Supporting Information

Pd-Catalyzed regioselective synthesis of 2,6-disubstituted pyridines through denitrogenation of pyridotriazoles and 3,8-diarylation of imidazo[1,2-a]pyridines

Table of Contents

S. No	Contents	Page number
1	Experimental section \& general procedure	S2-S3
2	Optimization of Reaction Conditions	S3-S4
3	Control experiments for investigation of reaction mechanism	S5-S6
4	Plausible reaction mechanism for the synthesis of 2,3,8-triphenylimidazo[1,2- a]pyridine (6a)	S7
5	Characterization data	S8-S23
6	References	S24
7	Copies of ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR	S25-S72
8	Copies of HRMS Spectra of New	
Compounds		

EXPERIMENTAL SECTION

General. All commercially available chemicals and reagents were used without any further purification unless otherwise indicated. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 600,200 , 150 and 125 MHz , respectively. The spectra were recorded in CDCl_{3} as solvent. Multiplicity is indicated as follows: s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of doublets), and so forth, and coupling constants (J) are given in Hz. Chemical shifts are reported in ppm relative to TMS as an internal standard. The peaks around delta values of ${ }^{1} \mathrm{H}$ NMR (7.26) and ${ }^{13} \mathrm{C}$ NMR (77.0) correspond to the deuterated solvent chloroform (water peak at 1.5 ppm) respectively. Mass spectra were obtained using the electron impact (EI) ionization method. Progress of the reactions was monitored by thin layer chromatography (TLC). All products were purified through column chromatography using silica gel with 100-200 mesh size using ethyl acetate/hexane as eluent unless otherwise stated.

General procedure

(A) Synthesis of triazolopyridine derivatives (1) ${ }^{\mathbf{1}}$: Hydrazine monohydrate (0.30 mmol) and acetic acid (0.02 mmol) were added to a solution of 2-acylpyridine (0.20 mmol) in ethanol (1.0 mL) at room temperature. The reaction mixture was heated at reflux for 6 h , and then EtOAc (5.0 mL) and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol})$ were added. After stirring at the indicated temperature for the indicated time, the resulting mixture was cooled to room temperature and then diluted with EtOAc (20 mL). The organic phase was washed with water (10 mL) and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration under reduced pressure and successive purification by column chromatography gave the desired triazolopyridine derivatives.
(B) Synthesis of phenyl(6-phenylpyridin-2-yl)methanone (3a) : To a reaction tube equipped with a magnetic stir bar, added 3-phenyl-[1,2,3]triazolo[1,5-a]pyridine (1a) (48.8 mg,
0.25 mmol), iodobenzene $\mathbf{2 a}(102.0 \mathrm{mg}, 0.5 \mathrm{mmol})$, palladium acetate $\mathrm{Pd}(\mathrm{OAc})_{2}(5.6 \mathrm{mg}, 10$ $\mathrm{mol} \%)$, silver carbonate $\mathrm{Ag}_{2} \mathrm{CO}_{3}(138.0 \mathrm{mg}, 0.5 \mathrm{mmol})$, and 1.0 mL of dry toluene. The mixture was heated in an oil bath at $120^{\circ} \mathrm{C}$ in a closed tube for 12 h . Reaction was monitored by TLC, after completion of the reaction it was allowed to attain room temperature. Then the mixture was poured into 30 mL of sodium chloride solution. The product was extracted with EtOAc (15 mL X 3) and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent under reduced pressure the left-out residue was purified by column chromatography using silica gel (10% $\mathrm{EtOAc} /$ hexane) to afford $\mathbf{3 a}$ (55.0 mg ; 85\% yield).

Optimization of Reaction Conditions

To test our initial hypothesis, we first examined the denitrogenative ${ }^{2}$ transannulation of pyridotriazole 1a with iodobenzene 2a in the presence of $10 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in dimethyl formamide at $120^{\circ} \mathrm{C}$ temperature in a sealed tube, and no reaction was observed up to 12 h (Table 1, entry 1). When the same reaction was performed with $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ as additive, the desired product 3a was isolated in 39\% yield (Table 1, entry 2). Significant improvement in the yield (77%) of the product 3a was observed, while conducting the reaction in toluene as solvent (entry 3). The yield was further improved to 85% the reaction in dry toluene (entry 4). When the reaction was performed under O_{2} and N_{2} atmosphere very low yield and no reaction was observed (Table 1, entries 5 and 6). Further enhancement in yield was not observed upon the increasing the amount of additive (entry 7), while the yield was reduced by decreasing the additive or catalyst or temperature of the reaction (Table 1, entries 8-10).

Similar yield was obtained by increasing the reaction temperature to $130^{\circ} \mathrm{C}$ (entry 11). The effect of other additives $\left(\mathrm{NaHCO}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{t}\right.$-BuOK, and t -BuONa) catalysts $\left(\mathrm{PdCl}_{2}\right.$ and CuI$)$ were also checked for the present reaction; no product formation was observed (Table 1, entries 12-17). Upon further screening of different solvents such as p -xylene, benzene and hexane,

Table S1. Optimization of conditions ${ }^{\text {a }}$

		$\begin{array}{r} \mathrm{Ph}-\mathrm{I} \\ 2 \mathrm{a} \end{array}$	$\begin{gathered} \substack{\text { Conditions } \\ \text { Air }} \\ \hline \end{gathered}$		
Entry	Catalyst (mol\%)	Additive (equiv.)	Solvent (1 mL)	Temp (${ }^{\circ} \mathrm{C}$)	Yield(\%) ${ }^{\text {b }}$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \%)$		DMF	120	$n \mathrm{r}$
2	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \%)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(2)$	DMF	120	39
3	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \%)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(2)$	Toluene	120	77
$4^{[c]}$	$\mathrm{Pd}(\mathrm{OAc})_{\mathbf{2}} \mathbf{(1 0 \%)}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(2)$	Toluene	120	85
$5^{[d]}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \%)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(2)$	Toluene	120	18
$6^{[e]}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \%)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(2)$	Toluene	120	nr
7	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \%)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(3)$	Toluene	120	83
8	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \%)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(1)$	Toluene	120	52
9	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \%)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(2)$	Toluene	120	67
10	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \%)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(2)$	Toluene	110	73
11	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \%)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(2)$	Toluene	130	85
12	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \%)$	$\mathrm{NaHCO}_{3}(2)$	Toluene	120	nr
13	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \%)$	$\mathrm{K}_{2} \mathrm{CO}_{3}(2)$	Toluene	120	nr
14	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \%)$	t-BuOK (2)	Toluene	120	0
15	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \%)$	t-BuONa (2)	Toluene	120	0
16	CuI (10\%)	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(2)$	Toluene	120	nr
17	$\mathrm{PdCl}_{2}(10 \%)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(2)$	Toluene	120	$n \mathrm{r}$
18	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \%)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(2)$	p-xylene	120	60
19	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \%)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(2)$	Benzene	120	82
20	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \%)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(2)$	Hexane	120	0
$21^{[f]}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \%)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(2)$	Toluene	120	63
$22^{[9]}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(10 \%)$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(2)$	Toluene	120	71

${ }^{\text {a }}$ Reaction condition: 1a $(0.25 \mathrm{mmol})$, 2a $(0.5 \mathrm{mmol}), 12 \mathrm{~h}$. ${ }^{\mathrm{b}}$ Isolated yield. ${ }^{\mathrm{c}}$ Dry toluene was used; ${ }^{\mathrm{d}, \mathrm{e}}$ Reaction was performed under O_{2} and N_{2} atmosphere respectively. ${ }^{\mathrm{f}, \mathrm{g}}$ Reaction time 6 h and 10 h respectively.
either low yields or no reaction was observed (Table 1, entries 18-20). The reactions performed with lowering the reaction time, the yield of $\mathbf{3 a}$ was reduced (Table 1, entries 21 and 22). On the basis of the results obtained, the optimized conditions were set as 0.25 mmol of $\mathbf{1 a}, 0.5$ mmol of $\mathbf{2 a}, 10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 2.0$ equivalent $\mathrm{Ag}_{2} \mathrm{CO}_{3}$, and 1.0 mL of toluene as a solvent in a sealed tube at $120^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

Control experiments for investigation of reaction mechanism

In order to obtain some mechanistic insights of the denitrogenative arylation of pyridotriazoles, we conducted some additional experiments (Scheme S1). Initially, the reaction of 1a and 2a was subjected to the optimized conditions in presence of radical scavenger TEMPO, under these conditions the desired product 3a was isolated in 56% yield along with 31% yield of

$$
\begin{align*}
& \text { Optimised } \tag{e}\\
& \text { condtions }
\end{align*}
$$

6p; 59\%

Scheme S1. Control experiments
oxidized product 2-benzoylpyridine $\mathbf{1 1}$ (Scheme S1a). This reaction indicates that, the conversion of $\mathbf{1 a}$ to $\mathbf{3 a}$ is not going through radical path. To know the possible intermediates, 2-benzylpyridine $\mathbf{1 2}$ was reacted with 2a under the standard conditions, the expected product

3a was not observed (Scheme S1b). Further, 11 was subjected with 2a under the same conditions, it does not yield the arylated product 3a (Scheme S1c). These two reactions (Scheme S1a-b) suggest that, both $\mathbf{1 1}$ and $\mathbf{1 2}$ are not the intermediates in the reaction. To confirm the intermediate, the di-phenyl pyridotriazole $\mathbf{1 3}$ was subjected to the optimized conditions without $\mathrm{Pd}(\mathrm{OAc})_{2}$ catalyst, under these conditions the desired product 3a was obtained in 43\% yield (Scheme S1d). This reaction suggests that, oxidative denitrogenation of 13 under the standard conditions give the desired product 3a. Further from the reactions of scheme S 1 (c-e), it confirm that, initially palladium catalyzed arylation may provide the product 13, followed by its denitrogenative oxidation give the product 3a.

To check the sequential C-H arylation with different aryliodides, we performed a reaction of 3-phenylimidazo[1,2-a]pyridine 5a with 1.0 equiv. of iodobenzene and 1 equiv. of methyl 4iodobenzoate under optimized conditions, unfortunately we got only 2,3-diphenylimidazo[1,2a]pyridine $\mathbf{7}$ but not methyl 4-(2-phenylimidazo[1,2-a]pyridin-3-yl)benzoate $\mathbf{1 4}$ due to less reactivity of electron withdrawing group in present protocol (Scheme S1f). Also we performed the reaction by the sequential addition of two different iodoarenes with 3-phenylimidazo[1,2a]pyridine 5a, initially substitution take place at $\mathrm{C}-3$ first iodoarene and subsequently at $\mathrm{C}-8$ position of 5a [see supporting information, Scheme $\operatorname{S1}(\mathrm{g})$]. Initially reaction of 5a with iodobenzene gives 2,3-diphenylimidazo[1,2-a]pyridine 7 in 2 h under optimized conditions, further addition of 3-methoxyiodobenzene to the same reaction mixture (one pot) yield the desired diarylated product 8 -(3-methoxyphenyl)-2,3-diphenylimidazo[1,2-a]pyridine $\mathbf{6 p}$ in 59% isolated yield after 24 h . Based on these control experiments and our observation, a plausible reaction mechanism has been proposed for $\mathbf{3 a}$ (see Scheme 3 in manuscript) and for 6 (Scheme S2).

Plausible reaction mechanism for the synthesis of 2,3,8-triphenylimidazo[1,2-a]pyridine

 (6a)Monoarylation $(\mathrm{C}-3)$ of 5 to get 7 may be same as that of literature method. ${ }^{3}$ For the selective $\mathrm{C}-8$ arylation (diarylation), initially reaction of 7 with palladium generates a metalated intermediate \mathbf{A} through $\mathrm{C}-\mathrm{H}$ activation. Subsequently oxidative addition of aryliodide (PhI) generates palladium (IV) complex \mathbf{B}, followed by its reductive elimination furnish the diarylated product $\mathbf{6 a}$.

Scheme S2. Plausible reaction mechanism for 6a

Charecterisation data:

phenyl(6-phenylpyridin-2-yl)methanone (3a) ${ }^{4}$

Yield ($55.0 \mathrm{mg}, 85 \%$ yield, yellow liquid), eluent: 10% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.03-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.97-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 193.6, 155.8, 154.7, 138.3, 137.8, 136.3, 132.7, 131.3, 129.4, 128.8, 127.9, 126.9, 122.8, 122.4.
phenyl(6-(o-tolyl)pyridin-2-yl)methanone (3b)

Yield ($25.0 \mathrm{mg}, 37 \%$ yield, yellow liquid), eluent: 5\% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~d}, \mathrm{~J}=7.4$ Hz, 2H), 7.99 - 7.93 (m, 2H), 7.59 (d, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.55 (t, J = 7.4 Hz, 1H), 7.43 (dd, J = $15.1,7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.29(\mathrm{dd}, \mathrm{J}=14.3,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) δ 193.9, 158.9, 154.7, 139.5, 137.2, 136.3, 136.0, 132.7, 131.1, 130.9, 129.8, 128.6, 127.9, 126.4, 125.9, 122.3, 20.6; HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{K}]+\mathrm{calcd}$. For $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NOK}, 312.0791$; found 312.0779. phenyl(6-(m-tolyl)pyridin-2-yl)methanone (3c)

Yield $\quad(50.0 \mathrm{mg}, \quad 75 \%$ yield, yellow liquid), eluent: 5% ethylacetate/hexane); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.22(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.99-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.94-7.92(\mathrm{~m}, 2 \mathrm{H})$, $7.85(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}$, 1H), $7.24(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 193.6, 156.1, 154.7, 138.4, 137.7, 136.3, 132.8, 131.3, 130.1, 128.7, 127.9, 127.6, 124.0, 122.7, 122.5, 21.5; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]+$ calcd. For $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}, 274.1232$; found 274.1231.

Yield $\quad(52.5 \mathrm{mg}, \quad 77 \%$ yield, yellow liquid), eluent: 5% ethylacetate/hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.25-8.21(\mathrm{~m}, 2 \mathrm{H}), 7.99-7.91(\mathrm{~m}, 5 \mathrm{H}), 7.61(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, \mathrm{J}=9.4,5.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 193.6,155.8,154.7$, $139.5,137.7,136.4,135.6,132.7,131.3,129.5,127.9,126.8,122.5,122.1,21.2 ;$ HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]+$ calcd. For $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NONa}$ 296.1051; found 296.1041.

(6-(4-(tert-butyl)phenyl)pyridin-2-yl)(phenyl)methanone (3e)

Yield (31.3 mg, 40\% yield, yellow semi-solid), eluent: 5\% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{dd}, \mathrm{J}$ $=7.9,6.3 \mathrm{~Hz}, 5 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 193.6,155.8,154.6,152.6,137.7,136.4,135.5,132.6,131.3,127.9,126.6,125.7,122.4$, 122.1, 34.6, 31.2; HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{K}]+$ calcd. For $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NOK}, 354.1260$; found 354.1135.

(6-(3-methoxyphenyl)pyridin-2-yl)(phenyl)methanone (3f)

Yield (39.7 mg, 55\% yield, white solid), eluent: 5\% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~d}, \mathrm{~J}$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{dd}, \mathrm{J}=6.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, \mathrm{J}=8.1,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 193.5,160.1,155.5,154.5,139.7,137.8$, $136.4,132.7,131.3,129.8,127.9,122.9,122.5,119.1,115.4,112.0,55.2 ;$ HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{H}]+$ calcd. For $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{2}$, 290.1181; found 290.1188 .

(6-(4-methoxyphenyl)pyridin-2-yl)(phenyl)methanone (3g)

Yield $\left(50.0 \mathrm{mg}, 69 \%\right.$ yield, white solid, $\mathrm{mp}=86-88^{\circ} \mathrm{C}$), eluent: 5% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~d}$, $\mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.05-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.91(\mathrm{qd}, \mathrm{J}=8.0,3.8 \mathrm{~Hz}$, $3 \mathrm{H}), 7.61(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 193.7, 160.7, 155.5, 154.6, 138.2, 137.6, 136.4, 132.7, 131.3, 131.0, 128.2, 127.9, 122.0, 121.6, 114.1, 55.3; HRMS-ESI (m/z) [M+H]+calcd. For $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{2}$, 290.1181; found 290.1210.

(6-(4-nitrophenyl)pyridin-2-yl)(phenyl)methanone (3h)

Yield ($42.4 \mathrm{mg}, 56 \%$ yield, yellow solid, $\mathrm{mp}=176-178{ }^{\circ} \mathrm{C}$), eluent: 10% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.31(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{dd}, \mathrm{J}=8.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.1, 155.1, 153.2, 148.3, 144.0, 138.3, 136.0, 133.0, 131.1, 128.0, 127.6, 124.1, 124.0, 123.1; HRMS-ESI (m/z) [M+H]+calcd. For $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}, 305.0926$; found 305.0918.
(6-(4-fluorophenyl)pyridin-2-yl)(phenyl)methanone (3i)

Yield ($43.4 \mathrm{mg}, 63 \%$ yield, yellow liquid), eluent: 5% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.05-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.97$ (dt, J = 15.0, $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.90(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) δ 193.6, 164.5, 162.9, 154.83 (d, J = 12.8 Hz), 137.9, 136.3, $134.5,132.8,131.2,128.78(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 128.0,122.7,122.1,115.8,115.7 ;$ HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{H}]+$ calcd. For $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{FNO}, 278.0981$; found 278.0985. phenyl(6-(4-(trifluoromethyl)phenyl)pyridin-2-yl)methanone (3j)

Yield (55.6 mg, 68\% yield, yellow liquid), eluent: 5\% ethylacetate/hexane); ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, \mathrm{~J}$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.08-8.04(\mathrm{~m}, 1 \mathrm{H})$, $8.03-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 193.3,154.9(\mathrm{~d}, \mathrm{~J}=124.9 \mathrm{~Hz}), 141.6,138.1,136.1,132.9$, $131.27,131.12(\mathrm{~d}, \mathrm{~J}=22.2 \mathrm{~Hz}), 128.0,127.2,125.7,124.9,123.6,123.1,122.7 ;$ HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]+$ calcd. For $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NONa}, 350.0769$; found 350.0813 .

4-(6-benzoylpyridin-2-yl)benzonitrile (3k)

Yield ($50.8 \mathrm{mg}, 72 \%$ yield, white solid, $\mathrm{mp}=230-232{ }^{\circ} \mathrm{C}$), eluent: 10% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15(\mathrm{dd}, \mathrm{J}=7.6,5.4 \mathrm{~Hz}, 4 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-$ $8.01(\mathrm{~m}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ $(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.2,155.1,153.6,142.3,138.2,136.0$, 133.0, 132.6, 131.1, 128.0, 127.4, 123.9, 122.8, 118.6, 112.8; HRMS-ESI (m/z) [M+Na]+calcd. For $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{ONa}$, 307.0847; found 307.0835.
methyl 4-(6-benzoylpyridin-2-yl)benzoate (3I)

Yield ($51.7 \mathrm{mg}, 65 \%$ yield, white solid, $\mathrm{mp}=156-158{ }^{\circ} \mathrm{C}$), eluent: 10% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR (600 MHz, CDCl3) $\delta 8.20(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{q}, \mathrm{J}=8.5 \mathrm{~Hz}, 4 \mathrm{H})$, $8.06-8.03(\mathrm{~m}, 1 \mathrm{H}), 8.02-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.94$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 193.3,166.7,154.9,154.6,142.4,138.0,136.2,132.9$, $131.2,130.7,130.1,128.0,126.8,123.5,122.9,52.2 ;$ HRMS-ESI (m/z) [M+Na]+calcd. For $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Na}, 340.0950$; found 340.0957 .

Yield ($50.5 \mathrm{mg}, 60 \%$ yield, white solid, $\mathrm{mp}=136-138{ }^{\circ} \mathrm{C}$), eluent: 5\% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.19 (dd, J = 5.1, 2.4 Hz, 3H), 8.02 (d, J = 7.7 Hz, 1H), 7.98 (dd, J = 15.9, 8.1 Hz, 2H), 7.92 (d, J = 8.0 Hz, 1H), 7.66-7.61 (m, 1H), $7.54(\mathrm{dt}, \mathrm{J}=15.8,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, 1H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.4,154.9,154.3,140.4,138.0,136.21,132.9,132.3$, 131.2, 130.38, 130.0, 128.0, 125.4, 123.3, 122.5; HRMS-ESI (m/z) [M+Na]+calcd. For $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{BrNONa}, 360.0000$; found 359.9985 .
methyl 2-(6-benzoylpyridin-2-yl)benzoate (3n)

Yield ($37.9 \mathrm{mg}, 48 \%$ yield, white semi-solid), eluent: 10% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{q}, \mathrm{J}=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 8.06-8.03(\mathrm{~m}, 1 \mathrm{H}), 8.02-$ $7.99(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.3,166.7,154.9,154.6,142.4,138.0,136.2,132.9,131.2,130.7,130.1$, 128.0, 126.8, 123.5, 122.9, 52.2; HRMS-ESI (m/z) [M+H]+calcd. For $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{3}, 318.1130$; found 318.1106
(6-(naphthalen-1-yl)pyridin-2-yl)(phenyl)methanone (30)

Yield ($40.2 \mathrm{mg}, 52 \%$ yield, yellow semi-solid), eluent: 2% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~d}, \mathrm{~J}=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-$ 7.91 (m, 2H), $7.80(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.53-$ $7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.7,158.0,155.2$, 137.7, 137.3, 136.2, 133.9, 132.8, 131.2, 131.0, 129.2, 128.4, 128.0, 127.9, 127.47, 126.4, 125.9, 125.4. 125.3, 122.8; $\operatorname{HRMS}-\mathrm{ESI}(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{K}]+$ calcd. For $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{NOK}, 348.1791$; found 348.1729 .
[2,3'-bipyridin]-6-yl(phenyl)methanone (3p)

Yield ($47.8 \mathrm{mg}, 74 \%$ yield, green semi-solid), eluent: 30% ethylacetate/hexane); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.25(\mathrm{~s}, 1 \mathrm{H})$, $8.65(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.00(\mathrm{td}, \mathrm{J}=8.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{dd}, \mathrm{J}=7.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.3,155.0$, $153.3,150.28,150.20,148.2,138.1,136.1,134.3,133.8,132.9,131.1,128.0,123.6,123.5$, 122.4; HRMS-ESI (m/z) [M+Na]+calcd. For $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{ONa}$ 283.0847; found 283.0825 .

(4-chlorophenyl)(6-phenylpyridin-2-yl)methanone (4a)

 eluent: 5\% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.20(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 3 \mathrm{H}), 8.00-7.95(\mathrm{~m}$, 2H), $7.52-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.45(\mathrm{dd}, \mathrm{J}=7.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 192.2, $155.9,154.3,139.2,138.2,137.9,134.7,132.7,129.5,128.9,128.3,126.8,122.9,122.7$; HRMS-ESI (m/z) [M+H]+calcd. For $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClNO}$, 294.0686; found 294.0677.
(4-chlorophenyl)(6-(m-tolyl)pyridin-2-yl)methanone (4b)
 eluent: 5% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, \mathrm{J}=5.7,3.4$
$\mathrm{Hz}, 1 \mathrm{H}), 7.96-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.1, 156.0, 154.2, $139.2,138.5,138.2,137.8,134.6,132.8,130.3,128.8,128.2,127.5,124.0,122.7,21.6 ;$ HRMS-ESI (m/z) [M+H]+calcd. For $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClNO}, 308.0842$; found 308.0825.
(4-chlorophenyl)(6-(p-tolyl)pyridin-2-yl)methanone (4c)

Yield ($56.1 \mathrm{mg}, 73 \%$ yield, yellow semi-solid), eluent: 5\% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23$ -
$8.19(\mathrm{~m}, 2 \mathrm{H}), 7.99(\mathrm{dd}, \mathrm{J}=6.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.91(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}$, $\mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 192.2, 155.9, 154.2, 139.6, 139.1, $137.8,135.4,134.7,132.8,129.6,128.2,126.7,122.7,122.5,122.3,21.2 ; \operatorname{HRMS}-E S I(\mathrm{~m} / \mathrm{z})$ [$\mathrm{M}+\mathrm{Na}$]+calcd. For $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClNONa}, 330.0662$; found 330.0657.
(6-(4-(tert-butyl)phenyl)pyridin-2-yl)(4-chlorophenyl)methanone (4d)

Yield ($43.8 \mathrm{mg}, 50 \%$ yield, white semi-solid), eluent: 2% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24$ $8.19(\mathrm{~m}, 2 \mathrm{H}), 8.01-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.96(\mathrm{dd}, \mathrm{J}=15.0,6.6$ $\mathrm{Hz}, 4 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.2, 155.8, 154.2, $152.8,139.1,137.8,135.4,134.7,132.8,128.2,126.5,125.8,122.7,122.5,122.4,34.7,31.2$; HRMS-ESI (m/z) [M+Na]+calcd. For $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClNONa}, 372.1131$; found 372.1137. (4-chlorophenyl)(6-(3-methoxyphenyl)pyridin-2-yl)methanone (4e)
 eluent: 5\% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.24-8.19(\mathrm{~m}, 2 \mathrm{H}), 8.03(\mathrm{dd}, \mathrm{J}=6.9,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.97(\mathrm{q}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, \mathrm{J}=6.5$, $4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, \mathrm{J}=8.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 192.1,160.1,155.6,154.2,139.6,139.2,138.0,134.7,132.8,129.9$, 128.2, 123.0, 122.8, 119.1, 115.3, 112.2, 55.3; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]+\mathrm{calcd}$. For $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClNO}_{2}, 324.0719$; found 324.0787.
(4-chlorophenyl)(6-(4-nitrophenyl)pyridin-2-yl)methanone (4f)

Yield ($47.4 \mathrm{mg}, 56 \%$ yield, yellow solid, $\mathrm{mp}=228-230^{\circ} \mathrm{C}$), eluent: 10% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.19(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $8.15(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.11(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.09-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.8,153.3,143.9,139.6,138.5,134.3,132.6,128.4,127.7$, 124.2, 124.1, 123.4; HRMS-ESI (m/z) [M+H]+calcd. For $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ClN}_{2} \mathrm{O}_{3}, 339.0536$; found 339.0538.

4-(6-(4-chlorobenzoyl)pyridin-2-yl)benzonitrile (4g)

Yield ($50.2 \mathrm{mg}, 63 \%$ yield, white solid, $\mathrm{mp}=204-206^{\circ} \mathrm{C}$), eluent: 10% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.13(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 2 \mathrm{H})$, $8.08(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.9,153.8,142.3,139.6,138.5,134.5,132.8,132.6$, 128.5, 127.5, 124.1, 123.2, 118.6, 113.1; HRMS-ESI (m/z) [M+Na]+calcd. For $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{ONa}, 341.0458$; found 341.0443.
(4-chlorophenyl)(6-(4-(trifluoromethyl)phenyl)pyridin-2-yl)methanone (4h)

Yield ($64.0 \mathrm{mg}, 71 \%$ yield, yellow solid, $\mathrm{mp}=120-122^{\circ} \mathrm{C}$), eluent: 5\% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{dd}, \mathrm{J}=6.4,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.13(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 8.09-8.07(\mathrm{~m}, 1 \mathrm{H}), 8.05-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{dd}, \mathrm{J}=6.0,4.0$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 191.9,154.5(\mathrm{~d}, \mathrm{~J}=37.5 \mathrm{~Hz}), 141.4,139.4,138.3$, 134.5, 132.6, 131.4 (d, J= 38.1 Hz), 128.3, 127.1, 125.8, 123.7, 123.0; HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{H}]+$ calcd. For $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{ClF}_{3} \mathrm{NO}, 362.0560$; found 362.0552 .
(4-chlorophenyl)(6-(naphthalen-1-yl)pyridin-2-yl)methanone (4i)

Yield ($46.4 \mathrm{mg}, 54 \%$ yield, yellow solid, $\mathrm{mp}=136-138^{\circ} \mathrm{C}$), eluent: 2% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24-8.21(\mathrm{~m}, 2 \mathrm{H}), 8.11(\mathrm{dd}, \mathrm{J}=17.0,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{t}$,
$\mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ $-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, \mathrm{J}=8.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.0,158.0,154.7,139.3,137.6,137.5,134.5,133.9,132.7$, $130.9,129.3,128.5,128.3,127.8,127.7,126.5,126.0,125.3,125.2,122.9 ;$ HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{H}]+$ calcd. For $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{ClNO}, 344.0842$; found 344.0824.
[2,3'-bipyridin]-6-yl(4-chlorophenyl)methanone (4j)

Yield ($48.1 \mathrm{mg}, 65 \%$ yield, yellow solid, $\mathrm{mp}=130-132^{\circ} \mathrm{C}$), eluent: 30% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.25(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{dt}, \mathrm{J}=8.0,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.42(\mathrm{dd}, \mathrm{J}=7.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.9,154.7,153.4$, $150.3,148.2,139.4,138.3,134.5,133.7,132.6,128.4,123.6,122.7$; HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{H}]+$ calcd. For $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClN}_{2} \mathrm{O}$, 295.0638; found 295.0631.

2-(6-(m-tolyl)picolinoyl)phenyl acetate (4k)

Yield ($31.8 \mathrm{mg}, 39 \%$ yield, colourless liquid), eluent: 10% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{dt}, \mathrm{J}=$ $14.3,5.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, \mathrm{J}=$ $11.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, \mathrm{J}=9.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}$, 1H), 7.24 (d, J = 7.7 Hz, 1H), 2.41 ($\mathrm{s}, 3 \mathrm{H}$), 1.97 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.6, $169.0,156.7,154.4,149.6,137.7,132.7,132.0,130.3,128.8,127.7,125.3,124.2,123.0,122.9$, 122.0, 29.7, 20.7; HRMS-ESI (m/z) [M+H]+calcd. For $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{3}$, 332.1287; found 332.1262.

2-(6-(m-tolyl)picolinoyl)phenyl pivalate (41)

Yield ($71.8 \mathrm{mg}, 77 \%$ yield, colourless liquid), eluent: 5% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99$ (dd, $\mathrm{J}=5.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.55$ $(\mathrm{m}, 1 \mathrm{H}), 7.33(\mathrm{dt}, \mathrm{J}=19.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.9, 176.1, 138.1, 137.6, 132.1, 131.3, 130.1, 128.6, 127.7, 125.1, 124.1, 123.1, 122.4, 121.8, 38.9, 26.7, 21.5; HRMS-ESI (m/z) [M-H]+calcd. For $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{3}$, 372.1304; found 372.1349 .

2,3,8-triphenylimidazo[1,2-a]pyridine (6a)

Yield ($52.5 \mathrm{mg}, 61 \%$ yield, brown solid, $\mathrm{mp}=190-192{ }^{\circ} \mathrm{C}$), eluent: 5% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.93(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{ddd}, \mathrm{J}=18.9$, $10.2,5.8 \mathrm{~Hz}, 7 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, \mathrm{J}$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 143.4,142.47,136.5,134.3,130.8,130.2,130.0,129.5,129.0,128.8,128.4,128.2,128.1$, 127.2, $122.91(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}), 122.2,121.3,112.37(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}) ;$ HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{Na}]+$ calcd. For $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Na}, 369.1368$; found 369.1363.

2-phenyl-3,8-di-m-tolylimidazo[1,2-a]pyridine (6b)

Yield (58.4 mg, 62% yield, yellow liquid), eluent: 5\% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{q}, \mathrm{J}=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.25(\mathrm{dt}, \mathrm{J}=15.1,7.5 \mathrm{~Hz}, 5 \mathrm{H}), 6.78$ $(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.4,142.1,139.2,137.8,136.5,134.4,131.3,130.19,130.14,129.7,129.6,129.4$, $128.9,128.3,128.08,128.05,127.9,127.2,126.2,122.8,122.2,121.4,112.2,21.6,21.4$; HRMS-ESI (m/z) [M+Na]+calcd. For $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{Na}$, 397.1681; found 397.1698.

3,8-bis(3-methoxyphenyl)-2-phenylimidazo[1,2-a]pyridine (6c)

Yield ($82.2 \mathrm{mg}, 81 \%$ yield, green semi-solid), eluent: 5% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, \mathrm{~J}=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44(\mathrm{dt}, \mathrm{J}=20.5,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ $(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{dd}, \mathrm{J}=14.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, \mathrm{J}=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{dd}, \mathrm{J}=8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{t}, \mathrm{J}=$ 6.9 Hz, 1H), $3.93(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.3,159.5,143.3$, $142.2,137.8,134.3,131.4,130.6,129.7,129.3,128.1,128.0,127.3,123.1,122.9,122.4,121.3$, 121.1, 116.0, 114.67, 114.63, 114.2, 112.3, 55.3; HRMS-ESI (m/z) [M+Na]+calcd. For $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}, 429.1579$; found 429.1581.

dimethyl 4,4'-(2-phenylimidazo[1,2-a]pyridine-3,8-diyl)dibenzoate (6d)

$\mathrm{Hz}, 3 \mathrm{H}), 6.88(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.9,166.5,143.55(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}), 140.8$, 134.7, 133.7, 130.7, 130.6, 130.3, 129.7, 129.1, $129.0,128.3,127.8,123.8,122.7,120.3,112.7,52.3,52.1 ;$ HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{Na}]+\mathrm{calcd}$. For $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}, 485.1477$; found 485.1470.

3,8-bis(4-fluorophenyl)-2-phenylimidazo[1,2-a]pyridine (6e)

Yield (52.5 mg, 55\% yield, yellow liquid), eluent: 5\% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26-8.10(\mathrm{~m}$, $2 \mathrm{H}), 7.86(\mathrm{dd}, \mathrm{J}=6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.39$ $(\mathrm{m}, 2 \mathrm{H}), 7.37-7.13(\mathrm{~m}, 8 \mathrm{H}), 6.82(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.9(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}), 161.9(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}), 143.3$, 142.7, 134.0, $132.83(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 132.4,130.78(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}), 129.0,128.3,128.16(\mathrm{~d}, \mathrm{~J}=$ $25.1 \mathrm{~Hz}), 127.5,126.1,122.7,122.1,120.2,116.9,116.7,115.5,115.3(\mathrm{~d}, \mathrm{~J}=21.3 \mathrm{~Hz}), 112.5$; HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{K}]+$ calcd. For $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{~K}, 421.0919$; found 421.0915 .

3,8-di(naphthalen-1-yl)-2-phenylimidazo[1,2-a]pyridine (6f)

Yield ($54.4 \mathrm{mg}, 49 \%$ yield, brown solid, $112-114{ }^{\circ} \mathrm{C}$), eluent: 5% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10-8.06(\mathrm{~m}, 1 \mathrm{H})$, $8.03(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-7.95(\mathrm{~m}, 3 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65(\mathrm{dd}, \mathrm{J}=8.8,5.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.58(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}$, 5H), 7.46 (dd, J = 15.4, 8.0 Hz, 2H), 7.29 (d, J = 6.8 Hz, 1H), $7.11-7.05$ $(\mathrm{m}, 3 \mathrm{H}), 6.78(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.2,132.0,130.4,129.9$, 128.7, 128.6, 128.3, 128.0, 127.7, 127.2, 126.6, 126.2, 126.1, 125.9, 125.8, 125.7, 125.4, 125.3, 123.2, 119.3; HRMS-ESI (m/z) [M+Na]+calcd. For $\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{Na}, 469.1681$; found 469.1691.

2-(2-fluorophenyl)-3,8-diphenylimidazo[1,2-a]pyridine (6g)

Yield ($62.8 \mathrm{mg}, 69 \%$ yield, green solid, $\mathrm{mp}=150-152^{\circ} \mathrm{C}$), eluent: 5% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $7.76(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.43$ $(\mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{t}, \mathrm{J}$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 160.7, 159.1, 143.7, 138.3, 136.5, 132.3 (d, J = 2.5 Hz), 130.4, 130.1, 129.8, 129.6, 129.3 (t, J
$=15.7 \mathrm{~Hz}), 129.2,129.0,128.4,128.3,128.2,127.1(\mathrm{~d}, \mathrm{~J}=44.4 \mathrm{~Hz}), 123.9,123.4,123.1,122.6$ $(\mathrm{d}, \mathrm{J}=14.5 \mathrm{~Hz}), 122.2,115.7(\mathrm{~d}, \mathrm{~J}=21.9 \mathrm{~Hz}), 112.5$; HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{K}]+$ calcd. For $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{~K}, 403.1013$; found 403.1074.

4-(3,8-diphenylimidazo[1,2-a]pyridin-2-yl)benzonitrile (6h)

Yield ($41.8 \mathrm{mg}, 45 \%$ yield, yellow solid, $\mathrm{mp}=176-17 \mathrm{C}^{\circ} \mathrm{C}$), eluent: 5% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 8.15(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{dd}, \mathrm{J}=14.1$, $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.47(\mathrm{dd}, \mathrm{J}=8.8,4.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.38(\mathrm{~d}$, $\mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 143.7, 140.2, 139.0, 136.2, 131.9, 130.7, 130.4, 129.9, 129.8, 129.5, 129.4, 129.2, 129.0, 128.4, 128.2, 123.5, 122.7, 122.4, 119.1, 112.9, 110.4; HRMS-ESI (m/z) [M+K]+calcd. For $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{~K}, 410.1060$; found 410.1081.

2-(4-ethylphenyl)-3,8-diphenylimidazo[1,2-a]pyridine (6i)

Yield ($74.6 \mathrm{mg}, 80 \%$ yield, yellow solid, $\mathrm{mp}=150-152^{\circ} \mathrm{C}$), eluent: 5% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{dd}, \mathrm{J}=13.7$, $7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{q}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 143.4, 142.6, 136.6, 131.7, $130.9,130.4,129.9,129.5,129.1,128.7,128.3,128.1,128.0,127.6,122.7,122.2,120.9,112.2$, 28.5, 15.4; HRMS-ESI (m/z) [M+Na]+calcd. For $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{Na}, 397.1681$; found 397.1683.

2-(4-fluorophenyl)-3,8-di-m-tolylimidazo[1,2-a]pyridine (6j)

Yield (73.5 mg, 75\% yield, yellow semi-solid), eluent: 5\% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.38(\mathrm{~m}$, $2 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{t}, \mathrm{J}=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.78(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.0(\mathrm{~d}, \mathrm{~J}=244.5 \mathrm{~Hz}), 143.4,141.3,139.4,137.8$, $136.5,131.2,130.6,130.1,129.77,129.71(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}), 129.5,129.0,128.3,127.9,126.2$, $122.9,122.2,121.1,115.0,114.9,112.3,21.6,21.4 ; \operatorname{HRMS}-E S I(m / z)[\mathrm{M}+\mathrm{Na}]+\mathrm{calcd}$. For $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{FN}_{2} \mathrm{Na}, 415.1586$; found 415.1601 .

2-(4-chlorophenyl)-6-methyl-3,8-diphenylimidazo[1,2-a]pyridine (6k)

Yield ($71.1 \mathrm{mg}, 72 \%$ yield, yellow solid, $\mathrm{mp}=238-240^{\circ} \mathrm{C}$), eluent: 5% ethylacetate/hexane; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-$ $7.51(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}$ $\mathrm{Cl}=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.5$, 141.1, $136.4,133.0,132.9,130.8,130.1,129.6,129.3,129.2,129.0,128.4,128.3,128.2,126.39$, 126.32, 122.0, 121.1, 119.9, 18.4; HRMS-ESI (m/z) [M+Na]+calcd. For $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{Na}$, 417.1134; found 417.1111.

2-(4-chlorophenyl)-7-methyl-3,8-diphenylimidazo[1,2-a]pyridine (61)

Yield (73.0 mg, 74\% yield, yellow semi-solid), eluent: 5\% ethylacetate/hexane; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 8.11(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.58-7.48(\mathrm{~m}, 9 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $7.31(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 5 \mathrm{H}), 7.23(\mathrm{dd}, \mathrm{J}=14.5,7.2 \mathrm{~Hz}, 5 \mathrm{H}), 7.17-7.12(\mathrm{~m}$, $3 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 7 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 150.2,147.1,137.4,135.3,135.0,134.3,134.1,132.1,130.04$,
129.6, 129.4, 129.1, 128.3, 128.2, 127.8, 125.4, 122.3, 116.7, 105.7, 19.75; HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{Na}]+\mathrm{calcd}$. For $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{Na}, 417.1134$; found 417.1111.

2-(tert-butyl)-3,8-bis(3-methoxyphenyl)imidazo[1,2-a]pyridine (6m)

Yield ($75.9 \mathrm{mg}, 79 \%$ yield, greenish liquid), eluent: 5\% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02$ - 7.91 (m, $1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.12$ $-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.75(\mathrm{~m}, 3 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ $(\mathrm{s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $160.0,159.3,156.9,143.9,138.0,136.7,136.2,130.1,129.0,127.5,122.3,120.8,120.4,114.8$, 114.4, 114.3, 113.8, 112.0, 105.3, 55.3, 55.1, 32.4, 30.2; HRMS-ESI (m/z) [M+Na]+calcd. For $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}, 409.1892$; found 409.1866 .

3-(3-methoxyphenyl)-1-phenylbenzo[a]imidazo[5,1,2-cd]indolizine (6n)

Yield ($52.6 \mathrm{mg}, 56 \%$ yield, green solid), eluent: 5\% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 8.40(\mathrm{~d}, \mathrm{~J}=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 8.21-8.16(\mathrm{~m}, 2 \mathrm{H}), 8.10(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, \mathrm{J}=14.4,7.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.53-7.48$ (m, 2H), $7.03(\mathrm{dd}, \mathrm{J}=8.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 160.0,134.8,131.2,129.8,128.9,128.4,126.4,124.8,124.1,122.9,121.6,120.9$, 115.0, 114.3, 109.2, 55.4; HRMS-ESI (m/z) [M+H]+calcd. For $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}, 375.1497$; found 375.1485.

8-(3-methoxyphenyl)-2,3-diphenylimidazo[1,2-a]pyridine (6p)

 Yield ($55.5 \mathrm{mg}, 59 \%$ yield, yellow semi solid), 5% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 1H NMR (500 MHz, CDCl3) $\delta 7.84(\mathrm{dd}, \mathrm{J}=$ $12.8,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{dd}, \mathrm{J}=13.1,6.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41$ (dd, $\mathrm{J}=10.6,4.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.16(\mathrm{dd}, \mathrm{J}=14.3,7.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.91(\mathrm{dd}, \mathrm{J}=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{t}, \mathrm{J}=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,143.3,142.3,137.8,134.3$, $130.8,130.1,129.7,129.5,129.3,128.8,128.1,128.0,127.3,122.9,122.3,121.37,121.30$, 114.6, 114.2, 112.3, 55.3.

2,3-diphenylimidazo[1,2-a]pyridine (7) ${ }^{5}$

Yield ($75.9 \mathrm{mg}, 79 \%$ yield, brown liquid), eluent: 20% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.66(\mathrm{~m}, 3 \mathrm{H})$, $7.54(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32$ $-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.7,142.3,134.0,130.7,129.8,129.5,128.8,128.2,128.0,127.4,124.6$, 123.2, 117.5, 112.2.

2-(4-ethylphenyl)-8-methyl-3-phenylimidazo[1,2-a]pyridine (9)

Yield ($74.4 \mathrm{mg}, 95 \%$ yield, brown liquid), eluent: 5% ethylacetate/hexane; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}$, 2H), 7.49 (q, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.44(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, 2H), 6.96 (d, J = 6.8 Hz, 1H), 6.62 (t, J = $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.69 ($\mathrm{s}, 3 \mathrm{H}$), $2.65-$ $2.59(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 145.1, 143.3, 142.1, 131.8, 130.7, 130.3, 129.3, 128.5, 128.1, 127.7, 127.3, 123.1, 121.0, 112.0, 28.5, 17.1, 15.3.

Yield ($14.0 \mathrm{mg}, 31 \%$ yield, white solid, $\mathrm{mp}=42-44{ }^{\circ} \mathrm{C}$), 5% ethylacetate/hexane; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.07(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.47(\mathrm{dd}, \mathrm{J}=14.2,6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.7,154.9,148.4,136.9$, $136.1,132.7,130.8,128.0,126.0,124.4$.

References

1. T. Hirayama, S. Ueda, T. Okada, N. Tsurue, K. Okuda, H. Nagasawa, Chem. Eur. J. 2014, 20, 4156.
2. (a) S. Liu, J. Sawicki and T. G. Driver, Org. Lett. 2012, 14, 3744; (b) Y. Moon, S. Kwon, D. Kang, H. Im and S. Honga, Adv. Synth. Catal. 2016, 358, 958.
3. C. Xue, J. Han, M. Zhao and L. Wang, Org. Lett., 2019, 21, 4402.
4. S. Couve-Bonnaire, J. F. Carpentier, A. Mortreux, Y. Castanet, Tetrahedron 2003, 59, 2793.
5. R. Kumar, C. Ravi, D. Rawat, S. Adimurthy, European J. Org. Chem. 2018, 1665.
6. A. Joshi, R. Kumar, R. Semwal, D. Rawat, S. Adimurthy. Green Chem. 2019, 21, 962.

Copies of ${ }^{\mathbf{1}} \mathbf{H} \boldsymbol{\&}{ }^{13} \mathbf{C}$ NMR

${ }^{1} \mathrm{H}$ NMR of $\mathbf{C D C l}_{3}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a}$

${ }^{13} \mathrm{C}$ NMR of 3a

${ }^{1} \mathrm{H}$ NMR of 3b

${ }^{13} \mathbf{C}$ NMR of $\mathbf{3 b}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 c}$
(

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 c}$

${ }^{1} \mathrm{H}$ NMR of 3d

${ }^{13} \mathrm{C}$ NMR of 3d

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 e}$

${ }^{13} \mathrm{C}$ NMR of 3 e

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 f}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 f}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 g}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 g}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 h}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 h}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 i}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 i}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 j}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 j}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 k}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 k}$

${ }^{1} \mathrm{H}$ NMR of 31

${ }^{13} \mathrm{C}$ NMR of 31

${ }^{13}$ C NMR of $\mathbf{3 m}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 n}$

${ }^{13}$ C NMR of $3 n$

${ }^{1} \mathrm{H}$ NMR of 30

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 o}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 p}$

${ }^{13}$ C NMR of $\mathbf{3 p}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 a}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 a}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 b}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 b}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 c}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 c}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 d}$

${ }^{13}$ C NMR of $4 d$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 e}$
(
${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 e}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 f}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 f}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 g}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 g}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 h}$

${ }^{13}$ C NMR of $\mathbf{4 h}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 i}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 i}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 j}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 k}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 k}$

${ }^{1} \mathrm{H}$ NMR of 41

${ }^{13} \mathrm{C}$ NMR of 41

${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 a}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{6 a}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 b}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 c}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{6 c}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 d}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{6 d}$

${ }^{1} \mathrm{H}$ NMR of $6 \mathbf{e}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{6 e}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 f}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{6 f}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 g}$

${ }^{13}$ C NMR of $\mathbf{6 g}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 h}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 i}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{6} \mathbf{j}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{6 j}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 k}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{6 k}$

${ }^{1} \mathrm{H}$ NMR of 61

${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 m}$

${ }^{13}$ C NMR of $\mathbf{6 m}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 n}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{6 n}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 p}$

${ }^{13}$ C NMR of $\mathbf{6 p}$

${ }^{1} \mathrm{H}$ NMR of 7

${ }^{13} \mathrm{C}$ NMR of 7

${ }^{1} \mathrm{H}$ NMR of 9

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 1}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 1}$

Copies of HRMS Spectra for

New Compounds

HRMS of 3b

HRMS of $\mathbf{3 c}$

HRMS of 3d

HRMS of 3e

HRMS of $\mathbf{3 g}$

HRMS of 3h

HRMS of $\mathbf{3 i}$

HRMS of $\mathbf{3} \mathbf{j}$

HRMS of $\mathbf{3 k}$

HRMS of 31

HRMS of $\mathbf{3 m}$

HRMS of 3n

HRMS of 30

HRMS of $\mathbf{3 p}$

HRMS of 4a

HRMS of 4b

HRMS of $\mathbf{4 c}$

HRMS of $\mathbf{4 d}$

HRMS of $\mathbf{4 e}$

HRMS of $\mathbf{4 f}$

HRMS of $\mathbf{4 g}$

HRMS of 4h

HRMS of $\mathbf{4 i}$

HRMS of $\mathbf{4 j}$

HRMS of $\mathbf{4 k}$

HRMS of 41

HRMS of $\mathbf{6} \mathbf{a}$

HRMS of $\mathbf{6 b}$

HRMS of $\mathbf{6 c}$

HRMS of $\mathbf{6 d}$

HRMS of $\mathbf{6 e}$
 HRMS of $\mathbf{6}$

HRMS of $\mathbf{6 g}$
 Counts vs. Mass-to-Charge (m/z)

HRMS of $\mathbf{6 h}$

HRMS of $\mathbf{6 i}$

401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446 Counts vs. Mass-to-Charge (m/z)

HRMS of $\mathbf{6 j}$

HRMS of $\mathbf{6 k}$

HRMS of $\mathbf{6 m}$

HRMS of $\mathbf{6 n}$

