Supporting Information

Two polyoxovanadate-based metal-organic polyhedra with

"near-miss Johnson solid" geometry

Yaru Gong,^{‡a} Yanli Tao,^{‡a} Na Xu,^a Chunyi Sun,^a Xinlong Wang^{*a} and Zhongmin Su^{*ab}

^a Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024 (China).

^b Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022 (China).

*Corresponding author. E-mail address: wangxl824@nenu.edu.cn; zmsu@nenu.edu.cn.

Contents

1. Materials and Methods

2. Synthesis and Characterization of VMOP-27 and VMOP-28.

 Table S1. Crystallographic data for VMOP-27.

 Table S2. Crystallographic data for VMOP-28.

Table S3. BVS results for the vanadium and niobium atoms in $[NbV_5O_6(\mu_3 - O)_5(SO_4)(COO)_5]^{4-}$.

Table S4. BVS results for the vanadium and tungsten atoms in $[WV_5O_6(\mu_3-O_5(SO_4)(COO)_5]^3$.

Table S5. The structural analysis of SP-38.

Table S6. The geometric parameters of simplified polyhedra which are including faces (F), edges (E), vertices (V), rotation groups and the dihedral angles between different faces. A triangle, a quadrangle, a pentagon are abbreviated as $\{3\}$, $\{4\}$ and $\{5\}$.

Figure S1. The ball-and-stick representation of the pentanuclear SBB $[MV_5O_6(\mu_3 - O)_5(SO_4)_6]$ and $[MV_5O_6(\mu_3 - O)_5(SO_4)(COO)_5]$.

Figure S2. The packing representation of **VMOP-27** and **VMOP-28** with view in the direction of the crystallographic *a* axis (a, c) and *c* axis (b, d).

Figure S3. The connection mode between J4 and J5: J5 - J5, J5 - J4 and J4 - J4.

Figure S4. The experimental and simulated powder X-Ray diffraction patterns for $[NbV_5O_{11}(SO_4)_6]^{9-}$.

Figure S5. The experimental and simulated powder X-Ray diffraction patterns for VMOP-27 and VMOP-28.

Figure S6. IR spectra of VMOP-27 and VMOP-28.

Figure S7. TGA curves of VMOP-27 and VMOP-28.

Figure S8. Temperature dependence of the inverse magnetic susceptibility χ_{M}^{-1} for **VMOP-27** and **VMOP-28** between 2 and 300 K.

1. Materials and Methods

All chemical reagents were purchased from commercial sources and used without further purification. PXRD patterns were recorded ranging from 5° to 50° at room temperature on a Siemens D5005 diffractometer with Cu K α (λ = 1.5418 Å). Thermogravimetric analysis (TGA) of the samples was performed using a PerkinElmer TG-7 analyzer heated from 25 °C to 800 °C at the heating rate of 10 °C·min⁻¹ under a dry nitrogen flow. Elemental analyses (CHN) were conducted on a PerkinElmer 2400 CHN Elemental analyzer. The FT-IR spectra were measured on an Alpha Centaurt FT/IR spectrophotometer in the range 4000–400 cm⁻¹ using KBr pellets. Variable temperature magnetic susceptibility data were obtained in the temperature range of 2–300 K using a SQUID magnetometer (Quantum Design, MPMS-5) with an applied field of 1000 Oe.

2. Synthesisand Characterization

(1) Synthesis of VMOP-27:

VOSO₄'xH₂O (0.03 g), NbCl₅ (0.01 g) and 1,3,5-Benzenetricarboxylic acid (0.025 g) in 2 ml DMF (*N*,*N*-Dimethylformamide), 0.3 ml CH₃OH (methanol) and 0.2mL CH₃CN (acetonitrile) were placed in a Parr Teflon-lined stainless steel vessel heated to 130 °C and held at this temperature for 2 days. After slow cooling to room temperature, green crystals were obtained (washed with CH₃OH) with a yield of 30% based on H₃BTC. Elemental analysis (%) cacld: C, 24.10; H, 3.32; N, 5.02. Found: C, 23.79; H, 2.87; N, 4.35. IR (KBr, cm⁻¹): 3444 (br), 3032 (w), 2778 (w), 1617 (s), 1566(s), 1447 (s), 1390 (vs), 1110 (m), 1009 (m), 980 (s), 759 (s), 720 (s), 635 (s), 502 (m).

(2) Synthesis of VMOP-28:

VOSO₄·xH₂O (0.02 g), Na₂WO₄ (0.01 g) and 1,3,5-Benzenetricarboxylic acid (0.02 g) in 2 ml DMF (*N*,*N*-Dimethylformamide), 0.5 ml CH₃OH (methanol) and a drop of hydrochloric acid were placed in a Parr Teflon-lined stainless steel vessel heated to 130 °C and held at this temperature for 2 days. After slow cooling to room temperature, green crystals were obtained (washed with CH₃OH) with a yield of 50% based on H₃BTC. Elemental analysis (%) cacld: C, 22.41; H, 2.75; N, 4.02. Found: C, 21.58; H, 2.94; N, 4.31. IR (KBr, cm⁻¹): 3027(m), 2779(m), 2457(w), 1657(m), 1612(s), 1561(s), 1445(s), 1386(s), 1105(m), 975(m), 800(w), 754(m), 716(m), 632(m), 578(m), 490(m).

Supplement: In the synthesis of VMOP-27 and VMOP-28, we had tried some different vanadium source, such as NaVO₃, Na₃VO₄, NH₄VO₃, VCl₃ and V₂O₅, but they are not good for the synthesis metal-organic polyhedra.

Empirical formula	$C_{168}H_{276}Cl_4N_{30}Nb_4O_{180}S_7V_{40}\\$
Formula weight	8371.63
Crystal system	Tetragonal
Space group	I-42m
Temperature	273 (2) K
Wavelength	0.71073 Å
Unit-cell dimensions	a = b = 21.854 (3) Å,
	c = 44.273 (6) Å
	$\alpha = \beta = \gamma = 90^{\circ}$
Volume	21145 (6) Å ³
Z	2
Density (calculated)	1.315 g/cm ³
Absorption coefficient	1.077 mm ⁻¹
F(000)	8396
Limiting indices	-26<=h<=26, -25<=k<=26, -51<=l<=52
Theta range for data collection	2.948 to 25.109 °
Reflections collected	54581
Independent reflections	7098 [R(int) = 0.0957]
Completeness to theta = 25.00°	99 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	9693 / 1094 / 487

Table S1. Crystallographic data for VMOP-27.

Goodness-of-fit on F ²	1.009
Final R indices [I > 2sigma(I)]	R1 = 0.0647, wR2 = 0.1754
R indices (all data)	R1 = 0.0957, wR2 = 0.1979
Largest diff. peak and hole	0.761 and -1.994 eA ⁻³
${}^{a}R_{1} = \Sigma F_{o} - F_{c} / \Sigma F_{o} ; {}^{b}wR_{2} = \{\Sigma [w(R_{o})] \}$	$F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2] \}^{1/2}$

Table S2.	Crystallogr	aphic data	for	VMOP-28.
1 4010 020	CI / Stanogr	apine aata	101	11101 -01

Empirical formula	$C_{156}H_{228}Cl_4N_{24}O_{176}S_6V_{40}W_4$
Formula weight	8362.77
Crystal system	Monoclinic
Space group	<i>C2/c</i>
Temperature	296 (2) K
Wavelength	0.71073 Å
Unit-cell dimensions	a = 41.892 (5) Å, b = 21.947 (2) Å, c =46.700
	(5) Å
	$\alpha = \gamma = 90^{\circ}, \beta = 103.267 (4)^{\circ}$
Volume	41791 (8) Å ³
Z	4
Density (calculated)	1.329 g/cm ³
Absorption coefficient	2.072 mm ⁻¹
F(000)	16480
Limiting indices	-48<=h<=49, -25<=k<=26, -55<=l<=55
Theta range for data collection	2.176-25.136°
Reflections collected	105495
Independent reflections	26809 [R(int) = 0.0551]
Completeness to theta = 25.00°	98.5 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	36825 / 1638/ 1761
Goodness-of-fit on F ²	1.018
Final R indices [I > 2sigma(I)]	R1 = 0.0612, $wR2 = 0.1640$
R indices (all data)	R1 = 0.0883, $wR2 = 0.1853$
Largest diff. peak and hole	2.571 and -3.366 eA ⁻³
$aR_1 = \Sigma F_o - F_c / \Sigma F_o ; bWR_2 = \{ \Sigma [W(F_o)] \}$	$\sum_{n=1}^{2} - \frac{F_{n}^{2}}{2} \frac{2}{2} \frac{1}{2} \frac{1}{2}$

Table S3. BVS results for the vanadium and niobium atoms in $[NbV_5O_6(\mu_3-O)_5(SO_4)(COO)_5]^{4-}$.

Atom	BVS calc. for V
V1	3.910
V2	4.033
V3	3.804
V4	3.937

V5	4.122	
Atom	BVS calc. for Nb	
Nb	5.119	

Table S4. BVS results for the vanadium and tungsten atoms in $[WV_5O_6(\mu_3-O)_5(SO_4)(COO)_5]^{3-}$.

Atom	BVS calc. for V
V1	4.267
V2	4.243
V3	4.087
V4	4.117
V5	4.091
Atom	BVS calc. for W
W	6.060

Table S5. The structural analysis of SP-38.

Name	Kinds of SBUs	Vertices
SP-38	$\begin{array}{c}3\\3\\-3\\3\\3\\3\\3\\3\\3\\3\\5\\5\\4\\4\\4\\A\\B\\C\\D\end{array}$	4

Table S6. The geometric parameters of simplified polyhedra which are including faces (F), edges (E), vertices (V), rotation groups and the dihedral angles between different faces. A triangle, a quadrangle, a pentagon are abbreviated as {3}, {4} and {5}.

Name	Faces	Edges	Edge and dihedral	Vertices	Group
			angles		
SP-38	2•6 {3}	12•3 <3•4>	172°14′35″/172°45′04″/1	4•4 (3•4 ³)	[2, 4]+
	2+4•3+4+4 {4}		66°27′14″/167°3′54″/151°	4+8•2	D_2
	4 {5}		47'56"/154°28'30"/154°1	(3•4•5•4)	
			4'28"/150°35'20"/150°34'		
			23"/143°4'34"/148°45'58"		
			/149°54"/141°32"/149°28'		
			37"/140°51'29"/137°44'3		
			8"/139°41'06"/137°23'28"		
		<i>4</i> •4 <4•4>	141°5′10″/141°41′42″/13		
			3°20′46″/138°56′53″/139°		
			49'23"/133°30'32"/129°1'		

	26"/129°28'12"	
4•5 <4•5>	158°18′29″/156°34′48″/1	
	50°20'49"/156°35'53"/14	
	4°53′49″/148°54′07″/144°	
	23'24"/130°31'19"/135°2	
	6'02"/132°56'46"/136°22'	
	30″	

Figure S1. The ball-and-stick representation of the pentanuclear SBB $[MV_5O_6(\mu_3 - O)_5(SO_4)_6]$ and $[MV_5O_6(\mu_3 - O)_5(SO_4)(COO)_5]$.

Figure S2. The packing representation of **VMOP-27** and **VMOP-28** with view in the direction of the crystallographic *a* axis (a, c) and *c* axis (b, d).

Figure S3. The connection mode between J4 and J5: J5 - J5, J5 - J4 and J4 - J4.

Figure S4. The experimental and simulated powder X-Ray diffraction patterns for $[NbV_5O_{11}(SO_4)_6]^{9-}$.

Figure S5. Experimental and simulated powder X-Ray diffraction patterns for VMOP-27 and VMOP-28.

Figure S6. IR spectrum of VMOP-27 and VMOP-28.

Figure S7. TGA curve of VMOP-27 and VMOP-28.

Figure S8. The temperature dependence of the inverse magnetic susceptibility χ_M^{-1} for **VMOP-27** between 2 and 300 K.