Supporting Information

Two polyoxovanadate-based metal-organic polyhedra with

"near-miss Johnson solid" geometry

Yaru Gong, \ddagger^{a} Yanli Tao, $\oplus^{\mathrm{a}} \mathrm{Na}$ Xu, ${ }^{\text {a }}$ Chunyi Sun, ${ }^{a}$ Xinlong Wang*a and Zhongmin Su*ab
${ }^{a}$ Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024 (China).
${ }^{b}$ Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022 (China).
*Corresponding author. E-mail address: wangx1824@nenu.edu.cn; zmsu@nenu.edu.cn.

Contents

1. Materials and Methods
2. Synthesis and Characterization of VMOP-27 and VMOP-28.

Table S1. Crystallographic data for VMOP-27.
Table S2. Crystallographic data for VMOP-28.
Table S3. BVS results for the vanadium and niobium atoms in $\left[\mathrm{NbV}_{5} \mathrm{O}_{6}\left(\mu_{3^{-}}\right.\right.$ $\left.\mathrm{O})_{5}\left(\mathrm{SO}_{4}\right)(\mathrm{COO})_{5}\right]^{4}$.
Table S4. BVS results for the vanadium and tungsten atoms in $\left[\mathrm{WV}_{5} \mathrm{O}_{6}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{O})_{5}\left(\mathrm{SO}_{4}\right)(\mathrm{COO})_{5}\right]^{3-}$.
Table S5. The structural analysis of SP-38.
Table S6. The geometric parameters of simplified polyhedra which are including faces (F), edges (E), vertices (V), rotation groups and the dihedral angles between different faces. A triangle, a quadrangle, a pentagon are abbreviated as $\{3\},\{4\}$ and $\{5\}$.

Figure S1. The ball-and-stick representation of the pentanuclear SBB $\left[\mathrm{MV}_{5} \mathrm{O}_{6}\left(\mu_{3^{-}}\right.\right.$ $\left.\mathrm{O})_{5}\left(\mathrm{SO}_{4}\right)_{6}\right]$ and $\left[\mathrm{MV}_{5} \mathrm{O}_{6}\left(\mu_{3}-\mathrm{O}\right)_{5}\left(\mathrm{SO}_{4}\right)(\mathrm{COO})_{5}\right]$.
Figure S2. The packing representation of VMOP-27 and VMOP-28 with view in the direction of the crystallographic a axis (a, c) and c axis (b, d).

Figure S3. The connection mode between $J 4$ and $J 5$: $J 5-J 5, J 5-J 4$ and $J 4-J 4$.

Figure S4. The experimental and simulated powder X-Ray diffraction patterns for $\left[\mathrm{NbV}_{5} \mathrm{O}_{11}\left(\mathrm{SO}_{4}\right)_{6}\right]^{9-}$.
Figure S5. The experimental and simulated powder X-Ray diffraction patterns for VMOP-27 and VMOP-28.

Figure S6. IR spectra of VMOP-27 and VMOP-28
Figure S7. TGA curves of VMOP-27 and VMOP-28.
Figure S8. Temperature dependence of the inverse magnetic susceptibility $\chi_{M^{-1}}$ for VMOP-27 and VMOP-28 between 2 and 300 K .

1. Materials and Methods

All chemical reagents were purchased from commercial sources and used without further purification. PXRD patterns were recorded ranging from 5° to 50° at room temperature on a Siemens D5005 diffractometer with $\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.5418 \AA$). Thermogravimetric analysis (TGA) of the samples was performed using a PerkinElmer TG-7 analyzer heated from $25^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}$ at the heating rate of $10{ }^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$ under a dry nitrogen flow. Elemental analyses (CHN) were conducted on a PerkinElmer 2400 CHN Elemental analyzer. The FT-IR spectra were measured on an Alpha Centaurt FT/IR spectrophotometer in the range $4000-400 \mathrm{~cm}^{-1}$ using KBr pellets. Variable temperature magnetic susceptibility data were obtained in the temperature range of 2-300 K using a SQUID magnetometer (Quantum Design, MPMS-5) with an applied field of 1000 Oe.

2. Synthesisand Characterization

(1) Synthesis of VMOP-27:
$\operatorname{VOSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}(0.03 \mathrm{~g}), \mathrm{NbCl}_{5}(0.01 \mathrm{~g})$ and 1,3,5-Benzenetricarboxylic acid $(0.025 \mathrm{~g})$ in 2 ml DMF (N, N-Dimethylformamide), $0.3 \mathrm{ml} \mathrm{CH}_{3} \mathrm{OH}$ (methanol) and $0.2 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}$ (acetonitrile) were placed in a Parr Teflon-lined stainless steel vessel heated to $130{ }^{\circ} \mathrm{C}$ and held at this temperature for 2 days. After slow cooling to room temperature, green crystals were obtained (washed with $\mathrm{CH}_{3} \mathrm{OH}$) with a yield of 30% based on $\mathrm{H}_{3} \mathrm{BTC}$. Elemental analysis (\%) cacld: C , 24.10; H, 3.32; N, 5.02. Found: C, 23.79; H, 2.87; N, 4.35. IR (KBr, cm ${ }^{-1}$): 3444 (br), 3032 (w), 2778 (w), 1617 (s), 1566(s), 1447 (s), 1390 (vs), 1110 (m), 1009 (m), 980 (s), 759 (s), 720 (s), 635 (s), $502(\mathrm{~m})$.
(2) Synthesis of VMOP-28:
$\mathrm{VOSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}(0.02 \mathrm{~g}), \mathrm{Na}_{2} \mathrm{WO}_{4}(0.01 \mathrm{~g})$ and $1,3,5-$ Benzenetricarboxylic acid $(0.02 \mathrm{~g})$ in 2 ml DMF (N, N-Dimethylformamide), $0.5 \mathrm{ml} \mathrm{CH}_{3} \mathrm{OH}$ (methanol) and a drop of hydrochloric acid were placed in a Parr Teflon-lined stainless steel vessel heated to $130^{\circ} \mathrm{C}$ and held at this temperature for 2 days. After slow cooling to room temperature, green crystals were obtained (washed with $\mathrm{CH}_{3} \mathrm{OH}$) with a yield of 50% based on $\mathrm{H}_{3} \mathrm{BTC}$. Elemental analysis (\%) cacld: C, 22.41; H, 2.75; N, 4.02. Found: C, 21.58; H, 2.94; N, 4.31. IR (KBr, cm^{-1}): 3027(m), 2779(m), 2457(w), 1657(m), 1612(s), 1561(s), 1445(s), 1386(s), 1105(m), 975(m), 800(w), 754(m), 716(m), 632(m), 578(m), 490(m).

Supplement: In the synthesis of VMOP-27 and VMOP-28, we had tried some different vanadium source, such as $\mathrm{NaVO}_{3}, \mathrm{Na}_{3} \mathrm{VO}_{4}, \mathrm{NH}_{4} \mathrm{VO}_{3}, \mathrm{VCl}_{3}$ and $\mathrm{V}_{2} \mathrm{O}_{5}$, but they are not good for the synthesis metal-organic polyhedra.

Table S1. Crystallographic data for VMOP-27.

Empirical formula	$\mathrm{C}_{168} \mathrm{H}_{276} \mathrm{Cl}_{4} \mathrm{~N}_{30} \mathrm{Nb}_{4} \mathrm{O}_{180} \mathrm{~S}_{7} \mathrm{~V}_{40}$
Formula weight	8371.63
Crystal system	Tetragonal
Space group	$I-42 m$
Temperature	$273(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Unit-cell dimensions	$\mathrm{a}=\mathrm{b}=21.854(3) \AA$,
	$\mathrm{c}=44.273(6) \AA$
	$\alpha=\beta=\gamma=90^{\circ}$
Volume	$21145(6) \AA^{3}$
Z	2
Density (calculated)	$1.315 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$1.077 \mathrm{~mm}^{-1}$
F(000)	8396
Limiting indices	$-26<=\mathrm{h}<=26,-25<=\mathrm{k}<=26,-51<=1<=52$
Theta range for data collection	2.948 to $25.109 \circ$
Reflections collected	54581
Independent reflections	$7098[\mathrm{R}(\mathrm{int})=0.0957]$
Completeness to theta $=25.00^{\circ}$	99%
Refinement method	$\mathrm{Full}-\mathrm{matrix}$ least-squares on F^{2}
Data / restraints / parameters	$9693 / 1094 / 487$

Goodness-of-fit on F^{2}	1.009
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$	$\mathrm{R} 1=0.0647, \mathrm{wR} 2=0.1754$
R indices (all data)	$\mathrm{R} 1=0.0957, \mathrm{wR} 2=0.1979$
Largest diff. peak and hole	0.761 and $-1.994 \mathrm{eA}^{-3}$
${ }^{\mathrm{a}} R_{1}=\Sigma\| \| F_{o}\left\|-\left\|F_{c}\right\|\right\| / \Sigma\left\|F_{o}\right\| ;{ }^{\mathrm{b}} w R_{2}=\left\{\Sigma\left[w\left(F_{o}{ }^{2}-F_{c}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{o}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$	

Table S2. Crystallographic data for VMOP-28.

Empirical formula	$\mathrm{C}_{156} \mathrm{H}_{228} \mathrm{Cl}_{4} \mathrm{~N}_{24} \mathrm{O}_{176} \mathrm{~S}_{6} \mathrm{~V}_{40} \mathrm{~W}_{4}$	
Formula weight	8362.77	
Crystal system	Monoclinic	
Space group	C2/c	
Temperature	296 (2) K	
Wavelength	0.71073 A	
Unit-cell dimensions	$\mathrm{a}=41.892(5) \AA, \mathrm{b}=21.947(2) \AA, \mathrm{c}=46.700$ $\text { (5) } \AA$	
	$\alpha=\gamma=90^{\circ}, \beta=103.267(4)^{\circ}$	
Volume	41791 (8) \AA^{3}	
Z	4	
Density (calculated)	$1.329 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$2.072 \mathrm{~mm}^{-1}$	
F(000)	16480	
Limiting indices	$-48<=\mathrm{h}<=49,-25<=\mathrm{k}<=26,-55<=1<=55$	
Theta range for data collection	2.176-25.136 ${ }^{\circ}$	
Reflections collected	105495	
Independent reflections	$26809[\mathrm{R}(\mathrm{int})=0.0551]$	
Completeness to theta $=25.00^{\circ}$	98.5 \%	
Refinement method	Full-matrix least-squares on F^{2}	
Data / restraints / parameters	36825 / 1638/ 1761	
Goodness-of-fit on F^{2}	1.018	
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0612, \mathrm{wR} 2=0.1640$	
R indices (all data)	$\mathrm{R} 1=0.0883, \mathrm{wR} 2=0.1853$	
Largest diff. peak and hole	2.571 and -3.366 eA ${ }^{-3}$	
${ }^{\mathrm{a}} R_{1}=\Sigma\| \| F_{o}\left\|-\left\|F_{c} \\| / \Sigma\right\| F_{o}\right\| ;{ }^{\mathrm{b}} w R_{2}=\left\{\Sigma\left[w\left(F_{o}{ }^{2}-F_{c}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{o}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$		

Table S3. BVS results for the vanadium and niobium atoms in $\left[\mathrm{NbV}_{5} \mathrm{O}_{6}\left(\mu_{3}-\mathrm{O}\right)_{5}\left(\mathrm{SO}_{4}\right)(\mathrm{COO})_{5}\right]^{4-}$.

Atom	BVS calc. for V
V1	3.910
V2	4.033
V3	3.804
V4	3.937

Atom	BVS calc. for Nb
Nb	5.119

Table S4. BVS results for the vanadium and tungsten atoms in $\left[\mathrm{WV}_{5} \mathrm{O}_{6}\left(\mu_{3}-\mathrm{O}\right)_{5}\left(\mathrm{SO}_{4}\right)(\mathrm{COO})_{5}\right]^{3-}$.

Atom	BVS calc. for V
V1	4.267
V2	4.243
V3	4.087
V4	4.117
V5	4.091
Atom	BVS calc. for W
W	6.060

Table S5. The structural analysis of SP-38.

Name	Kinds of SBUs			Vertices
SP-38	$3-3$	3	3	3

Table S6. The geometric parameters of simplified polyhedra which are including faces (F), edges (E), vertices (V), rotation groups and the dihedral angles between different faces. A triangle, a quadrangle, a pentagon are abbreviated as $\{3\},\{4\}$ and $\{5\}$.

Name	Faces	Edges	Edge and dihedral angles	Vertices	Group
SP-38	$\begin{array}{r} 2 \cdot 6\{3\} \\ 2+4 \cdot 3+4+4\{4\} \\ 4\{5\} \end{array}$	$12 \cdot 3<3 \cdot 4>$ $4 \bullet 4<4 \bullet 4>$	$\begin{aligned} & 172^{\circ} 14^{\prime} 35^{\prime \prime} / 172^{\circ} 45^{\prime} 04^{\prime \prime} / 1 \\ & 66^{\circ} 27^{\prime} 14^{\prime \prime} / 167^{\circ} 3^{\prime} 54^{\prime \prime} / 151^{\circ} \\ & 47^{\prime} 56^{\prime \prime} / 154^{\circ} 28^{\prime} 30^{\prime \prime} / 154^{\circ} 1 \\ & 4^{\prime} 28^{\prime \prime} / 150^{\circ} 35^{\prime} 20^{\prime \prime} / 150^{\circ} 34^{\prime} \\ & 23^{\prime \prime} / 143^{\circ} 4^{\prime} 34^{\prime \prime} / 148^{\circ} 45^{\prime} 58^{\prime \prime} \\ & / 149^{\circ} 54^{\prime \prime} / 141^{\circ} 32^{\prime \prime} / 149^{\circ} 28^{\prime} \\ & 37^{\prime \prime} / 140^{\circ} 51^{\prime} 29^{\prime \prime} / 137^{\circ} 44^{\prime} 3 \\ & 8^{\prime \prime} / 139^{\circ} 41^{\prime} 06^{\prime \prime} / 137^{\circ} 23^{\prime} 28^{\prime \prime} \\ & \\ & 141^{\circ} 5^{\prime} 10^{\prime \prime} / 141^{\circ} 41^{\prime} 42^{\prime \prime} / 13 \\ & 3^{\circ} 20^{\prime} 46^{\prime \prime} / 138^{\circ} 56^{\prime} 53^{\prime \prime} / 139^{\circ} \\ & 49^{\prime} 23^{\prime \prime} / 133^{\circ} 30^{\prime} 32^{\prime \prime} / 129^{\circ} 1^{\prime} \end{aligned}$	$\begin{array}{r} 4 \cdot 4\left(3 \cdot 4^{3}\right) \\ 4+8 \cdot 2 \\ (3 \cdot 4 \cdot 5 \cdot 4) \end{array}$	$\begin{gathered} {[2,4]^{+}} \\ D_{2} \end{gathered}$

		$4 \cdot 5<4 \cdot 5>$	$\begin{aligned} & 26^{\prime \prime} / 129^{\circ} 28^{\prime} 12^{\prime \prime} \\ & 158^{\circ} 18^{\prime} 29^{\prime \prime} / 156^{\circ} 34^{\prime} 48^{\prime \prime} / 1 \\ & 50^{\circ} 20^{\prime} 49^{\prime \prime} / 156^{\circ} 35^{\prime} 53^{\prime \prime} / 14 \\ & 4^{\circ} 53^{\prime} 49^{\prime \prime} / 148^{\circ} 54^{\prime} 07^{\prime \prime} / 144^{\circ} \\ & 23^{\prime} 24^{\prime \prime} / 130^{\circ} 31^{\prime} 19^{\prime \prime} / 135^{\circ} 2 \\ & 6^{\prime} 02^{\prime \prime} / 132^{\circ} 56^{\prime} 46^{\prime \prime} / 136^{\circ} 22^{\prime} \\ & 30^{\prime \prime} \end{aligned}$		

Replaced

Figure S1. The ball-and-stick representation of the pentanuclear SBB $\left[\mathrm{MV}_{5} \mathrm{O}_{6}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{O})_{5}\left(\mathrm{SO}_{4}\right)_{6}\right]$ and $\left[\mathrm{MV}_{5} \mathrm{O}_{6}\left(\mu_{3}-\mathrm{O}\right)_{5}\left(\mathrm{SO}_{4}\right)(\mathrm{COO})_{5}\right]$.

Figure S2. The packing representation of VMOP-27 and VMOP-28 with view in the direction of the crystallographic a axis (a, c) and c axis (b, d).
(a)

(b)

(c)

Figure S3. The connection mode between $J 4$ and $J 5$: $J 5-J 5, J 5-J 4$ and $J 4-J 4$.

Figure S4. The experimental and simulated powder X-Ray diffraction patterns for $\left[\mathrm{NbV}_{5} \mathrm{O}_{11}\left(\mathrm{SO}_{4}\right)_{6}\right]^{9-}$.

Figure S5. Experimental and simulated powder X-Ray diffraction patterns for VMOP-27 and VMOP-28.

Figure S6. IR spectrum of VMOP-27 and VMOP-28.

Figure S7. TGA curve of VMOP-27 and VMOP-28.

Figure S8. The temperature dependence of the inverse magnetic susceptibility $\chi_{M^{-1}}$ for VMOP-27 between 2 and 300 K .

