, ³J_{H,H}=7.5 Hz, 2H; 9-CH₂), 1.48 (sext, ³J_{H,H}=7 Hz, partly

obscured by overlapping with **13**, 10-C H_2), 0.91 (t, ${}^{3}J_{H,H}$ =7 Hz, partly obscured by overlapping with **13**, 11-Me); ${}^{13}C{}^{1}H$ NMR (100 MHz, [D]chloroform, r.t.): δ 138.6 (s). 133.7 (s), 132.1 (s), 130.1 (s), 129.4 (s), 129.2 (s), 117.3 (s, 8- or 1-CH₂), 117.1 (s, 1- or 8-CH₂), 28.8 (s, 9-CH₂), 22.3 (s, 10-CH₂), 14.1 (s, 11-Me). MS (EI): m/z = 148 (M⁺).

3-5. One pot reaction of (1*E*,3*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)penta-1,3-diene (3g), vinylboronic acid dibutyl ester (6b), phenyl iodide with 4-tolyl iodide

Vinyl boronic acid dibutyl ester (**6b**) (122 μ L, 0.455 mmol) and (1*E*,3*E*)-1-(4,4,5,5,-tetramethyl-1,3,2dioxaborolan-2-yl)penta-1,3-diene (**3g**) (100 μ L, 0.464 mmol) were dissolved in thf (4 mL) and [Ru(η^6 -naphthalene)(η^4 -1,5-cod)] (**1**) (15.0 mg, 0.0444 mmol) was add. The mixture was warmed at 40 °C for 2 h. Then, phenyl iodide (50.9 μ L, 0.464 mmol), Cs₂CO₃ (309.7 mg, 0.9505 mmol) and [Pd(PPh₃)₄] (**9**) [28.49 mg, 0.02465 mmol] were added into the solution and the mixture was warmed at 40 °C for 48 h. Then, 4-tolyl iodide (205.62 mg, 0.9430 mmol), Cs₂CO₃ (312.9 mg, 0.9576 mg), and [Pd(PPh₃)₄] (**9**) [27.4 mg, 0.02372 mg] were added into the solution and the mixture was warmed at 65 °C for 16 h. After a short column chromatography (SiO₂), the product was purified by the recycling HPLC. (1*E*,5*E*)-**15** was obtained in 29% yield (35.4 mg, 0.135 mmol).

(1*E*,5*E*)-**15**: Yield: 29%. pale yellow oil.

Compound **6b** (50 μ L, 0.225 mmol) and **3g** (55 μ L, 0.227 mmol) were dissolved in thf (4 mL) and **1** (2.8 mg, 0.0083 mmol) was added into the solution. The solution was warmed at 30 °C for 3 h. Then, phenyl iodide (22.0 μ L, 0.201 mmol), Cs₂CO₃ (174.0 mg, 0.5340 mmol), and **9** (19.1 mg, 0.0165 mmol) were added into the solution. The solution was warmed at 40 °C for 8 h. After a short column chromatography by silica gel, the product was purified by the recycling HPLC to give (1*E*,5*E*)-**16** in 24% yield (14.1 mg, 0.0473 mmol).

(1*E*,5*E*)-**16**: Yield: 24%. pale red oil.

(1*E*,5*E*)-4-methyl-6-phenyl-1-(4-tolyl)hexa-1,5-diene [(1*E*,5*E*)-15]:

¹H NMR(400 MHz, [D]chloroform, r.t.): δ 7.36 (d, ³J_{H,H}=7.6 Hz, 2H; 11-CH), 7.30 (t, ³J_{H,H}=7.2 Hz, 2H, 12-CH), 7.24 (partly overlapped with C₆D₅H, 7-CH), 7.20 (t, ³J_{H,H}=6.4 Hz, 1H; 13-CH), 7.10 (d, ³J_{H,H}=7.6 Hz, 2H; 8-CH), 6.39 (d, ³J_{H,H}=16.1 Hz, 2H; 1- and 6-CH), 6.18 (dd, ³J_{H,H}=15.2, 7.5 Hz, 1H; 5-CH), 6.17 (dt, ³J_{H,H}=15.5, 7.4 Hz, 1H; 2-CH), 2.48 (sept, ³J_{H,H}=6.9 Hz, 1H; 4-CH), 2.33 (s, 3H; 9-Me), 2.34 (dt, ²J_{H,H}=13.7 Hz, ³J_{H,H}=7.4 Hz, 1H; 3-CH₂), 2.25 (dt, ²J_{H,H}=13.7 Hz, ³J_{H,H}=7.4 Hz, 1H; 3-CH₂), 1.14 (d, ³J_{H,H}= 6.8 Hz, 3H;10-Me); ¹³C {¹H} NMR (100 MHz, [D]chloroform, r.t.): δ 137.74 (s), 136.61 (s), 136.03 (s), 134.91 (s), 131.109 (s), 129.15 (s), 128.46 (s), 128.21 (s), 127.76 (s), 126.86 (s), 126.01 (s), 125.87 (s), 40.58(s), 37.40 (s), 21.13 (s),19.97 (s). HRMS (APCI): *m/z* calcd for C₂₀H₂₃+H⁺: 263.1794 [*M*+H]⁺; found: 263.1782.

(1*E*,5*E*)-3-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenyl-hexa-1,5-diene [(1*E*,5*E*)-16]:

¹H NMR (400 MHz, [D]chloroform, r.t.): δ 7.31 (d, ³J_{H,H}=7.5 Hz, 2H; 7-*CH*), 7.27 (t, ³J_{H,H}=7.6 Hz, 2H; 8-*CH*), 7.17 (t, ³J_{H,H}=7.2 Hz, 1H; 9-*CH*), 6.59 (dt, ³J_{H,H}=17.6 ,6.8 Hz, 1H; 5-*CH*), 6.34 (d, ³J_{H,H}=16 Hz, 1H; 1-*CH*), 6.13 (dd, ³J_{H,H}=15.2, 7.6 Hz, 1H; 2-*CH*), 5.47 (d, ³J_{H,H}=17.6 Hz, 1H; 6-*CH*), 2.44 (sept, ³J_{H,H}=6.8 Hz, 1H; 3-*CH*), 2.30 (dt, ³J_{H,H}=13.7 Hz, ³J_{H,H}=6.9 Hz, 1H; 4-*CH*₂), 2.18 (dt, ²J_{H,H}=13.7 Hz, ³J_{H,H}=7.5 Hz, 1H; 4-*CH*₂), 1.24 (s, 12H; pinacolato-*Me*), 1.07 (d, ³J_{H,H}=6.8 Hz, 3H;10-*Me*); ¹³C{¹H} NMR (100 MHz, [D]chloroform, r.t.): δ 152.40 (s), 137.73 (s), 135.92 (s), 128.43 (s), 128.11 (s), 126.83 (s), 126.00 (s), 120.57 (br. s), 82.30 (s, pinacolato-*CMe*₂), 43.46 (s), 36.29 (s), 24.74 (s, pinacolato-*Me*), 20.03 ppm (s). HRMS (APCI): *m/z* calcd for C₁₉H₂₈₇BO₂+H⁺: 299.2180 [*M*+H]⁺; found: 299.2169.

4. Allylboration

4-1. Reaction of 7be with benzaldehyde.

Treatment of vinyl boronic acid dibutyl ester (**6b**) (10.0 μ L, 0.0455 mmol) with isoprene (**3e**) (4.5 μ L, 0.046 mmol) in the presence of [Ru(η^6 -naphthalene)(η^4 -1,5-cod)] (**1**) (1.6 mg, 0.0047 mmol) in [D₆]benzene (500 μ L) at 50 °C for 1 h produced **7c** in 62 % yield. Then, benzaldehyde (4.6 μ L, 0.045 mmol) was added into the solution and the solution was warmed at 30 °C for 3 h to give **17** in 77% yield (NMR) based on **7c**.

Dibutyl {rac-(1S,2R)-4-methyl-1-phenyl-2-vinylpent-3-en-1-yl}boronate (17):

¹H NMR (400 MHz, [D₆]benzene, r.t.): δ 7.19-6.95 (m, obscured by C₆D₆ and reactant), 6.05 (ddd, ³J_{H,H}=18.0, 10.4, 7.6 Hz, 1H; 7-CH), 5.34 (d, ³J_{H,H}=6.8 Hz, 1H; 1-CH), 5.19 (dm, ³J_{H,H}=9Hz, 1H; 3-CH), 5.11 (dm, ³J_{H,H}=18.0 Hz, 1H; 8-CH₂), 5.10 (dm, ³J_{H,H}=10.4 Hz, 1H; 8-CH₂), 3.9 (obscured by overlapping with a reactant, 9-CH₂), 3.47 (q, ³J_{H,H}=9.2 Hz, 1H; 2-CH), 1.5 (obscured by overlapping with a reactant, 10-CH₂ and 6- or 5-Me), 1.3 (obscured by overlapping with a reactant, 11-CH₂ and 5- or 6-Me), 0.86 (obscured by overlapping with a reactant, 12-Me).

4-2. Hydrolysis of 17.

Treatment of **17**, derived from the reaction of **6b** (200 μ L, 0.91 mmol) with isoprene (95 μ L, 0.95 mmol), **1** (10.5 mg, 0.0311 mmol) and benzaldehyde (92 μ L, 0.90 mmol), with H₂O₂ (35% in H₂O) and NaOH (3 M) at room temperature for 1 h followed by purification by recycling HPLC produced *rac-anti-***18** (66.4 mg, 0.328 mmol), which was reported by a literature.^{S9} anti-18: Yield 36%. pale yellow oil.

rac-(1S,2R)-4-methyl-1-phenyl-2-vinylpent-3-en-1-ol (18).

¹H NMR (400 MHz, [D]chloroform, r.t.): δ 7.28-7.24 (m, overlapped with CHCl₃, *Ph*), 5.74 (d, ³J_{H,H}=19.5 Hz, 1H; 8-C*H*), 5.73 (ddd, ³J_{H,H}=19.5, 10.3, 7.4 Hz, 1H; 7-C*H*), 5.09 (d, ³J_{H,H}=5.7 Hz, 1H; 3-C*H*), 4.97 (dd, ³J_{H,H}=9.2 Hz, ⁴J_{H,H}=1.2 Hz, 1H; 8-C*H*₂), 4.44 (dd, ³J_{H,H}=7.4 Hz, ⁴J_{H,H}=2.3 Hz, 1H; 1-C*H*), 3.19 (q, ³J_{H,H}=8.0 Hz, 1H; 2-C*H*), 1.58 (s, 3H; 6- or 5-*M*e), 1.29 (s, 3H; 5- or 6-*M*e); ¹³C{¹H} NMR (100 MHz, [D]chloroform, r.t.): δ 142.15 (s), 137.98 (s), 134.41 (s), 127.82 (s), 127.24 (s), 126.71 (s), 122.07 (s), 116.90 (s), 51.56 (s), 25.78 (s), 17.85 (s). HRMS (APCI): *m/z* calcd for C₁₄H₁₈O+H⁺: 203.1436 [*M*+H]⁺; found: 203.1425.

^{S9} P. Bertus, L. Frouin, C. Laroche, J. Szymoniak, *Tetrahedron*, 2004, 60, 1375.

Figure S1. ¹H NMR spectrum of methyl (2*E*,4*E*,6*E*)-7-(diisopropoxyboraneyl)-6-propylhepta-2,4,6-trienoate [(2*E*,4*E*,6*E*)-**4a**] (an *in situ* reaction in an NMR tube) (400 MHz, [D₆]benzene).

Figure S2. ¹H-¹H COSY of methyl (2*E*,4*E*,6*E*)-7-(diisopropoxyboraneyl)-6-propylhepta-2,4,6-trienoate [(2*E*,4*E*,6*E*)-**4a**] (an *in situ* reaction in an NMR tube) (400 MHz, [D₆]benzene).

Figure S3. ¹³C{¹H} NMR spectrum of methyl (2*E*,4*E*,6*E*)-7-(diisopropoxyboraneyl)-6-propylhepta-2,4,6-trienoate [(2*E*,4*E*,6*E*)-**4a**] (an *in situ* reaction in an NMR tube) (100 MHz, [D₆]benzene).

Figure S4. ¹H NMR spectrum of methyl (1*E*,3*E*,5*E*)-1-(diisopropoxyboraneyl)-2-propylhepta-1,3,5-trienoate [(1*E*,3*E*,5*E*)-**4b**] (an *in situ* reaction in an NMR tube) (400 MHz, [D₆]benzene).

Figure S5. ¹H NMR spectrum of methyl (2*E*,4*E*,6*E*)-6-(diisopropoxyboraneyl)-7-phenylhepta-2,4,6-trienoate [(2*E*,4*E*,6*E*)-4**c**] and methyl (2*E*,4*E*,6*E*)-6-(diisopropoxyboraneyl)-7-phenylhepta-2,4,6-trienoate [(2*E*,4*E*,6*E*)-5**c**] (an *in situ* reaction in an NMR tube) (400 MHz, [D₆]benzene).

Figure S6. ¹H-¹H COSY of methyl (2E,4E,6E)-6-(diisopropoxyboraneyl)-7-phenylhepta-2,4,6-trienoate [(2E,4E,6E)-**4c**] and methyl (2E,4E,6E)-6-(diisopropoxyboraneyl)-7-phenylhepta-2,4,6-trienoate [(2E,4E,6E)-**5c**] (an *in situ* reaction in an NMR tube) (400 MHz, [D₆]benzene).

Figure S7. ¹H NMR spectrum of a mixture of methyl (2E,4E,6E)-7-(dimethoxyboraneyl)-6-phenylhepta-2,4,6-trienoate [(2E,4E,6E)-4d] and (2E,4E,6E)-6-(dimethoxyboraneyl)-7-phenylhepta-2,4,6-trienoate [(2E,4E,6E)-5d] (an *in situ* reaction in an NMR tube) (400 MHz, [D₆]benzene).

Figure S8. ¹H-¹H COSY of of a mixture of methyl (2*E*,4*E*,6*E*)-7-(dimethoxyboraneyl)-6-phenylhepta-2,4,6-trienoate [(2*E*,4*E*,6*E*)-**4d**] and (2*E*,4*E*,6*E*)-6-(dimethoxyboraneyl)-7-phenylhepta-2,4,6-trienoate [(2*E*,4*E*,6*E*)-**5d**] (an *in situ* reaction in an NMR tube) (400 MHz, [D₆]benzene).

Figure S9. ¹H NMR spectrum of methyl (2E, 4E, 6E)-6-(4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl)-7-phenylhepta-2, 4, 6-trienoate [(2E, 4E, 6E)-**5e**] (400 MHz, [D₆]benzene).

Figure S10. ¹³C{¹H} NMR spectrum of methyl (2E,4E,6E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-7-phenylhepta-2,4,6-trienoate [(2E,4E,6E)-5e] (100 MHz, [D₆]benzene).

Figure S11. ¹H-¹³C HMQC spectrum of methyl (2*E*,4*E*,6*E*)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-7-phenylhepta-2,4,6-trienoate [(2E,4*E*,6*E*)-**5e**] (400 MHz for ¹H, 100 MHz for ¹³C, [D₆]benzene).

Mass Spectrum SmartFormula Report											
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\HiranoLab\ apci_pos_wide_low KAY0387-1	D:\Data\HiranoLab\KAY0387-1.d apci_pos_wide_low_140605.m KAY0387-1					Acq Ope Inst	uisition Date erator rument / Ser#	6/11/2019 3:39:46 P BDAL micrOTOF-Q II	1 10323	
Acquisition Parame Source Type Socus Scan Begin Scan End	APCI Not active 100 m/z 2000 m/z	lon F Set (Set E Set (Polarity Capillary End Plate Offs Collision Cell	set RF	Positive 4500 V -500 V 150.0 Vpp	0		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Bar 200 °C 3.0 l/min Waste		
197.096	341.1914 6										
Meas. m/z 341.1914	: # Formula 1 C20H26BO4 2 C20H18B5N2	Score m/z 100.00 341.1922 0.00 341.1935	err [mDa] 0.8 2.1	err [ppm] 2.4 6.1	mSigma 69.2 280.7	rdb 8.5 15.5	e Conf even even	N-Rule ok ok			
uker Compass Dat	taAnalysis 4.0			printed:	6/11/20	019 3:4	44:56 PM		Page	1 of 1	

Figure S12. HRMS (APCI) spectrum of methyl (2*E*,4*E*,6*E*)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-7-phenylhepta-2,4,6-trienoate [(2*E*,4*E*,6*E*)-**5e**].

Figure S13. ¹H NMR spectrum of methyl (2E,4E,6E)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6-propylhepta-2,4,6-trienoate [(2E,4E,6E)-**4f**] and methyl (2E,4E,6E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)deca-2,4,6-trienoate [(2E,4E,6E)-**5f** (400 MHz, [D₆]benzene).

Supplementary information

ChemComm

Figure S14. ¹H-¹H COSY of methyl (2*E*,4*E*,6*E*)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6-propylhepta-2,4,6-trienoate [(2*E*,4*E*,6*E*)-4**f**] and methyl (2*E*,4*E*,6*E*)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)deca-2,4,6-trienoate [(2*E*,4*E*,6*E*)-5**f**] (400 MHz, [D₆]benzene).

Figure S15. ¹³C{¹H} NMR of methyl (2E,4E,6E)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6-propylhepta-2,4,6-trienoate [(2E,4E,6E)-4f] and methyl (2E,4E,6E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)deca-2,4,6-trienoate [(2E,4E,6E)-5f].

Figure S16. ¹H-¹³C HMQC spectrum of methyl (2*E*,4*E*,6*E*)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6-propylhepta-2,4,6-trienoate [(2*E*,4*E*,6*E*)-**4f**] and methyl (2*E*,4*E*,6*E*)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)deca-2,4,6-trienoate [(2*E*,4*E*,6*E*)-**5f**] (400 MHz for ¹H, 100 MHz for ¹³C, [D₆]benzene).

Supplementary information

		Mass	Spectr	um Sn	nartFo	rmu	la Rep	port		
Analysis Info Analysis Name Method Sample Name Comment	alysis Info alysis Name D:\Data\HiranoLab\KAY0389-1.d athod apci_pos_vide_low_140605.m mpie Name KAY0389-1						Acq Ope Insti	uisition Date rator rument / Ser#	6/11/2019 5:45:59 P BDAL micrOTOF-Q II	'M 10323
Acquisition Parame Source Type Focus Scan Begin Scan End	ter APCI Not active 100 m/z 2000 m/z	lon I Set Set Set	Polarity Capillary End Plate Offs Collision Cell	set RF	Positive 4500 V -500 V 150.0 Vpp)		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Bar 200 °C 3.0 I/min Waste	
	307.2082									
Meas. m/z 307.2082	# Formula 1 C17H28BO4 2 C17H20B5N2	Score m/z 100.00 307.2078 0.00 307.2091	err [mDa] -0.4 0.8	err [ppm] -1.3 2.7	mSigma 100.4 268.5	rdb 4.5 11.5	e Conf even even	N-Rule ok ok		
Bruker Compass Dat	aAnalysis 4.0			printed:	6/11/20	019 5:5	51:57 PM		Page	1 of 2

Figure S17. HRMS (APCI) spectrum of methyl (2E,4E,6E)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6-propylhepta-2,4,6-trienoate [(2E,4E,6E)-4f] and methyl (2E,4E,6E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)deca-2,4,6-trienoate [(2E,4E,6E)-5f].

Figure S18. ¹H NMR spectrum of (1Z,3E,5E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dphenylhexa-1,3,5-triene [(1Z,3E,5E)-4g] (400 MHz, [D₆]benzene).

Figure S19. $^{1}H-^{1}H$ COSY of (1*Z*,3*E*,5*E*)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dphenylhexa-1,3,5-triene [(1*Z*,3*E*,5*E*)-4g] (400 MHz, [D₆]benzene).

Figure S20. ¹³C{¹H} NMR spectrum of (1Z,3E,5E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dphenylhexa-1,3,5-triene [(1Z,3E,5E)-**4g**] (100 MHz, [D₆]benzene).

Figure S21. ¹H-¹³C HMQC of (1*Z*,3*E*,5*E*)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dphenylhexa-1,3,5-triene [(1*Z*,3*E*,5*E*)-**4g**] (400 MHz for ¹H, 100 MHz for ¹³C, [D₆]benzene).

		Mass S	Spectru	m Sma	artForr	nula	a Repo	ort		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\HiranoLab\KA` apci_pos_wide_17101/ KAY0323	Y0323.d 8.m					Acquis Opera Instrui	sition Date tor ment / Ser#	2/19/2019 7:43:28 Pł BDAL micrOTOF-Q II	M 10323
Acquisition Parameter Source Type Focus Scan Begin Scan End	APCI Not active 200 m/z 2000 m/z	lon Po Set Ca Set En Set Co	larity pillary d Plate Offset Illision Cell RF		Positive 4500 V -500 V 150.0 Vpp			Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Bar 200 °C 3.0 l/min Waste	
296.1956	576,1137									
Meas. m/z 359.2183	 Formula 1 C 20 H 24 B N 6 2 C 24 H 28 B 0 2 3 C 14 H 24 B N 10 0 4 C 13 H 26 B N 6 0 5 5 C 9 H 24 B N 12 0 3 	Score m/z 100.00 359.2154 0.31 359.2255 0.61 359.2211 1.65 359.2184	err [mDa] -3.0 -0.2 4.1 2.8 0.0	err [ppm] -8.3 -0.7 11.5 7.7 0.0	mSigma 420.4 434.5 446.1 450.4 454.8	rdb 12.5 11.5 8.5 3.5 4.5	e Conf even even even even even	N-Rule ok ok ok ok		
Bruker Compass DataA	nalysis 4.0		prir	nted:	2/19/201	9 7:48:	27 PM		Page	1 of 2

Figure S22. HRMS (APCI) spectrum of (1*Z*,3*E*,5*E*)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dphenylhexa-1,3,5-triene [(1*Z*,3*E*,5*E*)-4**g**].

Figure S23. ¹H NMR spectrum of (1E,3E,5E)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-ethylocta-1,3,5-triene [(1E,3E,5E)-4h] (400 MHz, [D₆]benzene).

Figure S24. ¹H-¹H COSY of (1*E*,3*E*,5*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-ethylocta-1,3,5-triene [(1*E*,3*E*,5*E*)-**4h**] (400 MHz, [D₆]benzene).

Figure S25. ¹³C{¹H} NMR spectrum of (1*E*,3*E*,5*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-ethylocta-1,3,5-triene [(1*E*,3*E*,5*E*)-4h] (100 MHz, [D₆]benzene).

Figure S26. ¹H-¹³C HMQC of (1*E*,3*E*,5*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-ethylocta-1,3,5-triene [(1*E*,3*E*,5*E*)-**4h**] (400 MHz for ¹H, 100 MHz for ¹³C, [D₆]benzene).

Supplementary information

		Mass Spectrum S	martFormula	Report		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\HiranoLab\KAY apci_pos_wide_low_14 KAY0395-2	0395-2.d 3605.m		Acquisition Date Operator Instrument / Ser#	6/11/2019 4:03:56 F BDAL micrOTOF-Q II	РМ 10323
Acquisition Parame Source Type Focus Scan Begin Scan End	APCI Not active 100 m/z 2000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 ∨ -500 ∨ 150.0 ∨pp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Bar 200 °C 3.0 l/mir Waste	1
145.1078 145.1078 Meas.m/2 263.2177	63.2177 57 z # Formula Sco 7 1 C16 H 28 B O 2 100.1	7.1368 re m/z err [mDa] err [ppm] 00 263.2180 0.2 0.9	mSigma rdb e [−] 12.5 3.5 evei	Conf N-Rule n ok		
Bruker Compass Da	taAnalysis 4.0	printed:	6/11/2019 4:08:6	55 PM	Page	1 of 2

Figure S27. HRMS (APCI) spectrum of (1E, 3E, 5E)-1-(4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl)-5-ethylocta-1, 3, 5-triene [(1E, 3E, 5E)-4h].

Figure S28. ¹H NMR spectrum of (1E,3E,5E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-methyl-1-phenylhexa-1,3,5-triene [(1E,3E,5E)-4i] (400 MHz, [D₆]benzene).

Figure S29. ¹H-¹H COSY of (1*E*,3*E*,5*E*)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-methyl-1-phenylhexa-1,3,5-triene [(1E,3*E*,5*E*)-4i] (400 MHz, [D₆]benzene).

Figure S30. ¹³C{¹H} NMR spectrum of (1E, 3E, 5E)-6-(4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl)-2-methyl-1-phenylhexa-1, 3, 5-triene [(1E, 3E, 5E)-4i (100 MHz, [D₆]benzene)].

Figure S31. ¹H-¹³C HMQC of (1*E*,3*E*,5*E*)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-methyl-1-phenylhexa-1,3,5-triene [(1*E*,3*E*,5*E*)-**4i**] (400 MHz for ¹H, 100 MHz for ¹³C, [D₆]benzene).

		Mass	Spectru	ım Sm	artFori	nula	a Rep	ort		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\HiranoLab\K apci_pos_wide_1710 KA\Y0325	AY0325.d 18.m					Acqui Opera Instru	isition Date ator ıment / Ser#	2/19/2019 7:51:37 Pl BDAL micrOTOF-Q II	M 10323
Acquisition Parame Source Type Focus Scan Begin Scan End	APCI Not active 200 m/z 2000 m/z	lon P Set C Set E Set C	olarity apillary nd Plate Offset ollision Cell RF		Positive 4500 V -500 V 150.0 Vpp			Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Bar 200 °C 3.0 l/min Waste	
3 Meas. m/z 297.2010	58,2109 # Formula 1 C 14 H 26 B N 2 O 4 2 C 15 H 22 B N 6 3 C 19 H 26 B O 2	Score m/z 42.25 297.1983 100.00 297.1986 80.66 297.2024	err [mDa] -28 -14 1.4	err [ppm] -9.3 -4.7 4.6	mSigma 434.2 435.3 436.6	rdb 3.5 8.5 7.5	e [—] Conf even even even	N-Rule ok ok ok		-ms, nomin #6
Bruker Compass Dat	iaAnalysis 4.0		pr	inted:	2/19/201	9 7:57	:30 PM		Page	1 of 2

Figure S32. HRMS (APCI) spectrum of (1*E*,3*E*,5*E*)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-methyl-1-phenylhexa-1,3,5-triene [(1*E*,3*E*,5*E*)-**4i**].

⁹ $(1)^{7}$ $(1)^{10}$ $(1)^{2}$ $(2)^{4}$ $(2)^{6}$ $(2)^{10}$

Figure S33. ¹H NMR spectrum of (1Z, 3E, 5E)-6-(4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolan-2-yl)-1-phenyl-2-trimethylsilylhexa-1, 3, 5-triene [(1Z, 3E, 5E)-**4**j] (400 MHz, [D₆]benzene).

Figure S34. ¹³C{¹H} NMR spectrum of (1Z,3E,5E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenyl-2-trimethylsilylhexa-1,3,5-triene [(1Z,3E,5E)-**4**] (100 MHz, [D₆]benzene).

Figure S35. ¹H-¹³C HMQC of (1*Z*,3*E*,5*E*)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenyl-2-trimethylsilylhexa-1,3,5-triene [(1*Z*,3*E*,5*E*)-**4j**] (400 MHz for ¹H, 100 MHz for ¹³C, [D₆]benzene).

Supplementary information

		Mass Spectrum S	martFormula R	Report		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\HiranoLab\KAY apci_pos_wide_low_14 KAY0373-1	0373-1.d 0605.m		Acquisition Date Operator Instrument / Ser#	6/11/2019 4:17:25 P BDAL micrOTOF-Q II	M 10323
Acquisition Paramet Source Type Focus Scan Begin Scan End	ter APCI Not active 100 m/z 2000 m/z	Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V -500 V 150.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Bar 200 °C 3.0 l/min Waste	
145.1070239.1 14.1.1.1 Meas. m/z 355.2263	355.2263 1817 # Formula S 1 C 21 H 32 B O 2 Si 10	core m/z err [mDa] err [pp 0.00 355.2263 -0.0 -(m] mSigma rdb e [–] C .0 62.2 7.5 even	onf N-Rule ok		
Bruker Compass Data	aAnalysis 4.0	printed:	6/11/2019 4:59:05 F	M	Page	1 of 2

Figure S36. HRMS (APCI) spectrum of (1*Z*,3*E*,5*E*)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenyl-2-trimethylsilylhexa-1,3,5-triene [(1*Z*,3*E*,5*E*)-**4**].

Figure S37. ¹H NMR spectrum of (1*E*,3*E*,5*E*)-1-(diisopropoxylboraneyl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-propylhexa-1,3,5-triene [(1*E*,3*E*,5*E*)-4**k**] (an *in situ* reaction in an NMR tube) (400 MHz, [D₆]benzene).

Figure S38. ¹³C{¹H} NMR spectrum of (1*E*,3*E*,5*E*)-1-(diisopropoxylboraneyl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-propylhexa-1,3,5-triene [(1*E*,3*E*,5*E*)-**4k**] (an *in situ* reaction in an NMR tube) (100 MHz, [D₆]benzene).

Figure S39. ¹H-¹³C HMQC of (1*E*,3*E*,5*E*)-1-(diisopropoxylboraneyl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-propylhexa-1,3,5-triene [(1*E*,3*E*,5*E*)-**4k**] (an *in situ* reaction in an NMR tube) (400 MHz for ¹H, 100 MHz for ¹³C, [D₆]benzene).

Figure S40. ¹H NMR spectrum of (1*Z*,3*E*,5*E*)-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-phenylhexa-1,3,5-triene and [(1Z,3E,5E)-4I] (1*E*,3*E*,5*E*)-2,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenylhexa-1,3,5-triene [(1E,3E,5E)-5I] (400 MHz, $[D_6]$ benzene).

Figure S41. ¹³C{¹H} NMR spectrum of(1Z,3E,5E)-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-phenylhexa-1,3,5-triene [(1Z,3E,5E)-4I and (1E,3E,5E)-2,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenylhexa-1,3,5-triene [(1E,3E,5E)-5I] (100 MHz, [D₆]benzene).

Supplementary information

Figure S42. ¹H-¹³C HMQC of (1*Z*,3*E*,5*E*)-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-phenylhexa-1,3,5-triene [(1*Z*,3*E*,5*E*)-**4I**] and (1*E*,3*E*,5*E*)-2,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenylhexa-1,3,5-triene [(1*E*,3*E*,5*E*)-**5I**] (400 MHz for ¹H, 100 MHz for ¹³C, [D₆]benzene).

Supplementary information

		Mass S	pectrum Si	martFormu	ila Rep	ort		
Analysis Info Analysis Name Method	D:\Data\HiranoLab\k apci_pos_wide_low_	(AY0307-1.d _140605.m			Acqu Oper	iisition Date	6/11/2019 5:25:40 P BDAL	M
Comment	KAT0307-1				Instri	ument / Ser#	micro I OF-Q II	10323
Acquisition Parame Source Type Focus Scan Begin Scan End	APCI Not active 100 m/z 2000 m/z	lon Polar Set Capi Set End Set Collit	ity Ilary Plate Offset sion Cell RF	Positive 4500 V -500 V 150.0 Vpp		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Bar 200 °C 3.0 l/min Waste	
								+MS, 0.2min #1
	409.2715							
Meas. m/z 409.2715	z # Formula 5 1 C 24 H 27 B 6 N 2 2 C 24 H 35 B 2 O 4	Score m/z er 100.00 409.2733 0.04 409.2724	r [mDa] err [ppm 1.7 4.3 0.8 2.1] mSigma rdb 3 131.8 15.5 1 237.9 8.5	e [–] Conf even even	N-Rule ok ok		

Figure S43. HRMS (APCI) spectrum of (1Z,3E,5E)-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-phenylhexa-1,3,5-triene [(1Z,3E,5E)-4] and (1E,3E,5E)-2,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenylhexa-1,3,5-triene [(1E,3E,5E)-5].

Figure S44. ¹H NMR spectrum of (1*E*,3*E*,5*E*)-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-propylhexa-1,3,5-triene [(1*E*,3*E*,5*E*)-**4m**] and (1*E*,3*E*,5*E*)-1,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nona-1,3,5-triene [(1*E*,3*E*,5*E*)-**5m**] (400 MHz, [D₆]benzene).

Figure S46. ¹³C{¹H} NMR spectrum of (1E,3E,5E)-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-propylhexa-1,3,5-triene [(1E,3E,5E)-4m] and (1E,3E,5E)-1,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nona-1,3,5-triene [(1E,3E,5E)-5m] (100 MHz, [D₆]benzene).

Figure S47. ¹H-¹³C HMQC of (1*E*,3*E*,5*E*)-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-propylhexa-1,3,5-triene [(1*E*,3*E*,5*E*)-**4m**] and (1*E*,3*E*,5*E*)-1,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nona-1,3,5-triene [(1*E*,3*E*,5*E*)-**5m**] (400 MHz for ¹H, 100 MHz for ¹³C, [D₆]benzene).

Supplementary information

Mass Spectrum SmartFormula Report									
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\HiranoLab\ apci_pos_wide_low KAY0380-1	KAY0309-1.d _140605.m			Acqu Oper Instr	uisition Date rator ument / Ser#	6/11/2019 6:07:32 P BDAL micrOTOF-Q II	M 10323	
Acquisition Paramo Source Type Focus Scan Begin Scan End	APCI Not active 100 m/z 2000 m/z	Ion Polarity Set Capillary Set End Pla Set Collision	/ le Offset l Cell RF	Positive 4500 V -500 V 150.0 Vpp		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Bar 200 °C 3.0 //min Waste		
	375.2881							+MS, 0.2min #	
Meas. m/ 375.288	z # Formula 1 1 C21H37B2O4 2 C21H29B6N2	Score m/z err [n 100.00 375.2880 0.18 375.2889	nDa] err [ppm -0.1 -0.4 0.8 2.1] mSigma rdi 118.9 4.: 204.4 11.:	e Conf 5 even 5 even	N-Rule ok ok			
Bruker Compass Da	ataAnalysis 4.0		printed:	6/11/2019 6	:12:17 PM		Page	1 of 2	

Figure S48. HRMS (APCI) spectrum of (1*E*,3*E*,5*E*)-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-propylhexa-1,3,5-triene [(1*E*,3*E*,5*E*)-4**m**] and (1*E*,3*E*,5*E*)-1,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nona-1,3,5-triene [(1*E*,3*E*,5*E*)-5**m**].

Figure S49. ¹H NMR spectrum of (1E,4Z)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-methylhexa-1,4-diene [(1E,4Z)-**7a**] (400 MHz, [D₆]benzene).

Figure S50. ¹H-¹H COSY of (1*E*,4*Z*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-methylhexa-1,4-diene [(1*E*,4*Z*)-7a] (400 MHz, [D₆]benzene).

 $\int_{5}^{6} \frac{1}{4} \int_{2}^{7} B(pin)$

Figure S51. ¹³C{¹H }NMR spectrum of (1*E*,4*Z*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-methylhexa-1,4-diene [(1E,4Z)-7a] (100 MHz, $[D_6]$ benzene).

		Ma	iss Spect	trum Si	nartFo	rm	ula Re	eport		
Analysis Info							A	equisition Date	2/19/2019 6:42:37 PI	М
Method Sample Name Comment	apci_pos_wide_17 SMD0475	1018.m					O In	perator strument / Ser#	BDAL micrOTOF-Q II	10323
Acquisition Parameter Source Type Focus Scan Begin Scan End	APCI Not active 200 m/z 2000 m/z		lon Polarity Set Capillary Set End Plate O Set Collision Cel	ffset II RF	Positive 4500 V -500 V 150.0 Vp	р		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Bar 200 °C 3.0 l/min Waste	
										+MS, 1.2min #72
Meas. m/z 223.1864	# Formula 1 C 9 H 20 B N 6 2 C 13 H 24 B O 2	Score n 22.89 223.18 100.00 223.18	n/z err [mDa] 139 -2.5 166 0.2	err [ppm] -11.4 1.0	mSigma 168.4 168.7	rdb 3.5 2.5	e Conf even even	N-Rule ok ok		

Bruker Compass DataAnalysis 4.0

printed: 2/19/2019 6:47:06 PM

Page 1 of 1

Figure S52. HRMS (APCI) spectrum of (1E,4Z)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-methylhexa-1,4-diene [(1E,4Z)-7a].

⁶ 5 4 2 B(pin)

Figure S53 ¹H NMR spectrum of (*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-methylhexa-1,4-diene [(*E*)-**7b**] (400 MHz, [D₆]benzene).

Figure S54. ¹³C{¹H} NMR spectrum of (*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-methylhexa-1,4-diene [(*E*)-**7b**] (100 MHz, [D]chloroform).

		Mass Spectrum	SmartFormula	Report		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\HiranoLab\SMD047 apci_pos_wide_171018.m SMD0477	77.d		Acquisition Date Operator Instrument / Ser#	2/19/2019 6:51:20 PI BDAL micrOTOF-Q II	M 10323
Acquisition Parameter Source Type Focus Scan Begin Scan End	APCI Not active 200 m/z 2000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V -500 V 150.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Bar 200 °C 3.0 l/min Waste	
330.187	78 419.3124 576.1112					
Meas. m/z = 223.1865	# Formula Score 1 C 13 H 24 B O 2 100.00 2 C 9 H 20 B N 6 20.38	m/z err [mDa] err [pp 223.1866 0.1 0 223.1839 -2.6 -11	n] mSigma rdb e ⁻ 1.7 283.5 2.5 evei 7 283.6 3.5 evei	Conf N-Rule n ok n ok		
Bruker Compass DataA	nalysis 4.0	printed	2/19/2019 6:55:2	20 PM	Page	1 of 1

Figure S55. HRMS (APCI) spectrum of (E)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-methylhexa-1,4-diene [(E)-7b].

Figure S56. ¹H NMR spectrum of (*E*)-1-(dibutoxyboraneyl)-5-methylhexa-2,4-diene (an *in situ* reaction in an NMR tube) [(*E*)-**7c**] (an *in situ* reaction in an NMR tube) (400 MHz, $[D_6]$ benzene).

Figure S57. ¹H NMR spectrum of (1*E*,4*Z*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,4-diene [(1*E*,4*Z*)-**7d**] (400 MHz, [D₆]benzene). X indicates incorporated chloroform.

Figure S58. ¹³C{¹H} NMR spectrum of (1*E*,4*Z*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,4-diene [(1*E*,4*Z*)-7d] (100 MHz, [D₆]benzene). X indicates an incorporated chloroform.

		Mass Spectrum S	martFormula	Report	
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\HiranoLab\SMD04 apci_pos_wide_171018.m SMD0485	85.d		Acquisition Date Operator Instrument / Ser#	2/19/2019 7:21:36 PM BDAL micrOTOF-Q II 10323
Acquisition Parameter Source Type Focus Scan Begin Scan End	APCI Not active 200 m/z 2000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V -500 V 150.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Bar 200 °C 3.0 //min Waste
238.1616	449.3519 577.1239 ^{663.}	4545 m/z err [mDa] err [ppm]	mSigma rdb e [−] C	Conf N-Rule	
200,1100 2	2 C8H18BN6 0.00	209.1682 -2.7 -13.1	416.2 3.5 even	ok ok	
ruker Compass DataA	nalysis 4.0	printed:	2/19/2019 7:24:3	15 PM	Page 1 of 2

Figure S59. HRMS (APCI) spectrum of (1E,4Z)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,4-diene [(1E,4Z)-7d].

Figure S60. ¹H NMR spectrum of methyl (2*E*,6*E*)-5-methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-2,6-dienoate [(2*E*,6*E*)-7e] (400 MHz, [D]chloroform).

Figure S61 1 H- 1 H COSY of methyl (2*E*,6*E*)-5-methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-2,6-dienoate [(2*E*,6*E*)-7e] (400 MHz, [D]chloroform).

$$MeO_2C_{1_{2_{4_{5_{6}}}}}$$

Figure S62. ¹³C{¹H} NMR spectrum of methyl (2*E*,6*E*)-5-methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-2,6-dienoate [(2*E*,6*E*)-**7e**] (100 MHz, [D]chloroform).

				Mass	Spectr	um Sn	nartFo	rmu	la Rep	oort			
Analysis Info Analysis Name Method Sample Name Comment		D:\Data\HiranoLab\ apci_pos_wide_low SMD0605-1	\SMD060 v_140605	5-1.d i.m					Acq Ope Inst	uisition Date erator rument / Ser#	7/18/2019 1 BDAL micrOTOF-	11:13:54 AM Q II 103	23
Acquisition Param Source Type Focus Scan Begin Scan End	eter	APCI Not active 100 m/z 2000 m/z		lon F Set (Set E Set (Polarity Capillary End Plate Offs Collision Cell I	et RF	Positive 4500 V -500 V 150.0 Vpp	0		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve		1.6 Bar 200 °C 3.0 I/min Waste	
Intens. x10 ⁵ 1.5 1.5 1.5 181.1004 0.5 200 Meas. m/ 259.079 281.191	281.1 Z # 1 1 2 3 1 2	403 2632 400 400 Formula C 16 H 6 B 3 N 2 C 16 H 2 B 7 C 15 H 26 B O 4 C 15 H 18 B 5 N 2	600 Score 100.00 0.00 100.00 0.00	0 259.0813 259.0806 281.1921 281.1924	800 err [mDa] 22 1.5 0.9 2.1	100 err [ppm] 6.0 3.1 7.5	00 mSigma 295.9 540.6 89.5 270.3	rdb 16.5 18.5 3.5	00 e ⁻ Conf even even even even	1400 N-Rule ok ok ok	1600	+M:	S, 1.0min #57

Bruker Compass DataAnalysis 4.0

printed: 7/18/2019 11:19:32 AM

Page 1 of 1

Figure S63. HRMS (APCI) spectrum of methyl (2*E*,6*E*)-5-methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-2,6-dienoate [(2*E*,6*E*)-**7e**].

Figure S64. ¹H NMR spectrum of methyl (2*E*,6*E*)- 7-(dibutoxyboraneyl)-5-methylhepta-2,6-dienoate [(2*E*,6*E*)-**7f**] (an *in situ* reaction in an NMR tube) (400 MHz, [D₆]benzene).

Figure S65. ¹H-¹H COSY of methyl (2*E*,6*E*)- 7-(dibutoxyboraneyl)-5-methylhepta-2,6-dienoate [(2*E*,6*E*)-**7f**] (an *in situ* reaction in an NMR tube) (400 MHz, [D₆]benzene).

Figure S66. ¹H NMR spectrum of (*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-{(*E*)-but-2-en-2-yl}-6-methylhepta-1,5-diene [(*E*)-7g] (400 MHz, [D]chloroform).

Figure S67. ¹³C{¹H} NMR spectrum of (*E*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-{(*E*)-but-2-en-2-yl}-6-methylhepta-1,5-diene [(*E*)-**7g**] (100 MHz, [D]chloroform).

Supplementary information

		Mass Spectrum S	martFormula	Report		
Analysis Info	D:\Data\Hiranal ab\SMD	00541 1 d		Acquisition Date	6/11/2019 7:37:12 P	M
Method Sample Name Comment	apci_pos_wide_low_14(SMD0541-1	0605.m		Operator Instrument / Ser#	BDAL micrOTOF-Q II	10323
Acquisition Parameter Source Type Focus Scan Begin Scan End	APCI Not active 100 m/z 2000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V -500 V 150.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Bar 200 °C 3.0 l/min Waste	
221.1294 221.1294 Meas.m/z 291.2494	419.3142 419.3142 4 4 5 4 4 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	663.4575 re m/z err [mDa] err [ppm] 20 291.2493 -0.1 -0.3	mSigma rdb e [−] 216.1 3.5 eve	Conf N-Rule n ok		+MS, 0.7min #/

Bruker Compass DataAnalysis 4.0

printed: 6/11/2019 7:52:42 PM

Page 1 of 2

Figure S68. HRMS (APCI) spectrum of (E)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-{(E)-but-2-en-2-yl}-6-methylhepta-1,5-diene [(E)-7g].

7 $6 \int_{2}^{11} \int_{4}^{12} B(pin)$

Figure S69. ¹H NMR spectrum of (1*E*,4*Z*)-4-ethylidenyl-8-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nona-1,7-diene [(1*E*,4*Z*)-7**h**] (400 MHz, [D]chloroform).

Figure S70. ¹³C{¹H} NMR spectrum of (1*E*,4*Z*)-4-ethylidenyl-8-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nona-1,7-diene [(1*E*,4*Z*)-7h] (100 MHz, [D]chloroform).

alysis Name ethod ample Name priment cquisition Paramete urce Type cus	D:\Data\HiranoLab\SMD apci_pos_wide_low_140 SMD0533-2	0533-2.d 605.m		Operator Instrument / Ser#	BDAL micrOTOF-Q II	10323
cquisition Paramete						
urce Type cus	ər					
an Begin an End	APCI Not active 100 m/z 2000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V -500 V 150.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Bar 200 °C 3.0 l/min Waste	
						+MS, 0.5min #
	291.2496 449.3519	663,4595				
Meas. m/z 291.2496	# Formula Scor 1 C 18 H 32 B O 2 100.0	e m/z err [mDa] err [ppn 0 291.2493 -0.2 -0.	i] mSigma rdb e [—] 8 193.1 3.5 eve	Conf N-Rule n ok		

 Bruker Compass DataAnalysis 4.0
 printed:
 6/11/2019 7:44:49 PM
 Page 1 of 2

Figure S71. HRMS (APCI) spectrum of (1E,4Z)-4-ethylidenyl-8-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nona-1,7-diene [(1E,4Z)-7h].

Figure S72. ¹H NMR spectrum of (1E, 4E)-5,9-dimethyl-1-(4, 4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)deca-1,4,8-triene [(1E, 4E)-8h] (400 MHz, [D]chloroform).

Figure S73. ¹³C{¹H} NMR spectrum of (1*E*,4*E*)-5,9-dimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)deca-1,4,8-triene [(1*E*,4*E*)-**8h**] (100 MHz, [D]chloroform).

			IVId	ss spectrur	II SIIIaI (FUIIIIUI	a Report		
Analysis	Info					Acquisition Date	7/18/2019 12:44:55	PM
Analysis Method Sample N Commenf	Name ame	D:\Data\HiranoLat apci_pos_wide_lov SMD0623-1	NSMD0623-1.d w_140605.m			Operator Instrument / Ser#	BDAL micrOTOF-Q II	10323
Acquisiti	on Parameter							
Source Typ Focus Scan Begir Scan End	n	APCI Not active 100 m/z 2000 m/z		on Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V -500 V 150.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Bar 200 °C 3.0 I/mir Waste	1
Intens.								+MS, 1.9min #11
5000								
4000								
3000	29	1.2489						
2000								
1000	171.1089	419.3190						
0-4	200	400	600	800	1000 1200	0 1400	1600 18	00 m

Bruker Compass DataAnalysis 4.0

printed: 7/18/2019 12:48:53 PM

Page 1 of 2

Figure S74. HRMS (APCI) spectrum of (1E, 4E)-5,9-dimethyl-1-(4, 4, 5, 5-tetramethyl-1,3,2-dioxaborolan-2-yl)deca-1,4,8-triene [(1E, 4E)-8h].

Figure S75. ¹H NMR spectrum of (1*E*,4*E*)- 1-(dibotoxyboraneyl)-5,9-dimethyldeca-1,4,8-triene [(1*E*,4*E*)-**8i**] (an *in situ* reaction in an NMR tube) (400 MHz, [D]chloroform).

Figure S76. ¹H-¹H COSY of (1*E*,4*E*)- 1-(dibotoxyboraneyl)-5,9-dimethyldeca-1,4,8-triene [(1*E*,4*E*)-**8i**] (an *in situ* reaction in an NMR tube) (400 MHz, [D]chloroform).

Figure S77. ¹H NMR spectrum of (1*E*,4*Z*)-3-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,4-diene [(1*E*,4*Z*)-**7j**] (400 MHz, [D]chloroform).

Figure S78. ¹³C{¹H} NMR spectrum of (1*E*,4*Z*)-3-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,4-diene [(1E,4Z)-7j] (100 MHz, [D]chloroform).

Page 1 of 2

alysis Info								A	cquisition Date	2/19/2019 6:59:09	PM
alysis Name ethod Imple Name omment	D:\Data\HiranoLal apci_pos_wide_1 SMD0479	b\SMD047 71018.m	9.d					O In	perator strument / Ser#	BDAL micrOTOF-Q II	10323
aquisition Paramet urce Type cus an Begin an End	APCI APCI Not active 200 m/z 2000 m/z		lon Set Set Set	Polarity Capillary End Plate Of Collision Cel	ifset I RF	Positive 4500 V -500 V 150.0 V	ор		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Bai 200 °C 3.0 l/m Waste	n
237.2016											
330.1	1862 449.3518	.1173									

Bruker Compass DataAnalysis 4.0 printed: 2/19/2019 7:02:44 PM

Figure S79. HRMS (APCI) spectrum of (1E,4Z)-3-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,4-diene [(1E,4Z)-7j].

7 6 5 4 ⁸ 3 2 1 B(pin)

Figure S80. ¹H NMR spectrum of (1*E*,4*Z*)-3,8-dimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,4-diene [(1E,4Z)-7k] (400 MHz, $[D_6]$ benzene).

Figure S81. ¹³C{¹H} NMR spectrum of (1*E*,4*Z*)-3,8-dimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,4-diene [(1E,4Z)-7k] (100 MHz, $[D_6]$ benzene).

			Mass	s Spec	trum S	martFo	orm	ula Re	eport		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\HiranoLa apci_pos_wide_1 SMD0487	b\SMD048 71018.m	87.d					A O In	cquisition Date perator istrument / Ser#	2/19/2019 7:27:47 BDAL micrOTOF-Q II	PM 10323
cource Type ource Type ocus can Begin can End	r APCI Not active 200 m/z 2000 m/z		lon Sei Sei	Polarity Capillary End Plate O Collision Ce	ffset I RF	Positive 4500 V -500 V 150.0 V	рр		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Ba 200 °C 3.0 l/m Waste	r in
237.2022	449.3515										
Meas. m/z 237.2022	449.3515 # Formula 1 C 10 H 22 B N 6 2 C 14 H 26 B O 2	Score 20.20 100.00	m/z 237.1995 237.2023	err [mDa] -2.6 0.1	err [ppm] -11.1 0.5	mSigma 191.9 192.1	rdb 3.5 2.5	e Conf even even	N-Rule ok ok		

Figure S82. HRMS (APCI) spectrum of (1E, 4Z)-3,8-dimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,4-diene [(1E, 4Z)-7k].

Figure S83. ¹H NMR spectrum of (1E,4Z)-3,4,5-trimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,4-diene [(1E,4Z)-7I] (400 MHz, [D]chloroform).

Figure S84. ¹³C{¹H} NMR spectrum of (1*E*,4*Z*)-3,4,5-trimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,4-diene [(1E,4Z)-7I] (100 MHz, [D]chloroform).

Figure S85. ¹H-¹³C HMQC of (1*E*,4*Z*)-3,4,5-trimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,4-diene [(1*E*,4*Z*)-7I] (400 MHz for ¹H, 100 MHz for ¹³C, [D]chloroform).

$$7 = 6$$

10 $5 = 4$ $3 = 2$ 1 B(pin)

nalysis Info	D.D.(.).				Acquisition Date	2/19/2019 7:06:14 PI	N
naiysis Name lethod ample Name comment	D:\Data\HiranoLab apci_pos_wide_17 SMD0481	1018.m			Operator Instrument / Ser#	BDAL micrOTOF-Q II	10323
cquisition Parameter ource Type ocus can Begin can End	er APCI Not active 200 m/z 2000 m/z	lor Se Se Se	Polarity t Capillary t End Plate Offset t Collision Cell RF	Positive 4500 V -500 V 150.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Bar 200 °C 3.0 I/min Waste	
265.2324							+MS, 2.0min #1
Meas. m/z 265.2324	577. # Formula 1 C12 H 26 B N 6 2 C 16 H 30 B O 2	Score m/z 83.54 265.2309 100.00 265.2336	err [mDa] err [ppm -1.5 -5.6 1.2 4.6] mSigma rdb e (3 144.8 3.5 even 5 145.2 2.5 even	Conf N-Rule n ok n ok		

Figure S86. HRMS (APCI) spectrum of (1E,4Z)-3,4,5-trimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,4-diene [(1E,4Z)-7I].

$$7 = 6$$

10 $5 = 4$ $3 = 2$ 1 B(pin)

Figure S87. ¹H NMR spectrum of (1*E*,5*E*)-3-methyl-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaboloran-2-yl)hexa-1,5-diene [(1*E*,5*E*)-**7m**] (400 MHz, [D]chloroform).

Figure S88. ¹³C{¹H} NMR spectrum of (1*E*,5*E*)-3-methyl-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaboloran-2-yl)hexa-1,5-diene [(1E,5E)-7m] (100 MHz, [D]chloroform).

Figure S89. ¹H-¹³C HMQC of (1*E*,5*E*)-3-methyl-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaboloran-2-yl)hexa-1,5-diene [(1*E*,5*E*)-7m] (400 MHz for ¹H, 100 MHz for ¹³C, [D]chloroform).

$$(pin)B_{6} \xrightarrow{5}_{4} \xrightarrow{3}_{2} \xrightarrow{1} B(pin)$$

		Mass	Spectrum	SmartForm	ula Report			
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\HiranoLab\S apci_pos_wide_low_ SMD0607-1	SMD0607-1.d _140605.m			Acquisition Date Operator Instrument / Ser	7/18/2019 BDAL # micrOTOF	1:38:06 PM -Q II 10323	
Acquisition Parame Source Type Focus Scan Begin Scan End	APCI APCI Not active 100 m/z 2000 m/z	lon Pc Set Ca Set Er Set Co	larity apillary Id Plate Offset Illision Cell RF	Positive 4500 V -500 V 150.0 Vpp	Set Nebu Set Dry I Set Dry 0 Set Dive	ilizer Ieater Gas t Valve	1.6 Bar 200 °C 3.0 I/min Waste	
4 3 2 1 0	9.1830 349.2715 471.3436							
200 Meas. m/z 349.2715	400 z # Formula 5 1 C 19 H 35 B 2 O 4	600 Score m/z 100.00 349.2722	800 err [mDa] err [0.7	1000 1: ppm] mSigma rdb 2.1 180.2 3.5	200 1400 e Conf N-Rule even ok	1600	1800	m

Figure S90. HRMS (APCI) of (1*E*,5*E*)-3-methyl-1,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaboloran-2-yl)hexa-1,5-diene [(1*E*,5*E*)-7m].

 $(pin)B_{6} \xrightarrow{5}_{4} \xrightarrow{3}_{2} \xrightarrow{1} B(pin)$

Figure S91. ¹H NMR spectrum of (1*E*,5*E*)-3-methyl-1-(butoxyboraneyl)-6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaboloran-2-yl)hexa-1,5-diene [(1*E*,5*E*)-**7n**] (an *in situ* reaction in an NMR tube) (400 MHz, [D₆]benzene).

Figure S92. ¹H NMR spectrum of (1E,5E)-1-(2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinin-2-yl)-3-methyl-6-(4,4,5,5,-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,5-diene [(1E,5E)-**7o**] (400 MHz, [D]chloroform).

Figure S93. ¹³C{¹H} NMR spectrum of (1*E*,5*E*)-1-(2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinin-2-yl)-3-methyl-6-(4,4,5,5,-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,5-diene [(1*E*,5*E*)-**7o**] (100 MHz, [D]chloroform).

		Ma	ass Spectrui	m SmartFor	mula	Repo	rt		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\HiranoLab\ apci_pos_wide_low SMD0619-1	SMD0619-1.d _140605.m				Acquis Operat Instrum	ition Date or nent / Ser#	7/18/2019 1:23:24 BDAL micrOTOF-Q II	PM 10323
Acquisition Parame Source Type Focus Scan Begin Scan End	APCI APCI Not active 100 m/z 2000 m/z		lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V -500 V 150.0 Vpp			Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Ba 200 °C 3.0 I/m Waste	r in
2- 1- 0-	389.2566	583,3582	775,4896					400	+ms, i.9min #114
200 Meas. m/z 389.2566	400 2 # Formula 5 1 C 23 H 31 B 2 N 2 C	500 Score 2 100.00	800 m/z err [mDa] 389.2574 0.7	1000 err [ppm] mSigr 1.9 16	1200 na rdb 5.9 10.5	e ⁻ Conf even	N-Rule ok	1600 1.	900 m/
Bruker Compass Da	taAnalysis 4.0		prin	ted: 7/18/20	19 1:32:2	1 PM		Pag	e 1 of 1

Figure S94. HRMS (APCI) spectrum of (1E,5E)-1-(2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinin-2-yl)-3-methyl-6-(4,4,5,5,-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,5-diene [(1E,5E)-70].

Figure S95. ¹H NMR spectrum of methyl (2*E*,4*E*,6*E*)-7-phenyl-6-propylhepta-2,4,6-trienoate [(2*E*,4*E*,6*E*)-**10**] (400 MHz, [D]chloroform).

Figure S96. ¹³C{¹H} NMR spectrum of methyl (2*E*,4*E*,6*E*)-7-phenyl-6-propylhepta-2,4,6-trienoate [(2*E*,4*E*,6*E*)-**10**] (100 MHz, [D]chloroform).

				viass	Specir	um Sn	anto	mu	lia Rep	Jon			
Analysis Info		D:\Data\Hiranol ab\	KAV0360-	1 d					Acq	uisition Date	7/18/2019	2:36:17 PM	1
Method apci_pos_v Sample Name KAY0369-1 Comment		apci_pos_wide_low KAY0369-1	/_140605.n	n	u			Operator Instrument / Ser#		BDAL micrOTOF-Q II		10323	
Acquisition Param Source Type Focus Scan Begin Scan End	eter	APCI Not active 100 m/z 2000 m/z		lon P Set C Set E Set C	olarity apillary nd Plate Offs ollision Cell F	et RF	Positive 4500 V -500 V 150.0 Vpp)		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve		1.6 Bar 200 °C 3.0 l/min Waste	
Intens. x10 ⁵ 6- 4- 2- 2-	1267	449,2563											+MS, 1.6min #94
200		400	600		800	100	0	12	00	1400	1600	1800	m/z
Meas. m/: 257.152	z # 8 1 2	Formula C 17 H 21 O 2 C 13 H 17 N 6 C 12 H 21 N 2 O 4	Score 100.00 42.46	m/z 257.1536 257.1509 257.1496	err [mDa] 0.8 -1.9 -3.2	err [ppm] 3.2 -7.3	mSigma 2.0 12.5 26.0	rdb 7.5 8.5	e ⁻ Conf even even	N-Rule ok ok			
261.149	0 1 2	C 16 H 21 O 3 C 12 H 17 N 6 O	0.04	261.1485 261.1458	-0.5 -3.2	-12.5 -1.8 -12.1	n.a. n.a.	6.5 7.5	even	ok ok			

Mass Spectrum SmartFormula Report

Bruker Compass DataAnalysis 4.0 printed: 7/18/2019 2:40:07 PM Page 1 of 1

Figure S97. HRMS (APCI) spectrum of methyl (2E,4E,6E)-7-phenyl-6-propylhepta-2,4,6-trienoate [(2E,4E,6E)-10].

10 9 CO₂Me 2 5 3

Figure S98. ¹H NMR spectrum of (1*E*,3*E*,5*E*)-5-ethyl-1-phenylocta-1,3,5-triene [(1*E*,3*E*,5*E*)-11] (400 MHz, [D]chloroform).

Figure S99. ¹H NMR spectrum of (1*E*,4*Z*)-3-methyl-1-phenylhexa-1,4-diene [(1*E*,4*Z*)-12] (400 MHz, [D]chloroform).

Figure S100. ¹³C{¹H} NMR spectrum of (1*E*,4*Z*)-3-methyl-1-phenylhexa-1,4-diene [(1*E*,4*Z*)-12] (100 MHz, [D]chloroform).

	М	ass Spectrum	SmartFormula	Report		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\HiranoLab\SMD0629-2. apci_pos_wide_low_140605.m SMD0629-2	đ		Acquisition Date Operator Instrument / Ser#	7/18/2019 1:12:06 P BDAL micrOTOF-Q II	'M 10323
Acquisition Paramete Source Type Focus Scan Begin Scan End	r APCI Not active 100 m/z 2000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V -500 V 150.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Bar 200 °C 3.0 l/min Waste	I
Intens. 600 400 0 173.1320 200 200 200 Meas. m/z 173.1320	349.2863 419.3312 400 600 # Formula Score 1 C 13 H 17 100.00 173 2 C 8 H 17 N 2 O 2 0.68 173	ال بن المال معالي المال معالي المال معالي 800 m/z err [mDa] err [pp 1325 0.5 2 1285 -3.5 -20	111 1000 1200 m] mSigma rdb e (2.8 223.2 5.5 ever 0.4 250.2 1.5 ever	L 1400 Conf N-Rule n ok n ok	1600 180	+MS, 1.1min #64

Bruker Compass DataAnalysis 4.0 printed: 7/18/2019 1:17:38 PM Page 1 of 2

Figure S101. HRMS (APCI) spectrum of (1*E*,4*Z*)-3-methyl-1-phenylhexa-1,4-diene [(1*E*,4*Z*)-12].

Figure S102. ¹H NMR spectrum of (3*E*,5*E*,7*E*)-4-propyldeca-1,3,5,7,9-pentaene [(3*E*,5*E*,7*E*)-**13**] and (3*E*,5*E*)-4-propylocta-1,3,5,7-tetraene [(3*E*,5*E*)-**14**] (400 MHz, [D]chloroform).

Figure S103. ¹H-¹H COSY of (3*E*,5*E*,7*E*)-4-propyldeca-1,3,5,7,9-pentaene [(3*E*,5*E*,7*E*)-**13**] and (3*E*,5*E*)-4-propylocta-1,3,5,7-tetraene [(3*E*,5*E*)-**14**] (400 MHz, [D]chloroform).

Figure S104. ¹³C{¹H} spectrum of (3*E*,5*E*,7*E*)-4-propyldeca-1,3,5,7,9-pentaene [(3*E*,5*E*,7*E*)-**13**] and (3*E*,5*E*)-4-propylocta-1,3,5,7-tetraene [(3*E*,5*E*)-**14**] (100 MHz, [D]chloroform).

Figure S105. ¹H-¹³C HMQC of (3*E*,5*E*,7*E*)-4-propyldeca-1,3,5,7,9-pentaene [(3*E*,5*E*,7*E*)-**13**] and (3*E*,5*E*)-4-propylocta-1,3,5,7-tetraene [(3*E*,5*E*)-**14**] (400 MHz for ¹H, 100 MHz for ¹³C, [D]chloroform).

					Mass	Spect	rum Sr	nartFc	orm	ula Re	eport			
Analysis I Analysis N Method Sample N Comment	Info Name ame	D al K	:\Data\HiranoLab oci_pos_wide_low AY0463-2	KAY046 v_140605	3-2.d 5.m					Ai O In	equisition Date perator strument / Ser#	7/18/2019 1 BDAL micrOTOF-	12:14:58 P Q II	M 10323
Acquisitio Source Typ Focus Scan Begin Scan End	on Paramet e	er	APCI Not active 100 m/z 2000 m/z		lon Set Set Set	Polarity Capillary End Plate Of Collision Cell	fset I RF	Positive 4500 V -500 V 150.0 Vp	op		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve		1.6 Bar 200 °C 3.0 I/min Waste	
800 - 600 - 400 - 200 -	223.06	08 ;	349.2800 419.3192		L 16, 1 60, 1 - 1 J	114 8 1.1.1.1	<u> </u>					,		
	200 Meas. m/z 175.1474	, # 2	400 Formula C 8 H 19 N 2 O 2 C 13 H 19	60 Score 34.38 100.00	0	800 err [mDa] -3.3 0.7	err [ppm] -19.1 3.9	mSigma 54.3 81.3	1 rdb 0.5 4.5	200 e ⁻ Conf even even	1400 N-Rule ok ok	1600	1800	'n
Bruker Co	mpass Data	Anal	ysis 4.0				printed:	7/18/2	019 2	2:59:13 PN	1		Page 1	of 1

Figure S106. HRMS (APCI) spectrum of (3*E*,5*E*,7*E*)-4-propyldeca-1,3,5,7,9-pentaene [(3*E*,5*E*,7*E*)-**13**] and (3*E*,5*E*)-4-propylocta-1,3,5,7-tetraene [(3*E*,5*E*)-**14**].

Figure S107. ¹H NMR spectrum of (1*E*,5*E*)-4-methyl-6-phenyl-1-(4-tolyl)hexa-1,5-diene [(1*E*,5*E*)-**15**] (400 MHz, [D]chloroform).

Figure S108. pNOESY of (1E,5E)-4-methyl-6-phenyl-1-(4-tolyl)hexa-1,5-diene [(1E,5E)-15] (400 MHz, [D]chloroform).

Figure S109. ¹³C{¹H} NMR spectrum of (1E,5E)-4-methyl-6-phenyl-1-(4-tolyl)hexa-1,5-diene [(1E,5E)-15] (100 MHz, [D]chloroform).

		Mass	Spectrui	m Sm	artFor	mul	a Rej	oort		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\HiranoLab\ apci_pos_wide_low SMD0583-major	SMD0583-major.d _140605.m					Acq Ope Inst	uisition Date erator rument / Ser#	7/18/2019 10:58:33 BDAL micrOTOF-Q II	AM 10323
Acquisition Parameter Source Type Focus Scan Begin Scan End	er APCI Not active 100 m/z 2000 m/z	lon P Set C Set E Set C	olarity apillary nd Plate Offset iollision Cell RF		Positive 4500 V -500 V 150.0 Vpp			Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Bar 200 °C 3.0 l/min Waste	
x10 ³⁴ 2 1 0 2 2 0 2 200	3.1782 400	600	800	1000		1200)	1400	1600 190	0 m/2
Meas. m/z 263.1782	 # Formula 1 C 20 H 23 2 C 15 H 23 N 2 O 2 	Score m/z 100.00 263.1794 15.14 263.1754	err [mDa] e 1.2 -2.8	rr [ppm] 4.7 -10.6	mSigma 23.8 50.5	rdb 9.5 5.5	e [–] Conf even even	N-Rule ok ok		
Bruker Compass Data	Analysis 4.0		prir	nted:	7/18/20	19 11:0	06:16 AM		Page	1 of 2

Figure S110. HRMS (APCI) spectrum of (1*E*,5*E*)-4-methyl-6-phenyl-1-(4-tolyl)hexa-1,5-diene [(1*E*,5*E*)-15].

Figure S111. ¹H NMR spectrum of (1*E*,5*E*)-3-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenyl-hexa-1,5-diene [(1*E*,5*E*)-**16**] (400 MHz, [D]chloroform).

Figure S112. ¹³C{¹H} NMR spectrum of (1*E*,5*E*)-3-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenyl-hexa-1,5-diene [(1*E*,5*E*)-16] (100 MHz, [D]chloroform).

		Mas	s Spect	trum Sr	nartFc	rmula	Report			
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\HiranoLal apci_pos_wide_lo SMD0579-1	o\SMD0579-1.d w_140605.m					Acquisition Date Operator Instrument / Ser#	7/18/2019 11:40 BDAL micrOTOF-Q II	:43 AM 10323	
Acquisition Param Source Type Focus Scan Begin Scan End	APCI APCI Not active 100 m/z 2000 m/z	lo Se Se	n Polarity et Capillary et End Plate Of et Collision Cel	ffset I RF	Positive 4500 V -500 V 150.0 Vp	φ	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 200 3.0 Was	Bar °C I/min ste	
104 6- 4- 2- 0-	299.2169								+MS, 1.3n	nin #79
200 Meas. m 299.216	0 400 /z # Formula 99 1 C19H28BO2	600 Score m/z 100.00 299.2180	800 err [mDa] 1.1	10 err [ppm] 3.8	mSigma 212.8	1200 rdb e ⁻ (6.5 ever	1400 Conf N-Rule n ok	1600	1800	m/z

Bruker Compass DataAnalysis 4.0

printed: 7/18/2019 11:48:09 AM

Page 1 of 1

Figure S113. HRMS (APCI) spectrum of (1*E*,5*E*)-3-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-phenyl-hexa-1,5-diene [(1*E*,5*E*)-16].

Figure S114. ¹H NMR spectrum of {*rac*-(1*S*,2*R*)-4-methyl-1-phenyl-2-binylpent-3-en-1-yl}boronate [*anti*-**17**] (an *in situ* reaction in an NMR tube) (400 MHz, [D₆]benzene).

Figure S115. ¹H-¹H COSY of {*rac*-(1*S*,2*R*)-4-methyl-1-phenyl-2-binylpent-3-en-1-yl}boronate [*anti*-**17**] (an *in situ* reaction in an NMR tube) (400 MHz, [D₆]benzene).

Figure S116. ¹H NMR spectrum of *rac*-(1*S*,2*R*)-4-methyl-1-phenyl-2-vinylpent-3-en-1-ol [*anti*-**18**] (In situ reaction in an NMR tube) (400 MHz, [D]chloroform).

Figure S117. ¹³C{¹H} NMR spectrum of *rac*-(1*S*,2*R*)-4-methyl-1-phenyl-2-vinylpent-3-en-1-ol [*anti*-18] (In situ reaction in an NMR tube) (100 MHz, [D]chloroform).

