Supporting Information

Endergonic Addition of N-Methylamines to Aromatic Ketones Driven by Photochemical Offset of the Entropic Cost

${ }^{\dagger}$ Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
\ddagger Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto
University, Kyoto 615-8510, Japan.
E-mail: iwamoto@scl.kyoto-u.ac.jp

Table of Contents

1. General.
2. Preparation of Starting Materials
3. Photoreaction
4. Synthesis of enamine
5. DFT Calculation
6. Reference
7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

1. General.

All reactions dealing with air- or moisture-sensitive compounds were carried out in well-dried reaction vessels under a positive pressure of dry argon. Photoreactions were carried out using an LED lamp (CCS, HLUV-126UV365, 365 nm). Flash column chromatography was performed on Flash column chromatography on Wakogel 60N, 38-100 $\mu \mathrm{m}$ or on a Biotage SP1 Flash Purification System with prepacked silica cartridges. Preparative recycling gel permeation chromatography (GPC) was performed with a Japan Analytical Industry LC-9204 instrument equipped with JAIGEL-1H/JAIGEL2 H columns using chloroform as an eluent.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL ECS-400NR NMR spectrometer (391.8 and 98.5 MHz , respectively). The ${ }^{1} \mathrm{H}$ chemical shift values are reported in parts per million (ppm, δ scale) and referenced to the ${ }^{1} \mathrm{H}$ resonance of tetramethylsilane ($\delta 0.00$). The ${ }^{13} \mathrm{C}$ chemical shift values are reported in parts per million, and referenced to the ${ }^{13} \mathrm{C}$ resonance of CDCl_{3} ($\delta 77.16$). Data are
presented as: chemical shift, multiplicity, coupling constant in $\mathrm{Hertz}(\mathrm{Hz})$ and signal area integration in natural numbers. NMR yield was determined by using 1,1,2,2-tetrachloroethane as an internal standard.

Unless otherwise noted, commercially available materials were used without purification. Water content of the solvents was determined with a Karl Fischer Moisture Titrator (MKC-610, Kyoto Electronics Company) to be less than 15 ppm .

2. Preparation of Starting Materials N, N-methylpheneylaniline (2a)

To a suspension of sodium hydride ($868 \mathrm{mg}, 36 \mathrm{mmol}$) in THF (40 ml) was added diphenylamine $(5.07 \mathrm{~g}, 30 \mathrm{mmol})$ at room temperature, and then the mixture was stirred for 2 h . After that, methyl iodide ($3.0 \mathrm{ml}, 45 \mathrm{mmol}$) was added, and stirred for 24 h at $50^{\circ} \mathrm{C}$. The reaction mixture was quenched with distilled water (30 ml) and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml} \times 3)$. The organic layers were combined, dried over MgSO_{4}, and filtered. The solvent was removed under reduced pressure to afford the crude product. The crude product was purified by silica gel column chromatography (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=95 / 5$) and distillation to give the title product as a colorless liquid ($3.21 \mathrm{~g}, 59 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.31(\mathrm{~s}, 3 \mathrm{H}), 6.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.27(\mathrm{t}, J=8.2 \mathrm{~Hz}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 40.4,120.6,121.4,129.0,149.2$. All analytical data are in good accordance with those reported in the literature. ${ }^{1}$

\boldsymbol{N}-methyl-di-p-tolylamine (2b)

To a suspension of sodium hydride ($291 \mathrm{mg}, 12 \mathrm{mmol}$) in THF (25 ml) was added 4, 4^{\prime}-dimethyldiphenylamine $(1.95 \mathrm{mg}, 10 \mathrm{mmol})$ at room temperature, and then the mixture was stirred for 2 h . After that, methyl iodide ($1.0 \mathrm{ml}, 15$ mmol) was added, and stirred for 17 h at room temperature. The reaction mixture was quenched with distilled water $(10 \mathrm{ml})$ and the aqueous layer was extracted with $\operatorname{EtOAc}(10 \mathrm{ml} \times 3)$. The organic layers were combined, dried over MgSO_{4}, and filtered. The solvent was removed under reduced pressure to afford the crude product. The crude product was purified by silica gel column chromatography (hexane/EtOAc $=100 / 0$ to $80 / 20$) and distillation to give the title product as a colorless liquid (1.58 g , 76\%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.29(\mathrm{~s}, 6 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.8,40.6,120.5,129.8,130.6,147.2$. All analytical data are in good accordance with those reported in the literature. ${ }^{2}$

N-methyl- N-phenyl-4-fluorolaniline (2c)

To a suspension of sodium hydride ($288 \mathrm{mg}, 12 \mathrm{mmol}$) in THF (24 ml) was added 4-fluorophenyl(phenyl)amine $(1.88 \mathrm{~g}, 10 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and then the mixture was stirred for 3 h at room temperature. After that, methyl iodide $(1.0 \mathrm{ml}$, 15 mmol) was added, and stirred for 12 h . The reaction mixture was quenched with distilled water $(10 \mathrm{ml})$ and the aqueous layer was extracted with EtOAc $(10 \mathrm{ml} \times 3)$. The organic layers were combined, dried over MgSO_{4}, and filtered. The solvent was removed under reduced pressure to afford the crude product. The crude product was purified by silica gel column chromatography (hexane/EtOAc $=100 / 0$ to $80 / 20$) and distillation to give the title product as a colorless liquid ($1.06 \mathrm{~g}, 52 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.27(\mathrm{~s}, 3 \mathrm{H}), 6.86-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.97-7.07(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 40.7,116.1(\mathrm{~d}, J=91.6 \mathrm{~Hz}), 118.2,120.2,124.4(\mathrm{~d}, J=34.3 \mathrm{~Hz}), 129.3,145.4,149.5,158.9$ (d, $J=980.5 \mathrm{~Hz}$). All analytical data are in good accordance with those reported in the literature. ${ }^{1}$

N-methylcarbazole (2g)

To a suspension of sodium hydride ($144 \mathrm{mg}, 6 \mathrm{mmol}$) in THF (20 ml) was added carbazole ($835 \mathrm{mg}, 5 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and then the mixture was stirred for 2 h at room temperature. After that, methyl iodide ($0.5 \mathrm{ml}, 8 \mathrm{mmol}$) was added, and stirred for 20 h. The reaction mixture was quenched with distilled water (10 ml) and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml} \times 3)$. The organic layers were combined, dried over MgSO_{4}, and filtered. The solvent was removed under reduced pressure to afford the crude product. The crude product was purified by recrystllization with hexane to give the title product as a slightly green solid ($603 \mathrm{mg}, 67 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.87(\mathrm{~s}, 3 \mathrm{H}), 7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 8.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 29.2,108.5,119.0,120.4,122.9,125.8,141.1$. All analytical data are in good accordance with those reported in the literature. ${ }^{3}$

N, N-ethylmethylaniline

The mixture of N-methylaniline ($1.1 \mathrm{ml}, 10 \mathrm{mmol}$), potassium carbonate $(3.04 \mathrm{~g}, 22$ $\mathrm{mmol})$, bromoethane $(0.9 \mathrm{ml}, 12 \mathrm{mmol})$ and acetonitrile $(15 \mathrm{ml})$ was stirred for 15 h at 85 ${ }^{\circ} \mathrm{C}$. The reaction mixture was quenched with distilled water $(10 \mathrm{ml})$ and the aqueous layer was extracted with EtOAc ($10 \mathrm{ml} \times 3$). The organic layers were combined, dried over MgSO_{4}, and filtered. The solvent was removed under reduced pressure to afford the crude product. The product was purified by silica gel column chromatography (hexane/EtOAc $=98 / 2$) and distillation to give the title product as an orange liquid ($704 \mathrm{mg}, 52 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right) \delta 1.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.66-6.73(\mathrm{~m}$, $3 \mathrm{H}), 7.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 11.3,37.6,46.9,112.5,116.2,129.3,149.3$. All analytical data are in good accordance with those reported in the literature. ${ }^{4}$

N, N-benzylmethylaniline

The mixture of N-methylaniline ($1.1 \mathrm{ml}, 10 \mathrm{mmol}$), potassium carbonate (3.04 g , $22 \mathrm{mmol})$, benzylbromide ($1.2 \mathrm{ml}, 12 \mathrm{mmol}$) and acetonitrile (15 ml) was stirred for 15 h at $85^{\circ} \mathrm{C}$. The reaction mixture was quenched with distilled water $(10 \mathrm{ml})$ and the aqueous layer was extracted with EtOAc ($10 \mathrm{ml} \times 3$). The organic layers were combined, dried over MgSO_{4}, and filtered. The solvent was removed under reduced pressure to afford the crude product. The crude product was purified by silica gel column chromatography (hexane/EtOAc $=98 / 2$) and distillation to give the title product as a colorless liquid ($1.28 \mathrm{~g}, 65 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.00(\mathrm{~s}, 3 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 6.69-6.76(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.31(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 38.6,56.8,112.5,116.7,126.9,127.0,128.7,129.3,139.2,149.9$. All analytical data are in good accordance with those reported in the literature. ${ }^{5}$

1,4-dibenzoylbenzene

To a solution of terephthaloyl chloride ($2.03 \mathrm{~g}, 10 \mathrm{mmol}$) in benzene $(10 \mathrm{ml})$ was added $\mathrm{AlCl}_{3}(6.76 \mathrm{~g}, 50 \mathrm{mmol})$ slowly at $0^{\circ} \mathrm{C}$, and then the mixture was stirred for 24 h at $50^{\circ} \mathrm{C}$. The reaction mixture was quenched with distilled water (10 ml) slowly, neutralized with 2 M NaOH aq , and then aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml} \times 3)$. The organic layers were combined, dried over MgSO_{4}, and filtered. The solvent was removed under reduced pressure to afford the crude product. The crude product was purified by recrystllization with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the title product as a white solid ($603 \mathrm{mg}, 67 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.90(\mathrm{~s}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 128.6,129.8,130.2,133.1,137.0,140.7,196.0$. All analytical data are in good accordance with those reported in the literature. ${ }^{6}$

3. Photoreaction

General Procedure A

To a dried schlenk filled up with argon gas, aromatic ketone, aniline derivatives (2.0 eq), and base (0.2 eq), $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{ml})$ were added in a glove box. The mixture was stirred for 24 h under irradiation of 365 nm UV LED with a cooling fan. After quenching with 2 M HCl aq followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml} \times 3)$. The organic layers were combined, dried over MgSO_{4}, and filtered. The solvent was removed under reduced pressure to afford the crude product. The product was purified by silica gel column chromatography (hexane/EtOAc $=100 / 0$ to $80 / 20$).

General Procedure B

To a dried schlenk filled up with argon gas, aromatic ketone, aniline derivatives (4.0 eq), and base (0.4 eq), $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{ml})$ were added in a glove box. The mixture was stirred for 24 h under irradiation of 365 nm UV LED with a cooling fan. After quenching with 2 M HCl aq followed by
extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml} \times 3)$. The organic layers were combined, dried with MgSO_{4}, and filtered. The solvent was removed under reduced pressure to afford the crude product. The product was purified by GPC.

Table S1. Optimization of base

 1a		(l eq , rt, 2 UV L			
			ield (\%		conversio
entry	additive (x)	3a	4	5	$(\%)^{a}$
1	none	10	81	4	100
2	2,6-lutidine (0.2)	12	25	16	100
3	$\mathrm{Li}_{2} \mathrm{CO}_{3}(0.2)$	5	4	20	100
4	LiOH (0.2)	7	N.D.	19	100
5	$\mathrm{NaOH}(0.2)$	69	N.D.	trace	100
6	$\mathrm{KOH}(0.2)$	74	N.D.	trace	100
7	LiOMe	7	N.D.	18	100
8	LiOtBu (0.2)	73	N.D.	trace	100
9	KOtBu (0.2)	48	N.D.	trace	100
10	NaOtBu (0.2)	80	N.D.	trace	98
11	NaOtBu (0.5)	57	N.D.	trace	97
12	NaOtBu (1.0)	53	N.D.	trace	94
$13^{\text {b }}$	NaOtBu (0.2)	N.D.	N.D.	trace	11

${ }^{2}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{6}$ Without light irradiation.
N.D.: not detected. trace: < 1\%

Large Scale Synthesis

To a dried schlenk filled up with argon gas, benzophenone ($8.7 \mathrm{~g}, 48 \mathrm{mmol}$), dimethylaniline $(12 \mathrm{ml}, 95 \mathrm{mmol})$, and base $(922 \mathrm{mg}, 9.6 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}(44 \mathrm{ml})$ were added in a glove box. The mixture was stirred for 24 h under irradiation of 365 nm UV LED with a cooling fan. After quenching with 2 M HCl aq followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml} \times 3)$. The organic layers were combined, dried over MgSO_{4}, and filtered. The solvent was removed under reduced pressure to afford the crude product. The product was purified by silica gel column chromatography (hexane/EtOAc $=100 / 0$ to $80 / 20$) and subsequent recrystllization to give the product in 76% yield (11.0 g) as a pale yellow solid.

Reaction under intermittent light-irradiation

The reaction was performed according to the general procedure A using N, N methyl(phenyl)aniline 2a ($190.2 \mathrm{mg}, 1.04 \mathrm{mmol}$), benzophenone $\mathbf{1 a}(94.8 \mathrm{mg}, 0.52 \mathrm{mmol})$, and sodium
t-butoxide $(9.99 \mathrm{mg}, 0.10 \mathrm{mmol})$. Conversion of $\mathbf{1 a}$ and the product yield were monitored by GC analysis.

Figure S1. Time profile of reaction between 1a and 2a under intermittent light-irradiation.

2-(Diphenylamino)-1,1-diphenylethanol (3a)

The reaction was performed according to the general procedure A using $\mathrm{N}, \mathrm{N}-$ methyl(phenyl)aniline ($366.1 \mathrm{mg}, 2.00 \mathrm{mmol}$), benzophenone ($181.9 \mathrm{mg}, 1.00$ $\mathrm{mmol})$, and sodium t-butoxide ($19.2 \mathrm{mg}, 0.20 \mathrm{mmol}$). The product was obtained in 80% NMR yield. After the purification, the title compound was obtained in 64% yield (234.3 mg).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.28\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}, 1 \mathrm{H}\right), 4.65\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}, 2 \mathrm{H}\right), 6.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $\left.\mathrm{N}\left(2,6-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 6.92\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{~N}\left(4-\mathrm{C}_{6} H_{5}\right)_{2}, 2 \mathrm{H}\right), 7.11-7.22\left(\mathrm{~m}, \mathrm{~N}\left(3,5-\mathrm{C}_{6} H_{5}\right)_{2} \& \mathrm{C}\left(3,4,5-\mathrm{C}_{6} H_{5}\right)_{2}\right.$, $10 \mathrm{H}), 7.39\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, \mathrm{C}\left(2,6-\mathrm{C}_{6} H_{5}\right) 2,4 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 64.1,78.6,122.2,122.3,126.2$, 127.0, 128.1, 129.3, 145.1, 149.7; HRMS (EI^{+}): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}$ 365.1780, found 365.1782. The NMR spectrum is in good accordance with previous literature data. ${ }^{7}$

2-(di-p-tolylamino)-1,1-diphenylethanol (3b)

The reaction was performed according to the general procedure A using N-methyl-di- p-tolylamine ($426.9 \mathrm{mg}, 2.02 \mathrm{mmol}$), benzophenone (182.4 mg , 1.00 mmol), and lithium t-butoxide ($16.3 \mathrm{mg}, 0.20 \mathrm{mmol}$). The product was obtained in 73% NMR yield. The semi-purified product was further purified by recrystallization (Hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound in 67% yield (270.3 mg).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.24\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{Ph}, 6 \mathrm{H}\right), 3.33\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}, 1 \mathrm{H}\right), 4.57\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}, 2 \mathrm{H}\right)$, $6.66\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, \mathrm{~N}\left(2,6-\mathrm{C}_{6} H_{4} \mathrm{CH}_{3}\right)_{2}, 4 \mathrm{H}\right), 6.93\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, \mathrm{~N}\left(3,5-\mathrm{C}_{6} H_{4} \mathrm{CH}_{3}\right)_{2}, 4 \mathrm{H}\right), 7.12-7.22(\mathrm{~m}$, $\left.\mathrm{C}\left(3,4,5-\mathrm{C}_{6} H_{5}\right)_{2}, 6 \mathrm{H}\right), 7.39\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, \mathrm{C}\left(2,6-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 20.7,64.3,78.6$, 122.2, 126.3, 126.9, 128.1, 129.9, 131.7, 145.4, 147.6; HRMS (FAB ${ }^{+}$): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{NONa} 416.1990$, found 416.1991.

2-(p-fluorophenyl(phenyl)amino)-1,1-diphenylethanol (3c)

The reaction was performed according to the general procedure A using N, N -methyl-(p-fluorophenyl)aniline ($400.9 \mathrm{mg}, 1.99 \mathrm{mmol}$), benzophenone $(182.5 \mathrm{mg}$, 1.00 mmol), and sodium t-butoxide ($19.0 \mathrm{mg}, 0.20 \mathrm{mmol}$). The product was obtained in 65% NMR yield. After the purification, the title compound was obtained in 43% yield (164.4 mg).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.25\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}, 1 \mathrm{H}\right), 4.61\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}, 2 \mathrm{H}\right)$, $6.70-6.87(\mathrm{~m}, 7 \mathrm{H}), 7.11-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.38\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, \mathrm{C}\left(2,6-\mathrm{C}_{6} H_{5}\right) 2,4 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $64.6,78.6,116.1(\mathrm{~d}, J=91.2 \mathrm{~Hz}), 118.9,120.9,126.3,127.0,127.1,128.2,129.3,145.0,150.8,158.2$, $159.5(\mathrm{~d}, J=988.0 \mathrm{~Hz})$; HRMS $\left(\mathrm{FAB}^{+}\right): m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{FNONa} 406.1583$, found 406.1586.

2-(methyl(phenyl)amino)-1,1-diphenylethanol (3d)

The reaction was performed according to the general procedure A using $N, N-$ dimethylaniline ($246.0 \mathrm{mg}, 2.03 \mathrm{mmol}$), benzophenone ($181.9 \mathrm{mg}, 1.00 \mathrm{mmol}$), and lithium t-butoxide ($16.3 \mathrm{mg}, 0.20 \mathrm{mmol}$). The product was obtained in 74% NMR yield. After the purification, the title compound was obtained in 67% yield
(202.3 mg).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.45\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{NPh}, 3 \mathrm{H}\right), 3.64\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}, 1 \mathrm{H}\right), 4.16\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}\right.$, $2 \mathrm{H}), 6.81\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{NCH}_{3}\left(4-\mathrm{C}_{6} H_{5}\right), 1 \mathrm{H}\right), 6.93\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, \mathrm{NCH}_{3}\left(2,6-\mathrm{C}_{6} H_{5}\right), 2 \mathrm{H}\right), 7.20-7.27$ $\left(\mathrm{m}, \mathrm{NCH}_{3}\left(3,5-\mathrm{C}_{6} H_{5}\right) \& \mathrm{C}\left(4-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 7.35\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{C}\left(3,5-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 7.55(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $\left.\mathrm{C}\left(2,6-\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}, 4 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right) \delta 39.7,66.1,76.8,114.6,118.8,126.1,127.3,128.6,129.3$, 146.1, 152.1; HRMS (FAB^{+}): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NONa} 326.1521$, found 326.1524. The NMR spectrum is in good accordance with previous literature data. ${ }^{7}$

2-(methyl(p-bromophenyl)amino)-1,1-diphenylethanol (3e)

The reaction was performed according to the general procedure A using 4-bromo- N, N-dimethylaniline ($400.5 \mathrm{mg}, 2.00 \mathrm{mmol}$), benzophenone (182.0 $\mathrm{mg}, 1.00 \mathrm{mmol}$), and sodium t-butoxide ($19.2 \mathrm{mg}, 0.20 \mathrm{mmol}$). The product was obtained in 55% NMR yield. The semi-purified product was purified by GPC to give the title compound in 55% yield (208.9 mg).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right) \delta 2.44\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{NAr}, 3 \mathrm{H}\right), 4.13\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}, 2 \mathrm{H}\right), 6.77(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{3}\left(2,6-\mathrm{C}_{6} H_{4} \mathrm{Br}\right), 2 \mathrm{H}\right), 7.28-7.31\left(\mathrm{~m}, \mathrm{NCH}_{3}\left(3,5-\mathrm{C}_{6} H_{4} \mathrm{Br}\right) \& \mathrm{C}\left(4-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 7.38(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $\left.\mathrm{C}\left(3,5-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 7.52\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, \mathrm{C}\left(2,6-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right) \delta 39.9,65.6,77.3$, $110.4,115.9,126.1,127.4,128.6,131.8,145.7,151.0$; $\mathrm{HRMS}\left(\mathrm{EI}^{+}\right): m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrNO}$ 381.0728, found 381.0725. IR: $v\left(\mathrm{~cm}^{-1}\right) 3056,1591,1493,1449,1361,1264,1179,1126,1059,809$, 732, 699, 657, 608.

2-(4-ethoxycarbonylphenyl(methyl)amino)-1,1-diphenylethanol (3f)

The reaction was performed according to the general procedure A using 4-ethoxycarbonyl-N,N-dimethylaniline ($386.6 \mathrm{mg}, 2.00 \mathrm{mmol}$), benzophenone ($182.3 \mathrm{mg}, 1.00 \mathrm{mmol}$), and sodium t-butoxide (19.1 mg , 0.20 mmol). The product was obtained in 51% NMR yield. After the purification, the title compound was obtained in 40% yield (150.4 mg).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.36\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{3}, 3 \mathrm{H}\right), 2.59\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{NAr}, 3 \mathrm{H}\right), 2.91(\mathrm{~s}$, $\left.\mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}, 1 \mathrm{H}\right), 4.26\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}, 2 \mathrm{H}\right), 4.31\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{C}(=\mathrm{O}) \mathrm{OCH}_{2} \mathrm{CH}_{3}, 2 \mathrm{H}\right), 6.79$ (d, $\left.J=9.6 \mathrm{~Hz}, \mathrm{NCH}_{3}\left(2,6-\mathrm{C}_{6} H_{4} \mathrm{C}=\mathrm{O}\right), 2 \mathrm{H}\right), 7.27\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{C}\left(4-\mathrm{C}_{6} H_{5}\right) 2,2 \mathrm{H}\right), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $\left.\mathrm{C}\left(3,5-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 7.50\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, \mathrm{C}\left(2,6-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 7.85\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, \mathrm{NCH}_{3}\left(3,5-\mathrm{C}_{6} H_{4} \mathrm{C}=\mathrm{O}\right)\right.$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 14.6,39.9,60.4,64.0,78.1,112.2,119.2,126.2,127.5,128.6,131.2,145.5$, 154.6, 166.9; HRMS (FAB^{+}): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{3} 376.1913$, found 376.1914. IR: $v\left(\mathrm{~cm}^{-}\right.$ $\left.{ }^{1}\right) 1684,1603,1523,1284,1185,1127,770,698$.

2-(methyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl))amino)-1,1-diphenylethanol (3g)

The reaction was performed according to the general procedure A using N, N-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzenamine ($494.8 \mathrm{mg}, 2.00 \mathrm{mmol}$), benzophenone ($182.0 \mathrm{mg}, 1.00$ mmol), and sodium t-butoxide ($19.2 \mathrm{mg}, 0.20 \mathrm{mmol}$). The product was obtained in 71% NMR yield. After the purification, the title compound was obtained in 70% yield (301.3 mg).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.31\left(\mathrm{~s}, \mathrm{~B}\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}, 12 \mathrm{H}\right), 2.48(\mathrm{~s}, \mathrm{CH} 3 \mathrm{NAr}, 3 \mathrm{H}), 3.24\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}\right.$, $1 \mathrm{H}), 4.21\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}, 2 \mathrm{H}\right), 6.84\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, \mathrm{NCH}_{3}\left(2,6-\mathrm{C}_{6} H_{4} \mathrm{~B}\right), 2 \mathrm{H}\right), 7.25(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $\left.\mathrm{C}\left(4-\mathrm{C}_{6} H_{5}\right)_{2}, 2 \mathrm{H}\right), 7.33\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{C}\left(3,5-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 7.51\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, \mathrm{C}\left(2,6-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 7.64$ $\left(\mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{NCH}_{3}\left(3,5-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~B}\right), 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right) \delta 25.1,39.7,64.7,77.6,83.5,112.9,126.2$, 127.4, 128.6, 136.3, 145.8, 153.9; HRMS (FAB ${ }^{+}$): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{BNa} 452.2378$, found 452.2380. IR: $v\left(\mathrm{~cm}^{-1}\right) 2962,1604,1362,1260,1091,1017,798,735,702$.

2-(methyl(o-bromophenyl)amino)-1,1-diphenylethanol (3h)

The reaction was performed according to the general procedure A using 2-bromo- N, N-dimethylaniline ($394.0 \mathrm{mg}, 1.97 \mathrm{mmol}$), benzophenone (182.4 mg , 1.00 mmol), and sodium t-butoxide ($20.2 \mathrm{mg}, 0.21 \mathrm{mmol}$). The product was obtained in 45% NMR yield. The semi-purified product was further purified by GPC to give the title product in 41% yield (157.1 mg).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.40\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{NAr}, 3 \mathrm{H}\right), 3.92\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}, 2 \mathrm{H}\right), 5.13\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}, 1 \mathrm{H}\right)$, 6.91-6.95 (m, 1H), 7.13-7.21 (m, 4H), $7.25(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.48-7.54(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right)$ $\delta 45.4,66.3,75.1,122.5,125.4,125.6,126.3,126.6,128.0,128.6,133.1,146.1,151.6 ;$ HRMS (FAB^{+}): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrNONa} 406.0608$, found 406.0609. IR: $v\left(\mathrm{~cm}^{-1}\right) 3416,3021,1602,1503$, 1449, 1317, 1265, 1181, 1063, 1026, 944, 910, 733, 692, 653, 603, 511.

2-(phenylamino)-1,1-diphenylethanol (3i)

The reaction was performed according to the general procedure A using N methylaniline ($214.2 \mathrm{mg}, 1.99 \mathrm{mmol}$), benzophenone ($181.3 \mathrm{mg}, 0.99 \mathrm{mmol}$), and lithium t-butoxide ($16.8 \mathrm{mg}, 0.21 \mathrm{mmol}$). The product was obtained in 23% NMR yield. After the purification, the title product was obtained in 23% yield (67.4 mg).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.38\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{O} 74 H) \mathrm{Ph}_{2}, 1 \mathrm{H}\right), 3.66(\mathrm{~s}, \mathrm{~N} H \mathrm{Ph}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}, 2 \mathrm{H}\right), 6.70\left(\mathrm{dd}, J=8.8,1.0 \mathrm{~Hz}, \mathrm{NH}\left(2,6-\mathrm{C}_{6} H_{5}\right), 2 \mathrm{H}\right), 6.77\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{NH}\left(4-\mathrm{C}_{6} H_{5}\right)\right.$, $1 \mathrm{H}), 7.18\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{NH}\left(3,5-\mathrm{C}_{6} H_{5}\right), 2 \mathrm{H}\right), 7.28\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{C}\left(4-\mathrm{C}_{6} H_{5}\right) 2,2 \mathrm{H}\right), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $\left.\mathrm{C}\left(3,5-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 7.50\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, \mathrm{C}\left(2,6-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right) \delta 53.9,77.3,114.0$, 118.7, 126.0, 127.4, 128.5, 129.3, 144.5, 147.7; HRMS (FAB^{-}): $m / z[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}$ 288.1388, found 288.1387. IR: $v\left(\mathrm{~cm}^{-1}\right) 3056,3021,1602,1503,1449,1317,1265,1181,1063,1026$, 944, 910, 733, 692, 653, 603, 511.

2-(9H-carbazole)-1,1-diphenylethanol (3j)

The reaction was performed according to the general procedure A using N methylcarbazole ($108.7 \mathrm{mg}, 0.60 \mathrm{mmol}$), benzophenone ($54.8 \mathrm{mg}, 0.30 \mathrm{mmol}$), and sodium t-butoxide ($5.8 \mathrm{mg}, 0.06 \mathrm{mmol}$). The product was obtained in 55% NMR yield. After the purification, the title compound was obtained in 21% yield $(22.5 \mathrm{mg})$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.76\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}, 1 \mathrm{H}\right), 5.09\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}, 2 \mathrm{H}\right), 6.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $\left.\mathrm{N}\left(6-\mathrm{C}_{6} H_{4}\right)_{2}, 2 \mathrm{H}\right), 7.14-7.23\left(\mathrm{~m}, \mathrm{~N}\left(4-\mathrm{C}_{6} H_{4}\right)_{2} \& \mathrm{~N}\left(5-\mathrm{C}_{6} H_{4}\right)_{2}, 4 \mathrm{H}\right), 7.25-7.32\left(\mathrm{~m}, \mathrm{C}\left(3,4,5-\mathrm{C}_{6} H_{5}\right)_{2}, 6 \mathrm{H}\right)$, $7.40\left(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, \mathrm{C}\left(2,6-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 8.01\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{~N}\left(3-\mathrm{C}_{6} H_{4}\right) 2,2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 55.4,79.0,110.0,119.4,120.0,123.3,125.7,126.5,127.8,128.6,142.1,145.1 ;$ HRMS (FAB $^{+}$): m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NONa} 386.1521$, found 386.1522. IR: $v\left(\mathrm{~cm}^{-1}\right) 3055,1596,1483,1453,1326$, 1264, 895, 732, 700, 598.

2-(diphenylamino)-1,1-(di-p-tolyl)ethanol (3k)

The reaction was performed according to the general procedure A using N, N-methyl(phenyl)aniline (366.7 $\mathrm{mg}, \quad 2.00 \mathrm{mmol}$), 4,4’(dimethyl)benzophenone ($210.1 \mathrm{mg}, 1.00 \mathrm{mmol}$), and lithium t-butoxide (18.3 $\mathrm{mg}, 0.22 \mathrm{mmol}$). The product was obtained in 86% NMR yield. The semipurified product was further purified by GPC to give the title compound in
66% yield (258.9 mg).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.26\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} 6 \mathrm{H}\right), 3.14\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ar}_{2}, 1 \mathrm{H}\right), 4.60\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ar}_{2}\right.$, $2 \mathrm{H}), 6.78\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, \mathrm{~N}\left(2,6-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 6.91\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{~N}\left(4-\mathrm{C}_{6} H_{5}\right)_{2}, 2 \mathrm{H}\right), 6.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $\left.\mathrm{C}\left(3,5-\mathrm{C}_{6} H_{4} \mathrm{CH}_{3}\right)_{2}, 4 \mathrm{H}\right), 7.13\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{~N}\left(3,5-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 7.25\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, \mathrm{C}\left(2,6-\mathrm{C}_{6} H_{4} \mathrm{CH}_{3}\right)_{2}\right.$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.1,64.2,78.6,122.2(2 \mathrm{C}), 126.2,128.8,129.3,136.5,142.4,149.8 ;$ HRMS $\left(\mathrm{FAB}^{+}\right): m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{NONa} 416.1990$, found 416.1989. IR: $v\left(\mathrm{~cm}^{-1}\right) 3006,2992,1590$, 1497, 1276, 1267, 1261, 764, 750, 694, 576.

2-(diphenylamino)-1,1-(di-p-anisyl)ethanol (31)

The reaction was performed according to the general procedure A using N, N-methyl(phenyl)aniline $\quad(365.8 \quad \mathrm{mg}, \quad 2.00 \mathrm{mmol}), \quad 4,4^{\prime}-$ (dimethoxy)benzophenone ($242.8 \mathrm{mg}, 1.00 \mathrm{mmol}$), and sodium t-butoxide ($19.3 \mathrm{mg}, 0.20 \mathrm{mmol}$). The product was obtained in 73% NMR yield. The semi-purified product was further purified by GPC to give the title compound in 51% yield (219.4 mg).
$\left.{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.13\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ar}_{2}, 1 \mathrm{H}\right), 3.75\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}\right)_{3}\right)_{2}, 6 \mathrm{H}\right), 4.57(\mathrm{~s}$, $\left.\mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ar}_{2}, 2 \mathrm{H}\right), 6.72\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, \mathrm{C}\left(3,5-\mathrm{C}_{6} H_{4} \mathrm{OCH}_{3}\right)_{2}, 4 \mathrm{H}\right), 6.79\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, \mathrm{~N}\left(2,6-\mathrm{C}_{6} H_{5}\right)_{2}\right.$, $4 \mathrm{H}), 6.92\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{~N}\left(4-\mathrm{C}_{6} H_{5}\right)_{2}, 2 \mathrm{H}\right), 7.14\left(\mathrm{t}, J=8.2 \mathrm{~Hz}, \mathrm{~N}\left(3,5-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 7.27(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $\left.\mathrm{C}\left(3,5-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)_{2}, 4 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 55.4,64.3,78.4,113.5,122.2,127.6,129.3,137.6$, 149.8, 158.5; HRMS (FAB^{+}): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NO}_{3} 426.2069$, found 426.2071. IR: $v\left(\mathrm{~cm}^{-}\right.$ ${ }^{1}$) $3017,2971,2943,1739,1589,1509,1497,1442,1365,1264,1230,1217,1033,896,833,731,700$, 583, 527.

2-(diphenylamino)-1,1-(di-p-fluorophenyl)ethanol (3m)

The reaction was performed according to the general procedure A using N, N-methyl(phenyl)aniline $\quad(364.7 \quad \mathrm{mg}, \quad 1.99 \mathrm{mmol})$, 4,4’(difluoro)benzophenone ($218.5 \mathrm{mg}, 1.00 \mathrm{mmol}$), and sodium t-butoxide (19.0 $\mathrm{mg}, 0.20 \mathrm{mmol}$). The product was obtained in 63% yield NMR yield. After the purification, the title product was obtained in 60% yield $(261.1 \mathrm{mg})$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.35\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ar}_{2}, 1 \mathrm{H}\right), 4.59\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ar}_{2}, 2 \mathrm{H}\right), 6.79(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $\left.\mathrm{N}\left(2,6-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 6.87\left(\mathrm{~m}, \mathrm{C}\left(2,6-\mathrm{C}_{6} H_{4} \mathrm{~F}\right)_{2}, 4 \mathrm{H}\right), 6.95\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{~N}\left(4-\mathrm{C}_{6} H_{5}\right)_{2}, 2 \mathrm{H}\right), 7.16(\mathrm{t}, J=7.8$ $\left.\mathrm{Hz}, \mathrm{N}\left(3,5-\mathrm{C}_{6} H_{5}\right) 2,4 \mathrm{H}\right), 7.32\left(\mathrm{dd}, J=6.0,5.5 \mathrm{~Hz}, \mathrm{C}\left(3,5-\mathrm{C}_{6} H_{4} \mathrm{~F}\right)_{2}, 4 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta, 64.3,78.0$, $114.9(\mathrm{~d}, J=88.0 \mathrm{~Hz}), 122.2,122.6,128.1,129.5,140.8,149.5,161.9(\mathrm{~d}, J=999.6 \mathrm{~Hz})$; HRMS
$\left(\mathrm{FAB}^{+}\right): m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NONa} 424.1489$, found 424.1489. IR: $v\left(\mathrm{~cm}^{-1}\right) 3006,2990$, 1589, 1493, 1275, 1261, 1224, 1159, 1077, 834, 764, 750, 697, 576.

2-(diphenylamino)-1,1-(di-p-chlorophenyl)ethanol (3n)

The reaction was performed according to the general procedure A using N, N-methyl(phenyl)aniline $\quad(360.7 \quad \mathrm{mg}, \quad 1.97 \mathrm{mmol}), 4,4^{\prime}-$ (dichloro)benzophenone ($251.4 \mathrm{mg}, 1.00 \mathrm{mmol}$), and lithium t-butoxide $(16.1 \mathrm{mg}, 0.20 \mathrm{mmol})$. The product was obtained in 68% NMR yield. The semi-purified product was further purified by GPC to give the title compound in 40% yield (171.88 mg).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.37\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ar}_{2}, 1 \mathrm{H}\right), 4.57\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ar}_{2}, 2 \mathrm{H}\right), 6.78(\mathrm{~d}, J=7.8$ $\left.\mathrm{Hz}, \mathrm{N}\left(2,6-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 6.95\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{~N}\left(4-\mathrm{C}_{6} H_{5}\right)_{2}, 2 \mathrm{H}\right), 7.13-7.17(\mathrm{~m}, 8 \mathrm{H}), 7.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 64.0,77.9,122.2,122.7,127.7,128.3,129.5,133.2,143.3,149.4$; HRMS (FAB^{-}): $m / z[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{NO} 432.0922$, found 432.0920. IR: $v\left(\mathrm{~cm}^{-1}\right)$ 2987, 1590, 1491, 1264, 1093, 1012, 896, 833, 764, 731, 701, 599, 527.

2-(diphenylamino)-1,1-(9H-thioxanthene)ethanol (30)

The reaction was performed according to the general procedure A using $\mathrm{N}, \mathrm{N}-$ methyl(phenyl)aniline ($365.2 \mathrm{mg}, 1.99 \mathrm{mmol}$), thioxanthone ($212.6 \mathrm{mg}, 1.00$ mmol), and sodium t-butoxide ($19.2 \mathrm{mg}, 0.20 \mathrm{mmol}$). The product was obtained in 46% NMR yield. The semi-purified product was further purified by GPC to give the title product in 9% yield (33.7 mg).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.18\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ar}_{2}, 1 \mathrm{H}\right), 4.13\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ar}_{2}, 2 \mathrm{H}\right), 6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $\left.\mathrm{N}\left(2,6-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 6.85\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{~N}\left(4-\mathrm{C}_{6} H_{5}\right)_{2}, 2 \mathrm{H}\right), 7.10\left(\mathrm{t}, J=8.2 \mathrm{~Hz}, \mathrm{~N}\left(3,5-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 7.16-$ $7.26\left(\mathrm{~m}, \mathrm{C}\left(3,4-\mathrm{C}_{6} H_{4}\right)_{2}, 4 \mathrm{H}\right), 7.33(\mathrm{dd}, 7.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{dd}, 7.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right)$ $\delta 57.5,76.8,121.3,121.5,125.8,126.1,126.6,127.5,128.9,130.0,138.1,148.8 ;$ HRMS (FAB $^{+}$): m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NOSNa} 418.1242$, found 418.1239. IR: $v\left(\mathrm{~cm}^{-1}\right) 3060,1588,1492,1458$, $1441,1348,1274,1263,1182,1058,841,763,750,694,646,594,510$.

2-(diphenylamino)-1,1-(9H-xanthene)ethanol (3p)

The reaction was performed according to the general procedure A using $\mathrm{N}, \mathrm{N}-$ methyl(phenyl)aniline ($367.7 \mathrm{mg}, 2.01 \mathrm{mmol}$), xanthone ($196.3 \mathrm{mg}, 1.00 \mathrm{mmol}$), and sodium t-butoxide ($19.0 \mathrm{mg}, 0.20 \mathrm{mmol}$). The product was obtained in 26% NMR yield. The semi-purified product was further purified by GPC and recrystllization (Hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title product in 2% yield $(9.1 \mathrm{mg})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.54\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ar}_{2}, 1 \mathrm{H}\right), 4.09\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ar}_{2}, 2 \mathrm{H}\right), 6.68(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $\left.\mathrm{N}\left(2,6-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 6.83\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{~N}\left(4-\mathrm{C}_{6} H_{5}\right)_{2}, 2 \mathrm{H}\right), 7.05-7.11(\mathrm{~m}, 8 \mathrm{H}), 7.27(\mathrm{td}, J=7.6,2.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.71(\mathrm{dd}, 8.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 65.4,71.1,116.2,121.6(2 \mathrm{C}), 123.6,126.4,127.0$,
129.0, 129.2, 149.4, 150.7; HRMS (ESI ${ }^{+}$): $m / z[M]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO} 380.1645$, found 380.1643 . IR: $v\left(\mathrm{~cm}^{-1}\right) 3023,3014,2978,1603,1591,1496,1475,1450,1420,1270,1264,1191,1034,900,764$, 752.

Double coupling product ($\mathbf{3 q}$)

The reaction was performed according to the general procedure B
 using N, N-dimethylaniline $(148.2 \mathrm{mg}, \quad 1.23 \mathrm{mmol}), 1,4-$ dibenzoylbenzene ($85.7 \mathrm{mg}, 0.30 \mathrm{mmol}$), and lithium t-butoxide $(10.4 \mathrm{mg}, 0.13 \mathrm{mmol})$. The product was obtained as a white solid ($94.2 \mathrm{mg}, 60 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.45\left(\mathrm{~s}, 2 \mathrm{NPhCH}_{3} \mathrm{CH}_{2}, 6 \mathrm{H}\right), 3.62\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{CPhAr}(\mathrm{OH}), 2 \mathrm{H}\right), 4.08-4.13(\mathrm{~m}$, $\left.2 \mathrm{NPhCH}_{3} \mathrm{CH}_{2}, 4 \mathrm{H}\right), 6.80\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{NCH}_{3}\left(4-\mathrm{C}_{6} H_{5}\right), 2 \mathrm{H}\right), 6.90\left(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 2 \mathrm{NCH}_{3}(2,6-\right.$ $\left.\left.\mathrm{C}_{6} H_{5}\right), 4 \mathrm{H}\right), 7.19-7.26\left(\mathrm{~m}, 2 \mathrm{NCH}_{3}\left(2,6-\mathrm{C}_{6} H_{5}\right) \& 2 \mathrm{C}\left(4-\mathrm{C}_{6} H_{5}\right), 6 \mathrm{H}\right), 7.34(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 2 \mathrm{C}(3,5-$ $\left.\left.\mathrm{C}_{6} H_{5}\right), 4 \mathrm{H}\right), 7.51-7.53\left(\mathrm{~m}, 2 \mathrm{C}\left(2,6-\mathrm{C}_{6} H_{5}\right) \& \mathrm{C}\left(\mathrm{C}_{6} H_{4}\right), 8 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 40.1,66.3,76.6,114.8$,
 $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na} 551.2674$, found 551.2674. IR: $v\left(\mathrm{~cm}^{-1}\right) 3029,3005,1599,1504,1361,1298,1186$, 1120, 1060, 1033, 764, 759.

Double coupling product (3r)

The reaction was performed according to the general procedure B using N, N-methy(phenyl)aniline ($212.7 \mathrm{mg}, 1.16 \mathrm{mmol}$), $1,4-$ dibenzoylbenzene ($85.7 \mathrm{mg}, 0.30 \mathrm{mmol}$), and lithium t-butoxide $(10.0 \mathrm{mg}, 0.13 \mathrm{mmol})$. The product was obtained as a white solid ($95.6 \mathrm{mg}, 49 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.24\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{CPhAr}(\mathrm{OH}), 2 \mathrm{H}\right), 4.57-4.59\left(\mathrm{~m}, 2 \mathrm{NPh}_{2} \mathrm{CH}_{2}, 4 \mathrm{H}\right), 6.74(\mathrm{~d}, J=7.8$ $\left.\mathrm{Hz}, 2 \mathrm{~N}\left(2,6-\mathrm{C}_{6} H_{5}\right) 2,8 \mathrm{H}\right), 6.85\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{~N}\left(4-\mathrm{C}_{6} H_{5}\right) 2,4 \mathrm{H}\right), 7.03-7.08\left(\mathrm{~m}, 2 \mathrm{~N}\left(3,5-\mathrm{C}_{6} H_{5}\right) 2,8 \mathrm{H}\right)$, $7.14-7.25\left(\mathrm{~m}, 2 \mathrm{C}\left(3,4,5-\mathrm{C}_{6} H_{5}\right) \& \mathrm{C}\left(\mathrm{C}_{6} H_{4}\right), 10 \mathrm{H}\right), 7.36\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{C}\left(2,6-\mathrm{C}_{6} H_{5}\right) 4 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 64.2,78.2,78.3,122.2,122.3,125.8,126.3,127.0,128.1,129.3,143.7,143.8,145.1,145.2$, 149.6; HRMS $\left(\mathrm{FAB}^{+}\right): m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{46} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{2} 653.3168$, found 653.3169. IR: $v\left(\mathrm{~cm}^{-1}\right) 3061$, 3040, 1738, 1731, 1588, 1494, 1446, 1355, 1231, 1068, 751, 696, 593.

2-(ethyl(phenyl)amino)-1,1-diphenylethanol (3s)

The reaction was performed according to the general procedure A using N, N ethyl(methyl)aniline ($270.8 \mathrm{mg}, 2.00 \mathrm{mmol}$), benzophenone ($182.6 \mathrm{mg}, 1.00 \mathrm{mmol}$), and sodium t-butoxide ($19.3 \mathrm{mg}, 0.20 \mathrm{mmol}$). The product was obtained in 78% NMR yield. The semi-purified product was further purified by GPC to give the title compound in 63% yield (200.7 mg).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.87\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{NPhMeCH}_{2} \mathrm{CH}_{3}, 3 \mathrm{H}\right), 2.91\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{NPhMeCH}_{2} \mathrm{CH}_{3}\right.$, $2 \mathrm{H}), 3.65\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}, 1 \mathrm{H}\right), 4.16\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}, 2 \mathrm{H}\right), 6.78\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{NEtCH}_{2}(4-\right.$ $\left.\left.\mathrm{C}_{6} H_{5}\right), 1 \mathrm{H}\right), 6.92\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, \mathrm{NCH}_{3}\left(2,6-\mathrm{C}_{6} H_{5}\right), 2 \mathrm{H}\right), 7.18-7.26\left(\mathrm{~m}, \mathrm{NCH}_{3}\left(3,5-\mathrm{C}_{6} H_{5}\right) \& \mathrm{C}\left(4-\mathrm{C}_{6} H_{5}\right)_{2}\right.$, $4 \mathrm{H}), 7.33\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{C}\left(3,5-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right), 7.55\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, \mathrm{C}\left(2,6-\mathrm{C}_{6} H_{5}\right)_{2}, 4 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right)$ $\delta 10.7,45.4,62.8,76.5,114.9,118.3,125.7,126.9,128.2,129.1,145.9,149.8 ; \mathrm{HRMS}^{\left(\mathrm{FAB}^{+}\right): m / z}$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO} 318.1858$, found 318.1859. IR: $v\left(\mathrm{~cm}^{-1}\right) 3061,2984,1597,1495,1448$, $1361,1265,1198,1168,1125,1061,994,948,733,696,651,601$.

2-(benzyl(phenyl)amino)-1,1-diphenylethanol (3t)

The reaction was performed according to the general procedure A using $\mathrm{N}, \mathrm{N}-$ benzyl(methyl)aniline ($395.9 \mathrm{mg}, 2.00 \mathrm{mmol}$), benzophenone ($182.1 \mathrm{mg}, 1.00$ mmol), and sodium t-butoxide ($19.0 \mathrm{mg}, 0.20 \mathrm{mmol}$). The product was obtained in 88% NMR yield. After the purification, the title compound was obtained in 78% yield (297.0 mg).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.42\left(\mathrm{~s}, \mathrm{NCH}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}_{2}, 1 \mathrm{H}\right), 4.11(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 6.76(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{3}\left(4-\mathrm{C}_{6} H_{5}\right), 1 \mathrm{H}\right), 6.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.13-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.31\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{C}\left(3,5-\mathrm{C}_{6} H_{5}\right)_{2}\right.$, $4 \mathrm{H}), 7.51\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, \mathrm{C}\left(2,6-\mathrm{C}_{6} H_{5}\right) 2,4 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 53.8,62.3,77.6,114.6,118.5,126.0$, $126.8,127.1,127.2,128.5,128.6,129.3,137.6,146.0,150.7$; HRMS (FAB ${ }^{+}$): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO} 380.2014$, found 380.2016 . The NMR spectrum is in good accordance with previous literature data. ${ }^{7}$

4. Synthesis of enamine:

General Procedure C.

To a dried schlenk filled up with argon gas, aminoalcohol, molecular sieve, and $\mathrm{CCl}_{4}(1.0 \mathrm{ml})$ were added in a glove box. It was stirred at $80^{\circ} \mathrm{C}$ for 20 h . After the reaction, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by filtration, and the solvent was removed under reduced pressure to afford the crude product.

N-(2,2-Diphenylvinyl)- N, N-diphenylmine (4a)

The reaction was performed according to the general procedure C using aminoalcohol 3a ($36.5 \mathrm{mg}, 0.10 \mathrm{mmol}$) and molecular sieve $4 \AA(70.4 \mathrm{mg})$. The product was obtained in 71% NMR yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.73\left(\mathrm{~s}, \mathrm{Ph}_{2}(\mathrm{C}=) H, 1 \mathrm{H}\right), 6.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-$ $6.99(\mathrm{~m}, 9 \mathrm{H}), 7.09(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.22-7.30(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 122.6,122.8,126.4,126.8,127.6,127.7,128.3,128.9,130.2,130.5,131.4,139.1,142.2,145.9$;

HRMS (EI^{+}): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}$ 347.1674, found 347.1682. The NMR spectrum is in good accordance with previous literature data. ${ }^{8}$

N-(2,2-Diphenylvinyl)- N-phenyl- N-p-fluorophenylmine (4b)

The reaction was performed according to the general procedure C using aminoalcohol $31(41.6 \mathrm{mg}, 0.10 \mathrm{mmol})$ and molecular sieve $4 \AA(70.0$ mg). The product was obtained in 78% NMR yield. The crude product was further purified by recrystllization to give the title compound in 53% yield (20.9 mg) as a white solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right) \delta 6.72-6.76(\mathrm{~m}, 3 \mathrm{H}), 6.88-7.01(\mathrm{~m}, 10 \mathrm{H}), 7.14(\mathrm{t}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.30(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 115.5(\mathrm{~d}, J=91.6 \mathrm{~Hz}), 120.9,122.4,125.4(\mathrm{~d}, J$ $=34.4 \mathrm{~Hz}), 126.6,126.8,127.5,127.8,128.3,129.0,130.2(2 \mathrm{C}), 131.4,139.0,141.5,142.0,146.6$, $159.0\left(\mathrm{~d}, J=984.4 \mathrm{~Hz}\right.$); HRMS (EI $\left.{ }^{+}\right): m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{FN} 365.1580$, found 365.1581 . IR: $v\left(\mathrm{~cm}^{-1}\right) 3022,1590,1503,1493,1275,1261,1221,838,814,764,750,694$.

N-(2,2-Di-p-tolylvinyl)- N-phenyl- N - p-fluorophenylmine (4c)

The reaction was performed according to the general procedure C using aminoalcohol $3 \mathbf{c}(44.6 \mathrm{mg}, 0.10 \mathrm{mmol})$ and molecular sieve $4 \AA$ (70.7 mg). The product was obtained in 93% NMR yield. The crude product was further purified by silica gel column chromatography (hexane/EtOAc $=100 / 0$ to $80 / 20$) to give the title compound in 60% yield (25.7 mg) as a white solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 6.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.57\left(\mathrm{~s}, \mathrm{Ar}_{2}(\mathrm{C}=) H, 1 \mathrm{H}\right), 6.82-$ $6.87(\mathrm{~m}, 6 \mathrm{H}), 6.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.09(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 55.3,55.5,113.2,113.7,122.3,122.5,128.7,128.8,129.5,130.7,131.1,131.8,134.9,146.0$, 158.3, 158.9; HRMS (EI^{+}): $m / z[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{2} 407.1885$, found 407.1885. IR: $v\left(\mathrm{~cm}^{-1}\right) 3035$, 2957, 1603, 1588, 1570, 1510, 1491, 1464, 1293, 1242, 1172, 1107, 1034, 914, 831, 694, 571, 541.

5. DFT calculation

All calculations were carried out by using the Gaussian 09 program packages. ${ }^{\text {S9 }}$ Geometry optimizations were performed at B3LYP/6-311++G** with GD3BJ empirical dispersion ${ }^{\text {S10 }}$ and PCM solvent model (solvent=acetonitrile). Vibrational frequencies were calculated at the same level. Translational entropy was corrected by the method of Whiteside. ${ }^{\text {S11 }}$

(a)

(b)

Figure S1. Thermodynamics estimated by DFT calculation at 298.150 K and 1.0000 atm .

To check the validity of the present calculation, thermodynamics for hydroamination between styrene and N-methylaniline was estimated, because its experimental thermodynamic parameters were already reported by Hartwig (Table S1). The calculated energy values for hydroamination (entry 2) are close to the experimental values (entry 3). ${ }^{512}$ Notably, the calculation without correction of translational entropy obviously overestimate the entropic penalty (entry 1). Based on these results, we concluded that the thermodynamic parameters obtained by the above calculation is certainly valid.

	$+$	-		
entry	ΔG ($\mathrm{kcal} / \mathrm{mol}$)	ΔH (kcal/mol)	$\begin{gathered} \Delta S \\ (\mathrm{cal} / \mathrm{mol} \cdot \mathrm{~K}) \end{gathered}$	method
1^{a}	5.2	-10.9	-43	calc.
$2^{\text {a,b }}$	1.3	-10.9	-32	calc.
$3^{\text {c }}$	-0.28 ± 0.05	-10.0 ± 0.8	-27 ± 4	exp.

${ }^{\text {a DFT }}$ calculation were performed by B3LYP-GD3(BJ)/6-311++G(d,p) with PCM solvent model (solvent=toluene). Energies were calculated at 378.150 K and 1 atm. ${ }^{b}$ Translational entropy was corrected by the method of Whiteside. ${ }^{c}$ These values were experimentally measured by Hartwig. ${ }^{\text {S } 12}$

Table S2. Thermodynamics of hydroamination of styrene with N-methylaniline.

Cartesian coordinates for optimized compounds.

Benzophenone 1a			O	-0.000005	2.348607	0.00001	
C	-1.288193	0.36845	0.031285	H	-0.543027	-1.307941	1.164695
C	-1.406813	-0.863582	0.687307	H	-2.728641	-2.450789	1.275649
C	-2.640597	-1.506034	0.752796	H	-4.715198	-1.441644	0.187496
C	-3.758163	-0.934957	0.145918	H	-4.513851	0.734037	-0.98701
C	-3.645876	0.291048	-0.513334	H	-2.324353	1.90212	-1.057061
C	-2.42079	0.945623	-0.558731	H	2.72871	-2.450759	-1.275667
C	2.640637	-1.506012	-0.752805	H	4.715209	-1.44162	-0.187403
C	3.75817	-0.934938	-0.145864	H	4.513795	0.734045	0.987123
C	3.645845	0.291057	0.513399	H	2.324288	1.902115	1.057085
C	2.420753	0.945625	0.558747	H	0.543085	-1.307923	-1.164803
C	1.288188	0.368455	-0.031333	$\mathrm{~N}-\mathrm{diphenylmethylamine}$			
	1.406846	-0.863567	-0.687365	C	1.226216	0.331709	-0.091091

C	2.512843	-1.657386	-0.644784	Ami	chol 3aa		
C	3.679546	-1.074767	-0.141074	C	2.27338	-1.066784	-0.596911
C	3.610311	0.21386	0.380376	C	3.526148	-0.571777	-1.005648
C	2.403774	0.913004	0.412684	C	4.685454	-1.306471	-0.788023
C	-2.634296	-1.34198	0.994803	C	4.634872	-2.559598	-0.174203
C	-3.697613	-0.962539	0.175164	C	3.395971	-3.060894	0.219616
C	-3.520147	0.074418	-0.740517	C	2.22753	-2.328139	0.021674
C	-2.289527	0.718359	-0.844835	C	0.424325	3.123998	-2.065264
C	-1.222383	0.343677	-0.021001	C	1.132997	3.88893	-1.142086
C	-1.407845	-0.689153	0.905766	C	1.855316	3.242685	-0.137021
N	0.018535	1.03432	-0.118338	C	1.85472	1.857214	-0.046196
C	0.011932	2.451314	0.235258	C	1.137613	1.081587	-0.9668
H	0.419349	-1.43379	-1.036502	C	0.43223	1.732555	-1.986298
H	2.543682	-2.656094	-1.0662	N	1.102411	-0.332423	-0.838486
H	4.618561	-1.6144	-0.159758	C	-0.180176	-0.997639	-0.999849
H	4.501367	0.687772	0.777141	C	-1.13664	-1.030566	0.247872
H	2.385162	1.907518	0.835774	O	-0.87593	-2.306209	0.861795
H	-2.7626	-2.140841	1.716268	C	-2.592766	-0.970877	-0.23194
H	-4.652598	-1.46892	0.249292	C	-0.807961	0.079066	1.257127
H	-4.336605	0.374704	-1.387133	C	0.257227	-0.120001	2.144648
H	-2.147666	1.509661	-1.571488	C	0.617355	0.862135	3.0625
H	-0.587675	-0.979884	1.550516	C	-0.076016	2.06994	3.105759
H	0.765348	2.989754	-0.3425	C	-3.013548	-0.00473	-1.155539
H	-0.964135	2.869665	0.000986	C	-4.342622	0.066375	-1.565892
H	0.206085	2.611218	1.304509	C	-5.281184	-0.832888	-1.062596

C	-4.874542	-1.800281	-0.146893	H	-1.688261	3.210983	2.252705
C	-3.542875	-1.867882	0.261955	H	-2.336192	1.473662	0.654389
C	-1.136739	2.278183	2.228493	N, N-dimethylaniline $\mathbf{2 h}$			
C	-1.501991	1.289811	1.315873	C	1.939572	1.197633	0.018662
H	3.586672	0.388476	-1.499984	C	2.653785	0.00001	0.042906
H	5.6359	-0.899841	-1.11562	C	1.939588	-1.197625	0.018569
H	5.540625	-3.130496	-0.009215	C	0.549463	-1.207328	-0.035418
H	3.33148	-4.030622	0.701006	C	-0.184756	-0.000006	-0.079611
H	1.280907	-2.723809	0.362044	C	0.549444	1.20732	-0.035325
H	-0.13191	3.606735	-2.860698	N	-1.568029	-0.000013	-0.177056
H	1.124501	4.970609	-1.203429	C	-2.291022	-1.24001	0.06838
H	2.405156	3.822415	0.595598	H	2.467741	2.144563	0.048154
H	2.391576	1.366331	0.753159	H	3.735991	0.000013	0.08802
H	-0.106241	1.159532	-2.729865	H	2.467775	-2.144547	0.04798
H	-0.707081	-0.530669	-1.824434	H	0.036954	-2.158521	-0.044555
H	-0.012305	-2.034341	-1.28918	H	0.036922	2.158507	-0.04438
H	-1.202663	-2.287913	1.769042	H	-3.355063	-1.061604	-0.075993
H	0.818242	-1.043811	2.109353	H	-1.987484	-2.015356	-0.638157
H	1.448326	0.685901	3.735998	H	-2.137216	-1.623127	1.087448
H	0.207105	2.839033	3.81496	C	-2.291019	1.240011	0.06821
H	-2.309405	0.715023	-1.554245	H	-3.355047	1.061634	-0.076303
H	-4.641955	0.824861	-2.279888	H	-2.137349	1.623204	1.087275
H	-6.315031	-0.781519	-1.383345	H	-1.987355	2.015299	-0.638337
H	-5.591678	-2.510093	0.249224	Aminoalchol 3ah			
H	-3.245671	-2.637526	0.961302	C	-2.647451	-0.461363	0.436582

C	-3.881701	0.061322	0.882127	H	-1.768716	-1.905055	-0.910887
C	-5.08836	-0.453592	0.414002	H	0.295407	-0.598515	1.788832
C	-5.1174	-1.504041	-0.500527	H	-0.416064	-1.755639	0.686824
C	-3.902165	-2.024521	-0.949996	H	0.551728	-0.272798	-2.255914
C	-2.688748	-1.516259	-0.502071	H	-0.982171	1.437877	-1.388253
N	-1.446542	0.059392	0.897768	H	-0.91245	3.896403	-1.525181
C	-0.209354	-0.693849	0.828975	H	1.026715	5.143399	-0.594273
C	0.785893	-0.272865	-0.298718	H	2.308307	-0.402775	2.023731
O	0.185394	-0.760244	-1.508968	H	4.447593	-1.525374	2.381099
C	2.126351	-0.976512	-0.054319	H	5.552564	-2.752488	0.522529
C	0.914216	1.252364	-0.391097	H	4.449702	-2.843089	-1.70305
C	-0.130693	1.971745	-0.989673	H	2.281903	-1.740624	-2.057006
C	-0.091339	3.360903	-1.062441	H	2.90171	3.886661	0.443094
C	0.995479	4.061386	-0.539784	H	2.836271	1.439154	0.565073
C	2.757267	-0.938086	1.196815	C	-1.469335	1.158486	1.852536
C	3.980821	-1.571457	1.403995	H	-2.046881	1.999487	1.463843
C	4.601177	-2.258847	0.362487	H	-1.891961	0.858894	2.821616
C	3.9825	-2.307742	-0.884369	H	-0.451625	1.508919	2.010266
C	2.756111	-1.675676	-1.087337	Ket			
C	2.044421	3.356374	0.04458	C	-1.28258	0.697705	0.049738
C	2.004906	1.963496	0.115666	C	-1.401486	-0.554212	0.676861
H	-3.906386	0.866906	1.601651	C	-2.626534	-1.192993	0.758766
H	-6.015659	-0.026753	0.780841	C	-3.766566	-0.603332	0.194478
H	-6.058649	-1.902582	-0.85921	C	-3.665591	0.644693	-0.43494
H	-3.894263	-2.833398	-1.672862	C	-2.433638	1.284573	-0.487707

C	2.626591	-1.192852	-0.758995	H	6.366672	0.192793	-0.237012
C	3.766618	-0.603203	-0.194679	Ami	hol 31a		
C	3.665602	0.644762	0.434852	C	-2.389227	-2.040624	0.234277
C	2.433626	1.284598	0.4877	C	-3.627757	-2.09148	0.900614
C	1.282587	0.697746	-0.049791	C	-4.652756	-2.904266	0.43164
C	1.401529	-0.554124	-0.677015	C	-4.472954	-3.701977	-0.700238
C	-0.000008	1.447694	0.000003	C	-3.243761	-3.666436	-1.355463
O	-0.000025	2.679373	0.00005	C	-2.213419	-2.843379	-0.905324
H	-0.534167	-1.018273	1.128085	C	-1.113505	1.464578	3.286971
H	-2.725142	-2.149424	1.257025	C	-2.104169	2.342755	2.854828
H	-4.530589	1.117409	-0.877874	C	-2.861513	2.008158	1.730715
H	-2.353891	2.25391	-0.963828	C	-2.621247	0.826706	1.042405
H	2.725221	-2.149263	-1.257296	C	-1.618112	-0.057637	1.464407
H	4.530596	1.117486	0.877784	C	-0.875732	0.272128	2.605862
H	2.35387	2.253899	0.963889	N	-1.346724	-1.236695	0.723878
H	0.53422	-1.018189	-1.128253	C	0.043211	-1.614417	0.51591
O	-4.917939	-1.309957	0.307554	C	0.820742	-0.88735	-0.640846
O	4.918044	-1.309716	-0.307918	O	0.690959	-1.771121	-1.771797
C	-6.117863	-0.756562	-0.242604	C	2.29639	-0.760871	-0.247673
H	-6.022573	-0.613079	-1.32193	C	0.184924	0.460496	-0.995883
H	-6.898676	-1.485119	-0.037925	C	-0.953737	0.476411	-1.816268
H	-6.365967	0.193217	0.237871	C	-1.611934	1.657877	-2.114913
C	6.117702	-0.756831	0.243331	C	-1.156467	2.869468	-1.584843
H	6.021475	-0.613192	1.322554	C	2.681699	-0.232298	0.994457
H	6.898377	-1.485753	0.039428	C	4.016876	-0.084523	1.337565

C	5.020314	-0.469358	0.441238	H	1.520959	1.719739	0.124863
C	4.660301	-1.003747	-0.796237	O	-1.884818	3.978058	-1.903637
C	3.309554	-1.143455	-1.123235	O	6.30503	-0.289255	0.862846
C	-0.01621	2.878119	-0.782002	C	7.361845	-0.659512	-0.023716
C	0.640789	1.679548	-0.500659	H	7.315094	-0.0846	-0.953018
H	-3.780733	-1.495493	1.790403	H	8.285719	-0.427852	0.501749
H	-5.595879	-2.924976	0.966529	H	7.328601	-1.728777	-0.251312
H	-5.273516	-4.336771	-1.06044	C	-1.471325	5.232354	-1.359933
H	-3.08218	-4.274489	-2.238842	H	-2.192587	5.964047	-1.717553
H	-1.277074	-2.806864	-1.444454	H	-1.483446	5.209715	-0.266543
H	-0.522686	1.698932	4.165224	H	-0.471345	5.503081	-1.710766
H	-2.28426	3.271488	3.382891	Dik			
H	-3.630895	2.682896	1.372831	C	-3.851286	0.416017	0.072551
H	-3.195489	0.591996	0.157419	C	-3.893993	-0.893275	0.569753
H	-0.114611	-0.400598	2.978346	C	-5.086394	-1.611793	0.546852
H	0.585087	-1.460068	1.442895	C	-6.23734	-1.037153	0.009977
H	0.093822	-2.682098	0.306079	C	-6.200987	0.266573	-0.489889
H	0.887144	-1.273376	-2.574402	C	-5.018041	0.993744	-0.447296
H	-1.344353	-0.451705	-2.211215	C	0.211076	-1.127791	-0.789979
H	-2.497328	1.65706	-2.73942	C	1.277298	-0.568066	-0.077341
H	1.934307	0.088004	1.709587	C	1.055585	0.564183	0.717437
H	4.299736	0.327365	2.298738	C	-0.211025	1.127575	0.79113
H	5.409262	-1.319112	-1.509161	C	-1.277265	0.567868	0.07848
H	3.057923	-1.573731	-2.083111	C	-1.055537	-0.564368	-0.716314
H	0.369497	3.797982	-0.365692	C	-2.612425	1.241656	0.136958

O	-2.675498	2.461335	0.23545	C	4.655285	-2.708251	0.148781
H	-3.005909	-1.341858	0.995582	C	5.543805	-3.445231	-0.630409
H	-5.116295	-2.618212	0.946526	C	6.282196	-2.843275	-1.646915
H	-7.161962	-1.601655	-0.017547	C	6.101639	-1.477815	-1.876373
H	-7.095392	0.712334	-0.908451	C	5.211866	-0.728499	-1.116079
H	-4.979644	2.008683	-0.82244	N	3.582676	-0.596236	0.704151
H		0.386475	-2.000973	-1.405275	C	3.619252	0.851094

H	5.057107	0.311935	-1.356907	O	-3.296923	-0.785416	1.295354
H	3.490948	1.1394	1.813357	H	-4.101966	-1.306825	1.38752
H	4.595916	1.225027	0.460886	C	-3.308152	-1.104852	-1.129461
H	2.305915	1.64455	-2.042854	H	-4.22595	-1.694115	-1.106808
H	1.810725	-0.654042	-1.354583	H	-2.70895	-1.498683	-1.950471
H	-0.277901	-1.920598	-1.201074	N	-3.608899	0.280694	-1.429298
H	2.307322	2.660788	2.471019	C	-4.729909	0.922802	-0.928647
H	2.233116	5.006742	3.149058	C	-4.842568	2.329173	-1.004758
H	2.367199	6.814462	1.447534	C	-5.816455	0.221024	-0.357973
H	2.59209	6.213488	-0.953666	C	-5.978153	2.986776	-0.538331
H	2.698793	3.854229	-1.635159	H	-4.035408	2.916872	-1.417662
H	-1.863927	1.010654	1.486427	C	-6.941862	0.89198	0.102624
H	0.227517	2.27702	1.344631	H	-5.79584	-0.856227	-0.27728
C	-2.251698	-2.807793	0.475228	C	-7.04141	2.282491	0.021377
C	-1.728329	-3.15281	1.728546	H	-6.021502	4.068197	-0.611202
C	-2.463359	-3.820389	-0.46218	H	-7.753956	0.314535	0.531072
C	-1.429724	-4.474264	2.038627	H	-7.920709	2.798619	0.38679
H	-1.554408	-2.372428	2.459305	C	2.828865	-1.272172	1.750653
C	-2.162794	-5.149612	-0.153103	H	2.108865	-0.575088	2.173596
H	-2.859735	-3.596868	-1.443295	H	2.265054	-2.114948	1.345243
C	-1.646735	-5.48134	1.095303	H	3.477946	-1.638935	2.557419
H	-1.024984	-4.720769	3.013564	C	-2.624203	1.046393	-2.181579
H	-2.334548	-5.921704	-0.894144	H	-3.112847	1.618754	-2.975792
H	-1.413046	-6.512408	1.333677	H	-2.052464	1.738503	-1.554155
C	-2.535254	-1.325662	0.205444	H	-1.919135	0.357144	-2.641685

Ami	hol 3qa			C	-2.660237	5.592211	-0.320914
C	-3.420767	-1.257096	1.800362	C	-2.405727	4.428227	0.403777
C	-3.695217	-2.637331	1.74144	C	0.311582	0.537556	-1.685071
C	-3.681259	-3.414831	2.892935	C	-0.777663	1.266042	-1.216003
C	-3.411171	-2.846605	4.139432	H	-3.925698	-3.096971	0.789991
C	-3.153268	-1.478994	4.206398	H	-3.898262	-4.474516	2.814536
C	-3.148996	-0.689885	3.058163	H	-3.403128	-3.456355	5.0348
C	-3.837507	-1.218428	-2.993604	H	-2.936741	-1.013857	5.16196
C	-2.772229	-2.089038	-3.211342	H	-2.912232	0.361913	3.133561
C	-1.957596	-2.44971	-2.137055	H	-4.490416	-0.938225	-3.812444
C	-2.191003	-1.932812	-0.869783	H	-2.578064	-2.482264	-4.202273
C	-3.25252	-1.04738	-0.645034	H	-1.120364	-3.117132	-2.290033
C	-4.083211	-0.708389	-1.720009	H	-1.531831	-2.19162	-0.053593
N	-3.457421	-0.472693	0.640024	H	-4.931554	-0.05338	-1.568141
C	-3.684746	0.962446	0.705581	H	-4.333331	1.239756	-0.117377
C	-2.417828	1.89575	0.674728	H	-4.226753	1.200785	1.619979
O	-2.176964	2.217423	2.057214	H	-1.27185	2.537835	2.148263
C	-2.742643	3.17345	-0.109464	H	-0.759718	0.21302	1.994902
C	-1.19057	1.167919	0.113045	H	1.158751	-1.023329	1.19502
C	-0.466363	0.322208	0.960099	H	-3.622106	2.162663	-1.80577
C	0.62609	-0.397084	0.493635	H	-4.078742	4.205251	-3.070345
C	1.031416	-0.302128	-0.837445	H	-3.463281	6.426572	-2.137745
C	-3.352506	3.116827	-1.369766	H	-2.390992	6.553824	0.100821
C	-3.608065	4.277148	-2.096669	H	-1.952534	4.506569	1.382718
C	-3.262326	5.522537	-1.574974	H	0.614644	0.637861	-2.71759

H	-1.2991	1.914527	-1.905211	H	5.889047	0.393843	-0.946282
C	1.738979	-2.516141	-1.756228	C	4.626926	3.446259	-1.754648
C	1.691068	-2.908687	-3.094863	H	2.731141	4.209033	-1.073306
C	1.312095	-3.423997	-0.779512	H	6.451038	2.420771	-2.262197
C	1.242579	-4.18172	-3.450255	H	4.870779	4.333607	-2.327073
H	1.991434	-2.212856	-3.866354	C	3.750028	-0.032517	1.830803
C	0.864319	-4.693741	-1.130556	C	3.39089	-1.146198	2.619291
H	1.304679	-3.142856	0.265773	C	4.219235	1.112662	2.511396
C	0.830785	-5.080911	-2.470648	C	3.477411	-1.099688	4.008214
H	1.211856	-4.464667	-4.496163	H	3.042665	-2.065173	2.170844
H	0.534726	-5.37782	-0.357307	C	4.298404	1.143734	3.898384
H	0.479288	-6.068345	-2.745485	H	4.522549	1.9825	1.946768
C	2.215549	-1.102639	-1.368106	C	3.925741	0.041805	4.668358
O	2.687385	-0.402792	-2.523513	H	3.186515	-1.977059	4.575351
H	3.510542	-0.812653	-2.812434	H	4.662734	2.044757	4.379759
C	3.374385	-1.226333	-0.334582	H	3.987698	0.070846	5.749193
H	4.263726	-1.541442	-0.896148				
H	3.157074	-2.039293	0.345412				
N	3.651038	-0.026824	0.439172				
C	3.992381	1.15659	-0.290453				
C	3.105834	2.233577	-0.321579				
C	5.200469	1.230106	-0.982611				
C	3.425138	3.376802	-1.048482				
H	2.168839	2.161225	0.215212				
C	5.513496	2.370465	-1.720643				

6. References

[S1] Weber, P.; Scherpf, T.; Rodstein, I.; Lichte, D.; Scharf, L. T.; Gooßen, L. J.; Gessner, V. H. Angew. Chem. Int. Ed. 2019, 58, 3203-3207.
[S2] Wang, C.; Qin, J.; Shen, X.; Riedel, R.;Harms, K.; Meggers, E. Angew. Chem. Int. Ed. 2016, 55, 685-688.
[S3] Zhao, X.; Chen, M.; Huang, B.; Yang, C.; Gao, Y.; Xia, W. Synthesis 2018, 50, 2981-2989.
[S4] Liu, X. F.; Li, X. Y.; Qiao, C.; Fu, H. C.; He, L. N.; Angew. Chem. Int. Ed. 2017, 56, 7425-7429.
[S5] Barker, T. J.; Jarvo, E. R. J. Am. Chem. Soc. 2009, 131, 15598-15599.
[S6] Sumita, A.; Otani, Y.; Ohwada, T. Chem. Commun. 2017, 53, 1482-1485.
[S7] Ding, W.; Lu, L. Q.; Liu, J.; Liu, D.; Song, H. T.; Xiao, W. J. J. Org. Chem. 2016, 81, 7237-7243.
[S8] Tahara, A.; Miyamoto, Y.; Aoto, R.; Shigeta, K.; Une, Y.; Sunada, Y.; Motoyama, Y.; Nagashima, H. Organometallics 2015, 34, 4895-4907.
[S9] Gaussian 09 (Revision E.01), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
[S10] (a) Grimme, S.; J. Comp. Chem., 2006, 27, 1787-1799. (b) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comp. Chem. 2011, 32, 1456-1465.
[S11] M. Mammen, E. I. Shakhnovich, J. M. Deutch and G. M. Whitesides, J. Org. Chem., 1998, 63, 3821.

7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Figure S2. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\boldsymbol{N}, \boldsymbol{N}$-methylpheneylaniline.

Figure S3. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\boldsymbol{N}, \mathrm{N}$-methylpheneylaniline.

Figure S4. ${ }^{1} \mathrm{H}$ NMR Spectrum of \boldsymbol{N}-methyl-di-p-tolylamine.

Figure S5. ${ }^{13} \mathrm{C}$ NMR Spectrum of \boldsymbol{N}-methyl-di-p-tolylamine.

Figure S6. ${ }^{1} \mathrm{H}$ NMR Spectrum of \boldsymbol{N}-methyl- \boldsymbol{N}-phenyl-4-fluorolaniline.

Figure S7. ${ }^{13} \mathrm{C}$ NMR Spectrum of \boldsymbol{N}-methyl- \boldsymbol{N}-phenyl-4-fluorolaniline.

Figure S8. ${ }^{1} \mathrm{H}$ NMR Spectrum of \boldsymbol{N}-methylcarbazole.

Figure S9. ${ }^{1} \mathrm{H}$ NMR Spectrum of N -methylcarbazole.

Figure S10. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\boldsymbol{N}, \mathrm{N}$-ethylmethylaniline.

Figure S11. ${ }^{13} \mathrm{C}$ NMR Spectrum of N, N-ethylmethylaniline.

Figure S12. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\boldsymbol{N}, \boldsymbol{N}$-benzylmethylaniline.

Figure S13. ${ }^{13} \mathrm{C}$ NMR Spectrum of N, N-benzylmethylaniline.

Figure S14. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{1 , 4}$-benzoylbenzene.

Figure S15. ${ }^{13} \mathrm{C}$ NMR Spectrum of 1,4-benzoylbenzene.

Figure S16. ${ }^{1} \mathrm{H}$ NMR Spectrum of 3a.

Figure S17. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3a.

Figure S18. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 b}$.

Figure S19. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3b.

Figure S20. ${ }^{1} \mathrm{H}$ NMR Spectrum of 3c.

Figure S21. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3c.

Figure S22. ${ }^{1} \mathrm{H}$ NMR Spectrum of 3d.

Figure S23. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3d.

Figure S24. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 e}$.

Figure S25. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3 e .

Figure S26. ${ }^{1} \mathrm{H}$ NMR Spectrum of 3 f.

Figure S27. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3 ff .

Figure S28. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 g}$.

Figure S29. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 g}$.

Figure S30. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 h}$.

Figure S31. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 h}$.

Figure S32. ${ }^{1} \mathrm{H}$ NMR Spectrum of 3 i.

Figure S33. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3 i .

Figure S34. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 j}$.

Figure S35. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3 j .

Figure S36. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 k}$.

Figure S37. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3 k .

Figure S38. ${ }^{1} \mathrm{H}$ NMR Spectrum of 31 .

Figure S39. ${ }^{13} \mathrm{C}$ NMR Spectrum of 31 .

Figure S40. ${ }^{1} \mathrm{H}$ NMR Spectrum of 3 m .

Figure S41. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3 m .

Figure S42. ${ }^{1} \mathrm{H}$ NMR Spectrum of 3 n .

Figure S43. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3 n .

Figure S44. ${ }^{1} \mathrm{H}$ NMR Spectrum of 30 .

Figure S45. ${ }^{13} \mathrm{C}$ NMR Spectrum of 30 .

Figure S46. ${ }^{1} \mathrm{H}$ NMR Spectrum of 3 p.

Figure $\mathbf{S 4 7} .{ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 p}$.

Figure S48. ${ }^{1} \mathrm{H}$ NMR Spectrum of $3 \mathbf{q}$.

Figure S49. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3 q .

Figure S50. ${ }^{1} \mathrm{H}$ NMR Spectrum of 3 r.

Figure S51. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3 r .

Figure S52. ${ }^{1} \mathrm{H}$ NMR Spectrum of 3 s .

Figure S53. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3 s .

Figure S54. ${ }^{1} \mathrm{H}$ NMR Spectrum of 3 t .

Figure S55. ${ }^{13} \mathrm{C}$ NMR Spectrum of 3 t .

Figure S56. ${ }^{1} \mathrm{H}$ NMR Spectrum of 4a.

Figure S57. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{4 a}$.

Figure S58. ${ }^{1} \mathrm{H}$ NMR Spectrum of 4b.

Figure S59. ${ }^{13} \mathrm{C}$ NMR Spectrum of 4 b .

Figure S60. ${ }^{1} \mathrm{H}$ NMR Spectrum of 4 c .

Figure S61. ${ }^{13} \mathrm{C}$ NMR Spectrum of 4 c .

