Supporting Information

Endergonic Addition of *N*-Methylamines to Aromatic Ketones Driven by Photochemical Offset of the Entropic Cost

[†] Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.

[‡]Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto

University, Kyoto 615-8510, Japan.

E-mail: iwamoto@scl.kyoto-u.ac.jp

Table of Contents

1. General.

- 2. Preparation of Starting Materials
- 3. Photoreaction
- 4. Synthesis of enamine
- 5. DFT Calculation
- 6. Reference
- 7. ¹H and ¹³C NMR Spectra

1. General.

All reactions dealing with air- or moisture-sensitive compounds were carried out in well-dried reaction vessels under a positive pressure of dry argon. Photoreactions were carried out using an LED lamp (CCS, HLUV–126UV365, 365 nm). Flash column chromatography was performed on Flash column chromatography on Wakogel 60N, 38–100 µm or on a Biotage SP1 Flash Purification System with prepacked silica cartridges. Preparative recycling gel permeation chromatography (GPC) was performed with a Japan Analytical Industry LC-9204 instrument equipped with JAIGEL-1H/JAIGEL-2H columns using chloroform as an eluent.

¹H and ¹³C NMR spectra were recorded on a JEOL ECS-400NR NMR spectrometer (391.8 and 98.5 MHz, respectively). The ¹H chemical shift values are reported in parts per million (ppm, δ scale) and referenced to the ¹H resonance of tetramethylsilane (δ 0.00). The ¹³C chemical shift values are reported in parts per million, and referenced to the ¹³C resonance of CDCl₃ (δ 77.16). Data are

presented as: chemical shift, multiplicity, coupling constant in Hertz (Hz) and signal area integration in natural numbers. NMR yield was determined by using 1,1,2,2–tetrachloroethane as an internal standard.

Unless otherwise noted, commercially available materials were used without purification. Water content of the solvents was determined with a Karl Fischer Moisture Titrator (MKC-610, Kyoto Electronics Company) to be less than 15 ppm.

2. Preparation of Starting Materials

N,*N*–methylpheneylaniline (2a)

To a suspension of sodium hydride (868 mg, 36 mmol) in THF (40 ml) was added diphenylamine (5.07 g, 30 mmol) at room temperature, and then the mixture was stirred for 2 h. After that, methyl iodide (3.0 ml, 45 mmol) was added, and stirred for 24 h at 50 °C. The reaction mixture was quenched with distilled water (30 ml) and the aqueous layer was extracted with CH_2Cl_2 (10 ml × 3). The organic layers were combined, dried over MgSO₄, and filtered. The solvent was removed under reduced pressure to afford the crude product. The crude product was purified by silica gel column chromatography (hexane/CH₂Cl₂ = 95/5) and distillation to give the title product as a colorless liquid (3.21 g, 59%).

¹H NMR (CDCl₃) δ 3.31 (s, 3H), 6.95 (t, *J* = 7.3 Hz, 2H), 7.02 (d, *J* = 7.8 Hz, 4H), 7.27 (t, *J* = 8.2 Hz, 4H); ¹³C NMR (CDCl₃) δ 40.4, 120.6, 121.4, 129.0, 149.2. All analytical data are in good accordance with those reported in the literature.¹

N-methyl-di-*p*-tolylamine (2b)

To a suspension of sodium hydride (291 mg, 12 mmol) in THF (25 ml) was added 4,4'-dimethyldiphenylamine (1.95 mg, 10 mmol) at room temperature, and then the mixture was stirred for 2 h. After that, methyl iodide (1.0 ml, 15

mmol) was added, and stirred for 17 h at room temperature. The reaction mixture was quenched with distilled water (10 ml) and the aqueous layer was extracted with EtOAc (10 ml \times 3). The organic layers were combined, dried over MgSO₄, and filtered. The solvent was removed under reduced pressure to afford the crude product. The crude product was purified by silica gel column chromatography (hexane/EtOAc = 100/0 to 80/20) and distillation to give the title product as a colorless liquid (1.58 g, 76%).

¹H NMR (CDCl₃) δ 2.29 (s, 6H), 3.25 (s, 3H), 6.90 (d, *J* = 8.0 Hz, 4H), 7.06 (d, *J* = 8.0 Hz, 4H); ¹³C NMR (CDCl₃) δ 20.8, 40.6, 120.5, 129.8, 130.6, 147.2. All analytical data are in good accordance with those reported in the literature.²

N-methyl-*N*-phenyl-4-fluorolaniline (2c)

To a suspension of sodium hydride (288 mg, 12 mmol) in THF (24 ml) was added 4–fluorophenyl(phenyl)amine (1.88 g, 10 mmol) at 0 °C, and then the mixture was stirred for 3 h at room temperature. After that, methyl iodide (1.0 ml, 15 mmol) was added, and stirred for 12 h. The reaction mixture was quenched

with distilled water (10 ml) and the aqueous layer was extracted with EtOAc (10 ml \times 3). The organic layers were combined, dried over MgSO₄, and filtered. The solvent was removed under reduced pressure to afford the crude product. The crude product was purified by silica gel column chromatography (hexane/EtOAc = 100/0 to 80/20) and distillation to give the title product as a colorless liquid (1.06 g, 52%).

¹H NMR (CDCl₃) δ 3.27 (s, 3H), 6.86–6.91 (m, 3H), 6.97–7.07 (m, 4H), 7.21–7.25 (m, 2H); ¹³C NMR (CDCl₃) δ 40.7, 116.1 (d, *J* = 91.6 Hz), 118.2, 120.2, 124.4 (d, *J* = 34.3 Hz), 129.3, 145.4, 149.5, 158.9 (d, *J* = 980.5 Hz). All analytical data are in good accordance with those reported in the literature.¹

N-methylcarbazole (2g)

To a suspension of sodium hydride (144 mg, 6 mmol) in THF (20 ml) was added carbazole (835 mg, 5 mmol) at 0 °C, and then the mixture was stirred for 2 h at room temperature. After that, methyl iodide (0.5 ml, 8 mmol) was added, and stirred for 20 h. The reaction mixture was quenched with distilled water (10 ml) and the aqueous layer was extracted with CH₂Cl₂ (10 ml × 3). The organic layers were combined, dried over MgSO₄, and filtered. The solvent was removed under reduced pressure to afford the crude product. The crude product was purified by recrystllization with hexane to give the title product as a slightly green solid (603 mg, 67%). ¹H NMR (CDCl₃) δ 3.87 (s, 3H), 7.23 (t, *J* = 7.6 Hz, 2H), 7.39 (d, *J* = 8.2 Hz, 2H), 7.47 (t, *J* = 8.2 Hz, 2H), 8.10 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (CDCl₃) δ 29.2, 108.5, 119.0, 120.4, 122.9, 125.8, 141.1. All analytical data are in good accordance with those reported in the literature.³

N,N-ethylmethylaniline

The mixture of *N*-methylaniline (1.1 ml, 10 mmol), potassium carbonate (3.04 g, 22 mmol), bromoethane (0.9 ml, 12 mmol) and acetonitrile (15 ml) was stirred for 15 h at 85 °C. The reaction mixture was quenched with distilled water (10 ml) and the aqueous layer was extracted with EtOAc (10 ml \times 3). The organic layers were combined, dried over MgSO₄, and filtered. The solvent was removed under reduced pressure to afford the crude product.

The product was purified by silica gel column chromatography (hexane/EtOAc = 98/2) and distillation to give the title product as an orange liquid (704 mg, 52%).

¹H NMR (C₂D₂Cl₄) δ 1.12 (t, *J* = 7.3 Hz, 3H), 2.90 (s, 3H), 3.40 (q, *J* = 7.2 Hz, 2H), 6.66–6.73 (m, 3H), 7.22 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (CDCl₃) δ 11.3, 37.6, 46.9, 112.5, 116.2, 129.3, 149.3. All analytical data are in good accordance with those reported in the literature.⁴

N,N-benzylmethylaniline

The mixture of *N*-methylaniline (1.1 ml, 10 mmol), potassium carbonate (3.04 g, 22 mmol), benzylbromide (1.2 ml, 12 mmol) and acetonitrile (15 ml) was stirred for 15 h at 85 °C. The reaction mixture was quenched with distilled water (10 ml) and the aqueous layer was extracted with EtOAc (10 ml \times 3). The organic layers were

combined, dried over MgSO₄, and filtered. The solvent was removed under reduced pressure to afford the crude product. The crude product was purified by silica gel column chromatography (hexane/EtOAc = 98/2) and distillation to give the title product as a colorless liquid (1.28 g, 65%). ¹H NMR (CDCl₃) δ 3.00 (s, 3H), 4.52 (s, 2H), 6.69–6.76 (m, 3H), 7.18–7.24 (m, 5H), 7.31 (t, *J* = 7.8 Hz, 2H); ¹³C NMR (CDCl₃) δ 38.6, 56.8, 112.5, 116.7, 126.9, 127.0, 128.7, 129.3, 139.2, 149.9. All analytical data are in good accordance with those reported in the literature.⁵

1,4-dibenzoylbenzene

To a solution of terephthaloyl chloride (2.03 g, 10 mmol) in benzene (10 ml) was added AlCl₃ (6.76 g, 50 mmol) slowly at 0 °C, and then the mixture was stirred for 24 h at 50 °C. The reaction mixture was quenched with distilled water (10 ml) slowly, neutralized with 2 M NaOH aq, and

then aqueous layer was extracted with CH_2Cl_2 (10 ml \times 3). The organic layers were combined, dried over MgSO₄, and filtered. The solvent was removed under reduced pressure to afford the crude product. The crude product was purified by recrystllization with hexane/CH₂Cl₂ to give the title product as a white solid (603 mg, 67%).

¹H NMR (CDCl₃) δ 7.52 (t, *J* = 7.8 Hz, 4H), 7.64 (t, *J* = 7.6 Hz, 2H), 7.84 (d, *J* = 7.6 Hz, 4H), 7.90 (s, 4H); ¹³C NMR (CDCl₃) δ 128.6, 129.8, 130.2, 133.1, 137.0, 140.7, 196.0. All analytical data are in good accordance with those reported in the literature.⁶

3. Photoreaction

General Procedure A

To a dried schlenk filled up with argon gas, aromatic ketone, aniline derivatives (2.0 eq), and base (0.2 eq), CH₃CN (1.0 ml) were added in a glove box. The mixture was stirred for 24 h under irradiation of 365 nm UV LED with a cooling fan. After quenching with 2 M HCl aq followed by extraction with CH_2Cl_2 (10 ml × 3). The organic layers were combined, dried over MgSO₄, and filtered. The solvent was removed under reduced pressure to afford the crude product. The product was purified by silica gel column chromatography (hexane/EtOAc = 100/0 to 80/20).

General Procedure B

To a dried schlenk filled up with argon gas, aromatic ketone, aniline derivatives (4.0 eq), and base (0.4 eq), CH_3CN (5.0 ml) were added in a glove box. The mixture was stirred for 24 h under irradiation of 365 nm UV LED with a cooling fan. After quenching with 2 M HCl aq followed by

extraction with CH_2Cl_2 (10 ml \times 3). The organic layers were combined, dried with MgSO₄, and filtered. The solvent was removed under reduced pressure to afford the crude product. The product was purified by GPC.

O Ph Ph 1a	+ /N _{Ph}	additive (x equiv.) CH ₃ CN, rt, 24 h 365 nm UV LED	HO Ph Ph 4	OH Ph Bh 3a OH Ph + Ph	
			yield (%)	а	conversion
entry	additive (x)	3a	4	5	(%) ^a
1	none	10	81	4	100
2	2,6-lutidine (0.2	2) 12	25	16	100
3	Li ₂ CO ₃ (0.2)	5	4	20	100
4	LiOH (0.2)	7	N.D.	19	100
5	NaOH (0.2)	69	N.D.	trace	100
6	KOH (0.2)	74	N.D.	trace	100
7	LiOMe	7	N.D.	18	100
8	LiO <i>t</i> Bu (0.2)	73	N.D.	trace	100
9	KO <i>t</i> Bu (0.2)	48	N.D.	trace	100
10	NaO <i>t</i> Bu (0.2)	80	N.D.	trace	98
11	NaO <i>t</i> Bu (0.5)	57	N.D.	trace	97
12	NaO <i>t</i> Bu (1.0)	53	N.D.	trace	94
13 ^b	NaO <i>t</i> Bu (0.2)	N.D.	N.D.	trace	11

Table S1. Optimization of base

^aDetermined by ¹H NMR. ^bWithout light irradiation.

N.D.: not detected. trace: < 1%

Large Scale Synthesis

To a dried schlenk filled up with argon gas, benzophenone (8.7 g, 48 mmol), dimethylaniline (12 ml, 95 mmol), and base (922 mg, 9.6 mmol), CH₃CN (44 ml) were added in a glove box. The mixture was stirred for 24 h under irradiation of 365 nm UV LED with a cooling fan. After quenching with 2 M HCl aq followed by extraction with CH_2Cl_2 (20 ml × 3). The organic layers were combined, dried over MgSO₄, and filtered. The solvent was removed under reduced pressure to afford the crude product. The product was purified by silica gel column chromatography (hexane/EtOAc = 100/0 to 80/20) and subsequent recrystllization to give the product in 76% yield (11.0 g) as a pale yellow solid.

Reaction under intermittent light-irradiation

The reaction was performed according to the general procedure A using N,N-methyl(phenyl)aniline **2a** (190.2 mg, 1.04 mmol), benzophenone **1a** (94.8 mg, 0.52 mmol), and sodium

t-butoxide (9.99 mg, 0.10 mmol). Conversion of **1a** and the product yield were monitored by GC analysis.

Figure S1. Time profile of reaction between 1a and 2a under intermittent light-irradiation.

2-(Diphenylamino)-1,1-diphenylethanol (3a)

The reaction was performed according to the general procedure A using N,N-methyl(phenyl)aniline (366.1 mg, 2.00 mmol), benzophenone (181.9 mg, 1.00 mmol), and sodium *t*-butoxide (19.2 mg, 0.20 mmol). The product was obtained in 80% NMR yield. After the purification, the title compound was obtained in 64% yield (234.3 mg).

¹H NMR (CDCl₃) δ 3.28 (s, NCH₂C(O*H*)Ph₂, 1H), 4.65 (s, NCH₂C(OH)Ph₂, 2H), 6.79 (d, *J* = 7.8 Hz, N(2,6-C₆H₅)₂, 4H), 6.92 (t, *J* = 7.3 Hz, N(4-C₆H₅)₂, 2H), 7.11–7.22 (m, N(3,5-C₆H₅)₂ & C(3,4,5-C₆H₅)₂, 10H), 7.39 (d, *J* = 8.2 Hz, C(2,6-C₆H₅)₂, 4H); ¹³C NMR (CDCl₃) δ 64.1, 78.6, 122.2, 122.3, 126.2, 127.0, 128.1, 129.3, 145.1, 149.7; HRMS (EI⁺): *m*/*z* [M]⁺ calcd for C₂₆H₂₃NO 365.1780, found 365.1782. The NMR spectrum is in good accordance with previous literature data.⁷

2-(di-p-tolylamino)-1,1-diphenylethanol (3b)

The reaction was performed according to the general procedure A using N-methyl-di-p-tolylamine (426.9 mg, 2.02 mmol), benzophenone (182.4 mg, 1.00 mmol), and lithium *t*-butoxide (16.3 mg, 0.20 mmol). The product was obtained in 73% NMR yield. The semi-purified product was further purified by recrystallization (Hexane/CH₂Cl₂) to give the title compound in 67% yield

(270.3 mg).

¹H NMR (CDCl₃) δ 2.24 (s, *CH*₃Ph, 6H), 3.33 (s, NCH₂C(O*H*)Ph₂, 1H), 4.57 (s, NCH₂C(OH)Ph₂, 2H), 6.66 (d, *J* = 8.2 Hz, N(2,6-C₆H₄CH₃)₂, 4H), 6.93 (d, *J* = 8.2 Hz, N(3,5-C₆H₄CH₃)₂, 4H), 7.12–7.22 (m, C(3,4,5-C₆H₅)₂, 6H), 7.39 (d, *J* = 7.3 Hz, C(2,6-C₆H₅)₂, 4H); ¹³C NMR (CDCl₃) δ 20.7, 64.3, 78.6, 122.2, 126.3, 126.9, 128.1, 129.9, 131.7, 145.4, 147.6; HRMS (FAB⁺): *m*/*z* [M+Na]⁺ calcd for C₂₈H₂₇NONa 416.1990, found 416.1991.

2-(p-fluorophenyl(phenyl)amino)-1,1-diphenylethanol (3c)

The reaction was performed according to the general procedure A using *N*,*N*-methyl-(*p*-fluorophenyl)aniline (400.9 mg, 1.99 mmol), benzophenone (182.5 mg, 1.00 mmol), and sodium *t*-butoxide (19.0 mg, 0.20 mmol). The product was obtained in 65% NMR yield. After the purification, the title compound was obtained in 43% yield (164.4 mg).

¹H NMR (CDCl₃) δ 3.25 (s, NCH₂C(O*H*)Ph₂, 1H), 4.61 (s, NCH₂C(OH)Ph₂, 2H), 6.70–6.87 (m, 7H), 7.11–7.23 (m, 8H), 7.38 (d, *J* = 8.4 Hz, C(2,6-C₆H₅)₂, 4H); ¹³C NMR (CDCl₃) δ 64.6, 78.6, 116.1 (d, *J* = 91.2 Hz), 118.9, 120.9, 126.3, 127.0, 127.1, 128.2, 129.3, 145.0, 150.8, 158.2, 159.5 (d, *J* = 988.0 Hz); HRMS (FAB⁺): *m*/*z* [M+Na]⁺ calcd for C₂₆H₂₂FNONa 406.1583, found 406.1586.

2-(methyl(phenyl)amino)-1,1-diphenylethanol (3d)

The reaction was performed according to the general procedure A using N,N-dimethylaniline (246.0 mg, 2.03 mmol), benzophenone (181.9 mg, 1.00 mmol), and lithium *t*-butoxide (16.3 mg, 0.20 mmol). The product was obtained in 74% NMR yield. After the purification, the title compound was obtained in 67% yield

(202.3 mg).

¹H NMR (CDCl₃) δ 2.45 (s, *CH*₃NPh, 3H), 3.64 (s, NCH₂C(O*H*)Ph₂, 1H), 4.16 (s, NCH₂C(OH)Ph₂, 2H), 6.81 (t, *J* = 7.6 Hz, NCH₃(4-C₆H₅), 1H), 6.93 (d, *J* = 8.3 Hz, NCH₃(2,6-C₆H₅), 2H), 7.20–7.27 (m, NCH₃(3,5-C₆H₅) & C(4-C₆H₅)₂, 4H), 7.35 (t, *J* = 7.8 Hz, C(3,5-C₆H₅)₂, 4H), 7.55 (d, *J* = 7.4 Hz, C(2,6-C₆H₅)₂, 4H); ¹³C NMR (C₂D₂Cl₄) δ 39.7, 66.1, 76.8, 114.6, 118.8, 126.1, 127.3, 128.6, 129.3, 146.1, 152.1; HRMS (FAB⁺): *m*/*z* [M+Na]⁺ calcd for C₂₁H₂₁NONa 326.1521, found 326.1524. The NMR spectrum is in good accordance with previous literature data.⁷

2-(methyl(p-bromophenyl)amino)-1,1-diphenylethanol (3e)

The reaction was performed according to the general procedure A using 4bromo-*N*,*N*-dimethylaniline (400.5 mg, 2.00 mmol), benzophenone (182.0 mg, 1.00 mmol), and sodium *t*-butoxide (19.2 mg, 0.20 mmol). The product was obtained in 55% NMR yield. The semi–purified product was purified by

GPC to give the title compound in 55% yield (208.9 mg).

¹H NMR (C₂D₂Cl₄) δ 2.44 (s, *CH*₃NAr, 3H), 4.13 (s, NC*H*₂C(OH)Ph₂, 2H), 6.77 (d, *J* = 9.2 Hz, NCH₃(2,6-C₆*H*₄Br), 2H), 7.28–7.31 (m, NCH₃(3,5-C₆*H*₄Br) & C(4-C₆*H*₅)₂, 4H), 7.38 (t, *J* = 7.8 Hz, C(3,5-C₆*H*₅)₂, 4H), 7.52 (d, *J* = 8.0 Hz, C(2,6-C₆*H*₅)₂, 4H); ¹³C NMR (C₂D₂Cl₄) δ 39.9, 65.6, 77.3, 110.4, 115.9, 126.1, 127.4, 128.6, 131.8, 145.7, 151.0; HRMS (EI⁺): *m*/*z* [M]⁺ calcd for C₂₁H₂₀BrNO 381.0728, found 381.0725. IR: v(cm⁻¹) 3056, 1591, 1493, 1449, 1361, 1264, 1179, 1126, 1059, 809, 732, 699, 657, 608.

2-(4-ethoxycarbonylphenyl(methyl)amino)-1,1-diphenylethanol (3f)

The reaction was performed according to the general procedure A using 4-ethoxycarbonyl-N,N-dimethylaniline (386.6 mg, 2.00 mmol), benzophenone (182.3 mg, 1.00 mmol), and sodium *t*-butoxide (19.1 mg, 0.20 mmol). The product was obtained in 51% NMR yield. After the

purification, the title compound was obtained in 40% yield (150.4 mg). ¹H NMR (CDCl₃) δ 1.36 (t, *J* = 7.3 Hz, C(=O)OCH₂CH₃, 3H), 2.59 (s, CH₃NAr, 3H), 2.91 (s, NCH₂C(OH)Ph₂, 1H), 4.26 (s, NCH₂C(OH)Ph₂, 2H), 4.31 (q, *J* = 7.2 Hz, C(=O)OCH₂CH₃, 2H), 6.79 (d, *J* = 9.6 Hz, NCH₃(2,6-C₆H₄C=O), 2H), 7.27 (t, *J* = 7.3 Hz, C(4-C₆H₅)₂, 2H), 7.35 (t, *J* = 7.6 Hz, C(3,5-C₆H₅)₂, 4H), 7.50 (d, *J* = 8.2 Hz, C(2,6-C₆H₅)₂, 4H), 7.85 (d, *J* = 9.2 Hz, NCH₃(3,5-C₆H₄C=O), 2H); ¹³C NMR (CDCl₃) δ 14.6, 39.9, 60.4, 64.0, 78.1, 112.2, 119.2, 126.2, 127.5, 128.6, 131.2, 145.5, 154.6, 166.9; HRMS (FAB⁺): *m*/*z* [M+H]⁺ calcd for C₂₄H₂₆NO₃ 376.1913, found 376.1914. IR: v(cm⁻¹) 1684, 1603, 1523, 1284, 1185, 1127, 770, 698.

2-(methyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl))amino)-1,1-diphenylethanol (3g)

The reaction was performed according to the general procedure A using *N*,*N*-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzenamine (494.8 mg, 2.00 mmol), benzophenone (182.0 mg, 1.00 mmol), and sodium *t*-butoxide (19.2 mg, 0.20 mmol). The product was

obtained in 71% NMR yield. After the purification, the title compound was obtained in 70% yield (301.3 mg).

¹H NMR (CDCl₃) δ 1.31 (s, B(OC(CH₃)₂)₂, 12H), 2.48 (s, CH₃NAr, 3H), 3.24 (s, NCH₂C(OH)Ph₂, 1H), 4.21 (s, NCH₂C(OH)Ph₂, 2H), 6.84 (d, *J* = 8.7 Hz, NCH₃(2,6-C₆H₄B), 2H), 7.25 (t, *J* = 7.6 Hz, C(4-C₆H₅)₂, 2H), 7.33 (t, *J* = 8.0 Hz, C(3,5-C₆H₅)₂, 4H), 7.51 (d, *J* = 7.3 Hz, C(2,6-C₆H₅)₂, 4H), 7.64 (d, *J* = 8.7 Hz, NCH₃(3,5-C₆H₄B), 2H); ¹³C NMR (C₂D₂Cl₄) δ 25.1, 39.7, 64.7, 77.6, 83.5, 112.9, 126.2, 127.4, 128.6, 136.3, 145.8, 153.9; HRMS (FAB⁺): *m/z* [M+Na]⁺ calcd for C₂₇H₃₂NO₃BNa 452.2378, found 452.2380. IR: v(cm⁻¹) 2962, 1604, 1362, 1260, 1091, 1017, 798, 735, 702.

2-(methyl(o-bromophenyl)amino)-1,1-diphenylethanol (3h)

OН

The reaction was performed according to the general procedure A using 2bromo-N.N-dimethylaniline (394.0 mg, 1.97 mmol), benzophenone (182.4 mg, 1.00 mmol), and sodium *t*-butoxide (20.2 mg, 0.21 mmol). The product was

obtained in 45% NMR yield. The semi-purified product was further purified by GPC to give the title product in 41% yield (157.1 mg).

¹H NMR (CDCl₃) δ2.40 (s, CH₃NAr, 3H), 3.92 (s, NCH₂C(OH)Ph₂, 2H), 5.13 (s, NCH₂C(OH)Ph₂, 1H), 6.91-6.95 (m, 1H), 7.13-7.21 (m, 4H), 7.25 (t, J=7.8 Hz, 4H), 7.48-7.54 (m, 5H); 13 C NMR (C₂D₂Cl₄) δ 45.4, 66.3, 75.1, 122.5, 125.4, 125.6, 126.3, 126.6, 128.0, 128.6, 133.1, 146.1, 151.6; HRMS (FAB⁺): m/z [M+Na]⁺ calcd for C₂₁H₂₀BrNONa 406.0608, found 406.0609. IR: v(cm⁻¹) 3416, 3021, 1602, 1503, 1449, 1317, 1265, 1181, 1063, 1026, 944, 910, 733, 692, 653, 603, 511.

2-(phenylamino)-1,1-diphenylethanol (3i)

The reaction was performed according to the general procedure A using Nmethylaniline (214.2 mg, 1.99 mmol), benzophenone (181.3 mg, 0.99 mmol), and lithium *t*-butoxide (16.8 mg, 0.21 mmol). The product was obtained in 23% NMR yield. After the purification, the title product was obtained in 23% yield (67.4 mg).

¹H NMR (CDCl₃) δ 3.38 (s, NCH₂C(O74*H*)Ph₂, 1H), 3.66 (s, N*H*Ph, 1H), 3.89 (d, J = 4.4 Hz, $NCH_2C(OH)Ph_2, 2H), 6.70 (dd, J = 8.8, 1.0 Hz, NH(2,6-C_6H_5), 2H), 6.77 (t, J = 8.0 Hz, NH(4-C_6H_5), 2H), 6.77 (t, J = 8.0 Hz, 2H), 6.77 (t, J =$ 1H), 7.18 (t, J = 8.0 Hz, NH(3,5-C₆H₅), 2H), 7.28 (t, J = 7.2 Hz, C(4-C₆H₅)₂, 2H), 7.36 (t, J = 8.0 Hz, $C(3.5-C_6H_5)_2$, 4H), 7.50 (d, J = 8.0 Hz, $C(2.6-C_6H_5)_2$, 4H); ¹³C NMR ($C_2D_2Cl_4$) δ 53.9, 77.3, 114.0, 118.7, 126.0, 127.4, 128.5, 129.3, 144.5, 147.7; HRMS (FAB⁻): m/z [M-H]⁻ calcd for C₂₀H₁₈NO 288.1388, found 288.1387. IR: v(cm⁻¹) 3056, 3021, 1602, 1503, 1449, 1317, 1265, 1181, 1063, 1026, 944, 910, 733, 692, 653, 603, 511.

2-(9H-carbazole)-1,1-diphenylethanol (3j)

The reaction was performed according to the general procedure A using Nmethylcarbazole (108.7 mg, 0.60 mmol), benzophenone (54.8 mg, 0.30 mmol), and sodium t-butoxide (5.8 mg, 0.06 mmol). The product was obtained in 55% NMR yield. After the purification, the title compound was obtained in 21% yield (22.5 mg).

¹H NMR (CDCl₃) δ 2.76 (s, NCH₂C(OH)Ph₂, 1H), 5.09 (s, NCH₂C(OH)Ph₂, 2H), 6.97 (d, J = 8.2 Hz, N(6-C₆ H_4)₂, 2H), 7.14–7.23 (m, N(4-C₆ H_4)₂ & N(5-C₆ H_4)₂, 4H), 7.25–7.32 (m, C(3,4,5-C₆ H_5)₂, 6H), 7.40 (dd, J = 8.0, 2.0 Hz, C(2,6-C₆H₅)₂, 4H), 8.01 (d, J = 6.9 Hz, N(3-C₆H₄)₂, 2H); ¹³C NMR (CDCl₃) δ 55.4, 79.0, 110.0, 119.4, 120.0, 123.3, 125.7, 126.5, 127.8, 128.6, 142.1, 145.1; HRMS (FAB⁺): *m/z* [M+Na]⁺ calcd for C₂₆H₂₁NONa 386.1521, found 386.1522. IR: v(cm⁻¹) 3055, 1596, 1483, 1453, 1326, 1264, 895, 732, 700, 598.

2-(diphenylamino)-1,1-(di-p-tolyl)ethanol (3k)

The reaction was performed according to the general procedure A using N,N-methyl(phenyl)aniline (366.7 mg, 2.00 mmol), 4,4'- (dimethyl)benzophenone (210.1 mg, 1.00 mmol), and lithium *t*-butoxide (18.3 mg, 0.22 mmol). The product was obtained in 86% NMR yield. The semi–purified product was further purified by GPC to give the title compound in

66% yield (258.9 mg).

¹H NMR (CDCl₃) δ 2.26 (s, C(C₆H₄CH₃)₂ 6H), 3.14 (s, NCH₂C(OH)Ar₂, 1H), 4.60 (s, NCH₂C(OH)Ar₂, 2H), 6.78 (d, *J* = 7.8 Hz, N(2,6-C₆H₅)₂, 4H), 6.91 (t, *J* = 7.3 Hz, N(4-C₆H₅)₂, 2H), 6.99 (d, *J* = 8.3 Hz, C(3,5-C₆H₄CH₃)₂, 4H), 7.13 (t, *J* = 8.0 Hz, N(3,5-C₆H₅)₂, 4H), 7.25 (d, *J* = 7.4 Hz, C(2,6-C₆H₄CH₃)₂, 4H); ¹³C NMR (CDCl₃) δ 21.1, 64.2, 78.6, 122.2 (2C), 126.2, 128.8, 129.3, 136.5, 142.4, 149.8; HRMS (FAB⁺): *m*/*z* [M+Na]⁺ calcd for C₂₈H₂₇NONa 416.1990, found 416.1989. IR: v(cm⁻¹) 3006, 2992, 1590, 1497, 1276, 1267, 1261, 764, 750, 694, 576.

2-(diphenylamino)-1,1-(di-p-anisyl)ethanol (3l)

The reaction was performed according to the general procedure A using N,N-methyl(phenyl)aniline (365.8 mg, 2.00 mmol), 4,4'- (dimethoxy)benzophenone (242.8 mg, 1.00 mmol), and sodium *t*-butoxide (19.3 mg, 0.20 mmol). The product was obtained in 73% NMR yield. The semi–purified product was further purified by GPC to give the title 10.4 mg)

compound in 51% yield (219.4 mg).

¹H NMR (CDCl₃) δ 3.13 (s, NCH₂C(O*H*)Ar₂, 1H), 3.75 (s, C(C₆H₄OC*H*₃)₂, 6H), 4.57 (s, NC*H*₂C(OH)Ar₂, 2H), 6.72 (d, *J* = 9.2 Hz, C(3,5-C₆*H*₄OCH₃)₂, 4H), 6.79 (d, *J* = 7.8 Hz, N(2,6-C₆*H*₅)₂, 4H), 6.92 (t, *J* = 7.4 Hz, N(4-C₆*H*₅)₂, 2H), 7.14 (t, *J* = 8.2 Hz, N(3,5-C₆*H*₅)₂, 4H), 7.27 (d, *J* = 6.0 Hz, C(3,5-C₆*H*₄OCH₃)₂, 4H); ¹³C NMR (CDCl₃) δ 55.4, 64.3, 78.4, 113.5, 122.2, 127.6, 129.3, 137.6, 149.8, 158.5; HRMS (FAB⁺): *m*/*z* [M+H]⁺ calcd for C₂₈H₂₈NO₃ 426.2069, found 426.2071. IR: v(cm⁻¹) 3017, 2971, 2943, 1739, 1589, 1509, 1497, 1442, 1365, 1264, 1230, 1217, 1033, 896, 833, 731, 700, 583, 527.

2-(diphenylamino)-1,1-(di-p-fluorophenyl)ethanol (3m)

The reaction was performed according to the general procedure A using N,N-methyl(phenyl)aniline (364.7 mg, 1.99 mmol), 4,4'- (difluoro)benzophenone (218.5 mg, 1.00 mmol), and sodium *t*-butoxide (19.0 mg, 0.20 mmol). The product was obtained in 63% yield NMR yield. After the purification, the title product was obtained in 60% yield (261.1 mg).

¹H NMR (CDCl₃) δ 3.35 (s, NCH₂C(O*H*)Ar₂, 1H), 4.59 (s, NCH₂C(OH)Ar₂, 2H), 6.79 (d, *J* = 9.2 Hz, N(2,6-C₆H₅)₂, 4H), 6.87 (m, C(2,6-C₆H₄F)₂, 4H), 6.95 (t, *J* = 7.6 Hz, N(4-C₆H₅)₂, 2H), 7.16 (t, *J* = 7.8 Hz, N(3,5-C₆H₅)₂, 4H), 7.32 (dd, *J* = 6.0, 5.5 Hz, C(3,5-C₆H₄F)₂, 4H); ¹³C NMR (CDCl₃) δ , 64.3, 78.0, 114.9 (d, *J* = 88.0 Hz), 122.2, 122.6, 128.1, 129.5, 140.8, 149.5, 161.9 (d, *J* = 999.6 Hz); HRMS

(FAB⁺): *m*/*z* [M+Na]⁺ calcd for C₂₆H₂₁F₂NONa 424.1489, found 424.1489. IR: v(cm⁻¹) 3006, 2990, 1589, 1493, 1275, 1261, 1224, 1159, 1077, 834, 764, 750, 697, 576.

2-(diphenylamino)-1,1-(di-p-chlorophenyl)ethanol (3n)

The reaction was performed according to the general procedure A using N,N-methyl(phenyl)aniline (360.7 mg, 1.97 mmol), 4,4'- (dichloro)benzophenone (251.4 mg, 1.00 mmol), and lithium *t*-butoxide (16.1 mg, 0.20 mmol). The product was obtained in 68% NMR yield. The semi–purified product was further purified by GPC to give the title

compound in 40% yield (171.88 mg).

¹H NMR (CDCl₃) δ 3.37 (s, NCH₂C(O*H*)Ar₂, 1H), 4.57 (s, NCH₂C(OH)Ar₂, 2H), 6.78 (d, *J* = 7.8 Hz, N(2,6-C₆H₅)₂, 4H), 6.95 (t, *J* = 7.6 Hz, N(4-C₆H₅)₂, 2H), 7.13–7.17 (m, 8H), 7.28 (d, *J* = 8.7 Hz, 4H); ¹³C NMR (CDCl₃) δ 64.0, 77.9, 122.2, 122.7, 127.7, 128.3, 129.5, 133.2, 143.3, 149.4; HRMS (FAB⁻): *m*/*z* [M–H]⁻ calcd for C₂₆H₂₀Cl₂NO 432.0922, found 432.0920. IR: v(cm⁻¹) 2987, 1590, 1491, 1264, 1093, 1012, 896, 833, 764, 731, 701, 599, 527.

2-(diphenylamino)-1,1-(9H-thioxanthene)ethanol (30)

The reaction was performed according to the general procedure A using N,N-methyl(phenyl)aniline (365.2 mg, 1.99 mmol), thioxanthone (212.6 mg, 1.00 mmol), and sodium *t*-butoxide (19.2 mg, 0.20 mmol). The product was obtained in 46% NMR yield. The semi–purified product was further purified by GPC to give the title product in 9% yield (33.7 mg).

¹H NMR (CDCl₃) δ 3.18 (s, NCH₂C(O*H*)Ar₂, 1H), 4.13 (s, NCH₂C(OH)Ar₂, 2H), 6.80 (d, *J* = 7.8 Hz, N(2,6-C₆H₅)₂, 4H), 6.85 (t, *J* = 7.6 Hz, N(4-C₆H₅)₂, 2H), 7.10 (t, *J* = 8.2 Hz, N(3,5-C₆H₅)₂, 4H), 7.16–7.26 (m, C(3,4-C₆H₄)₂, 4H), 7.33 (dd, 7.6, 1.4 Hz, 2H), 7.84 (dd, 7.8, 1.4 Hz, 2H); ¹³C NMR (C₂D₂Cl₄) δ 57.5, 76.8, 121.3, 121.5, 125.8, 126.1, 126.6, 127.5, 128.9, 130.0, 138.1, 148.8; HRMS (FAB⁺): *m/z* [M+Na]⁺ calcd for C₂₆H₂₁NOSNa 418.1242, found 418.1239. IR: v(cm⁻¹) 3060, 1588, 1492, 1458, 1441, 1348, 1274, 1263, 1182, 1058, 841, 763, 750, 694, 646, 594, 510.

2-(diphenylamino)-1,1-(9H-xanthene)ethanol (3p)

The reaction was performed according to the general procedure A using *N*,*N*-methyl(phenyl)aniline (367.7 mg, 2.01 mmol), xanthone (196.3 mg, 1.00 mmol), and sodium *t*-butoxide (19.0 mg, 0.20 mmol). The product was obtained in 26% NMR yield. The semi–purified product was further purified by GPC and recrystllization (Hexane/CH₂Cl₂) to give the title product in 2% yield (9.1 mg).

¹H NMR (CDCl₃) δ 2.54 (s, NCH₂C(O*H*)Ar₂, 1H), 4.09 (s, NCH₂C(OH)Ar₂, 2H), 6.68 (d, *J* = 8.0 Hz, N(2,6-C₆H₅)₂, 4H), 6.83 (t, *J* = 7.4 Hz, N(4-C₆H₅)₂, 2H), 7.05–7.11 (m, 8H), 7.27 (td, *J* = 7.6, 2.0 Hz, 2H), 7.71 (dd, 8.0, 1.8 Hz, 2H); ¹³C NMR (CDCl₃) δ 65.4, 71.1, 116.2, 121.6 (2C), 123.6, 126.4, 127.0,

129.0, 129.2, 149.4, 150.7; HRMS (ESI⁺): *m*/*z* [M]⁺ calcd for C₂₆H₂₃NO 380.1645, found 380.1643. IR: v(cm⁻¹) 3023, 3014, 2978, 1603, 1591, 1496, 1475, 1450, 1420, 1270, 1264, 1191, 1034, 900, 764, 752.

Double coupling product (3q)

The reaction was performed according to the general procedure B using N,N-dimethylaniline (148.2 mg, 1.23 mmol), 1,4–dibenzoylbenzene (85.7 mg, 0.30 mmol), and lithium *t*-butoxide (10.4 mg, 0.13 mmol). The product was obtained as a white solid (94.2 mg, 60%).

¹H NMR (CDCl₃) δ 2.45 (s, 2NPhC*H*₃CH₂, 6H), 3.62 (s, NCH₂CPhAr(O*H*), 2H), 4.08–4.13 (m, 2NPhCH₃C*H*₂, 4H), 6.80 (t, *J* = 7.3 Hz, 2NCH₃(4-C₆*H*₅), 2H), 6.90 (dd, *J* = 8.5, 2.5 Hz, 2NCH₃(2,6-C₆*H*₅), 4H), 7.19–7.26 (m, 2NCH₃(2,6-C₆*H*₅) & 2C(4-C₆*H*₅), 6H), 7.34 (td, *J* = 7.8, 1.8 Hz, 2C(3,5-C₆*H*₅), 4H), 7.51–7.53 (m, 2C(2,6-C₆*H*₅) & C(C₆*H*₄), 8H); ¹³C NMR (CDCl₃) δ 40.1, 66.3, 76.6, 114.8, 119.1, 126.0, 127.1, 128.4, 129.0, 129.2, 144.8, 146.0, 151.7; HRMS (FAB⁺): *m*/*z* [M+Na]⁺ calcd for C₃₆H₃₇N₂O₂Na 551.2674, found 551.2674. IR: v(cm⁻¹) 3029, 3005, 1599, 1504, 1361, 1298, 1186, 1120, 1060, 1033, 764, 759.

Double coupling product (3r)

The reaction was performed according to the general procedure B using N,N-methy(phenyl)aniline (212.7 mg, 1.16 mmol), 1,4-dibenzoylbenzene (85.7 mg, 0.30 mmol), and lithium *t*-butoxide (10.0 mg, 0.13 mmol). The product was obtained as a white solid (95.6 mg, 49%).

¹H NMR (CDCl₃) δ 3.24 (s, NCH₂CPhAr(O*H*), 2H), 4.57–4.59 (m, 2NPh₂C*H*₂, 4H), 6.74 (d, *J* = 7.8 Hz, 2N(2,6-C₆*H₅*)₂, 8H), 6.85 (t, *J* = 7.6 Hz, 2N(4-C₆*H₅*)₂, 4H), 7.03–7.08 (m, 2N(3,5-C₆*H₅*)₂, 8H), 7.14–7.25 (m, 2C(3,4,5-C₆*H₅*) & C(C₆*H₄*), 10H), 7.36 (d, *J* = 7.8 Hz, 2C(2,6-C₆*H₅*) 4H); ¹³C NMR (CDCl₃) δ 64.2, 78.2, 78.3, 122.2, 122.3, 125.8, 126.3, 127.0, 128.1, 129.3, 143.7, 143.8, 145.1, 145.2, 149.6; HRMS (FAB⁺): *m*/*z* [M+H]⁺ calcd for C₄₆H₄₁N₂O₂ 653.3168, found 653.3169. IR: v(cm⁻¹) 3061, 3040, 1738, 1731, 1588, 1494, 1446, 1355, 1231, 1068, 751, 696, 593.

2-(ethyl(phenyl)amino)-1,1-diphenylethanol (3s)

The reaction was performed according to the general procedure A using N,Nethyl(methyl)aniline (270.8 mg, 2.00 mmol), benzophenone (182.6 mg, 1.00 mmol), and sodium *t*-butoxide (19.3 mg, 0.20 mmol). The product was obtained in 78%

NMR yield. The semi–purified product was further purified by GPC to give the title compound in 63% yield (200.7 mg).

¹H NMR (CDCl₃) δ 0.87 (t, *J* = 7.1 Hz, NPhMeCH₂CH₃, 3H), 2.91 (q, *J* = 7.0 Hz, NPhMeCH₂CH₃, 2H), 3.65 (s, NCH₂C(OH)Ph₂, 1H), 4.16 (s, NCH₂C(OH)Ph₂, 2H), 6.78 (t, *J* = 7.3 Hz, NEtCH₂(4-C₆H₅), 1H), 6.92 (d, *J* = 8.2 Hz, NCH₃(2,6-C₆H₅), 2H), 7.18–7.26 (m, NCH₃(3,5-C₆H₅) & C(4-C₆H₅)₂, 4H), 7.33 (t, *J* = 7.8 Hz, C(3,5-C₆H₅)₂, 4H), 7.55 (d, *J* = 8.2 Hz, C(2,6-C₆H₅)₂, 4H); ¹³C NMR (C₂D₂Cl₄) δ 10.7, 45.4, 62.8, 76.5, 114.9, 118.3, 125.7, 126.9, 128.2, 129.1, 145.9, 149.8; HRMS (FAB⁺): *m/z* [M+H]⁺ calcd for C₂₂H₂₄NO 318.1858, found 318.1859. IR: v(cm⁻¹) 3061, 2984, 1597, 1495, 1448, 1361, 1265, 1198, 1168, 1125, 1061, 994, 948, 733, 696, 651, 601.

2-(benzyl(phenyl)amino)-1,1-diphenylethanol (3t)

The reaction was performed according to the general procedure A using N,N-benzyl(methyl)aniline (395.9 mg, 2.00 mmol), benzophenone (182.1 mg, 1.00 mmol), and sodium *t*-butoxide (19.0 mg, 0.20 mmol). The product was obtained in 88% NMR yield. After the purification, the title compound was obtained in 78%

yield (297.0 mg).

¹H NMR (CDCl₃) δ 3.42 (s, NCH₂C(O*H*)Ph₂, 1H), 4.11 (s, 2H), 4.32 (s, 2H), 6.76 (t, *J* = 7.3 Hz, NCH₃(4-C₆*H*₅), 1H), 6.93 (d, *J* = 8.2 Hz, 4H), 7.13–7.26 (m, 7H), 7.31 (t, *J* = 7.8 Hz, C(3,5-C₆*H*₅)₂, 4H), 7.51 (d, *J* = 7.3 Hz, C(2,6-C₆*H*₅)₂, 4H); ¹³C NMR (CDCl₃) δ 53.8, 62.3, 77.6, 114.6, 118.5, 126.0, 126.8, 127.1, 127.2, 128.5, 128.6, 129.3, 137.6, 146.0, 150.7; HRMS (FAB⁺): *m/z* [M+H]⁺ calcd for C₂₇H₂₆NO 380.2014, found 380.2016. The NMR spectrum is in good accordance with previous literature data.⁷

4. Synthesis of enamine:

General Procedure C.

To a dried schlenk filled up with argon gas, aminoalcohol, molecular sieve, and CCl₄ (1.0 ml) were added in a glove box. It was stirred at 80 °C for 20 h. After the reaction, the mixture was diluted with CH_2Cl_2 , followed by filtration, and the solvent was removed under reduced pressure to afford the crude product.

N-(2,2-Diphenylvinyl)-*N*,*N*-diphenylmine (4a)

The reaction was performed according to the general procedure C using aminoalcohol 3a (36.5 mg, 0.10 mmol) and molecular sieve 4Å (70.4 mg). The product was obtained in 71% NMR yield.

¹H NMR (CDCl₃) δ 6.73 (s, Ph₂(C=)*H*, 1H), 6.88 (t, *J* = 7.6 Hz, 2H), 6.92–6.99 (m, 9H), 7.09 (t, *J* = 8.0 Hz, 4H), 7.22–7.30 (m, 5H); ¹³C NMR (CDCl₃)

δ 122.6, 122.8, 126.4, 126.8, 127.6, 127.7, 128.3, 128.9, 130.2, 130.5, 131.4, 139.1, 142.2, 145.9;

HRMS (EI⁺): m/z [M]⁺ calcd for C₂₆H₂₁N 347.1674, found 347.1682. The NMR spectrum is in good accordance with previous literature data.⁸

N-(2,2-Diphenylvinyl)-*N*-phenyl-*N*-*p*-fluorophenylmine (4b)

The reaction was performed according to the general procedure C using aminoalcohol **3l** (41.6 mg, 0.10 mmol) and molecular sieve 4Å (70.0 mg). The product was obtained in 78% NMR yield. The crude product was further purified by recrystllization to give the title compound in 53% yield (20.9 mg) as a white solid.

¹H NMR (C₂D₂Cl₄) δ 6.72–6.76 (m, 3H), 6.88–7.01 (m, 10H), 7.14 (t, *J* = 8.4 Hz, 2H), 7.22–7.30 (m, 5H); ¹³C NMR (CDCl₃) δ 115.5 (d, *J* = 91.6 Hz), 120.9, 122.4, 125.4 (d, *J* = 34.4 Hz), 126.6, 126.8, 127.5, 127.8, 128.3, 129.0, 130.2 (2C), 131.4, 139.0, 141.5, 142.0, 146.6, 159.0 (d, *J* = 984.4 Hz); HRMS (EI⁺): *m*/*z* [M]⁺ calcd for C₂₆H₂₀FN 365.1580, found 365.1581. IR: v(cm⁻¹) 3022, 1590, 1503, 1493, 1275, 1261, 1221, 838, 814, 764, 750, 694.

N-(2,2-Di-*p*-tolylvinyl)-*N*-phenyl-*N*-*p*-fluorophenylmine (4c)

The reaction was performed according to the general procedure C using aminoalcohol **3c** (44.6 mg, 0.10 mmol) and molecular sieve 4 Å (70.7 mg). The product was obtained in 93% NMR yield. The crude product was further purified by silica gel column chromatography (hexane/EtOAc = 100/0 to 80/20) to give the title compound in 60% yield (25.7 mg) as a white solid.

¹H NMR (CDCl₃) δ 3.68 (s, 3H), 3.81 (s, 3H), 6.52 (d, J = 8.8 Hz, 2H), 6.57 (s, Ar₂(C=)H, 1H), 6.82–6.87 (m, 6H), 6.98 (d, J = 8.8 Hz, 4H), 7.09 (t, J = 8.0 Hz, 4H), 7.20 (d, J = 8.8 Hz, 2H); ¹³C NMR (CDCl₃) δ 55.3, 55.5, 113.2, 113.7, 122.3, 122.5, 128.7, 128.8, 129.5, 130.7, 131.1, 131.8, 134.9, 146.0, 158.3, 158.9; HRMS (EI⁺): m/z [M]⁺ calcd for C₂₈H₂₅NO₂ 407.1885, found 407.1885. IR: v(cm⁻¹) 3035, 2957, 1603, 1588, 1570, 1510, 1491, 1464, 1293, 1242, 1172, 1107, 1034, 914, 831, 694, 571, 541.

5. DFT calculation

All calculations were carried out by using the Gaussian 09 program packages.⁵⁹ Geometry optimizations were performed at B3LYP/6-311++G** with GD3BJ empirical dispersion^{S10} and PCM solvent model (solvent=acetonitrile). Vibrational frequencies were calculated at the same level. Translational entropy was corrected by the method of Whiteside.^{S11}

Figure S1. Thermodynamics estimated by DFT calculation at 298.150 K and 1.0000 atm.

To check the validity of the present calculation, thermodynamics for hydroamination between styrene and *N*-methylaniline was estimated, because its experimental thermodynamic parameters were already reported by Hartwig (Table S1). The calculated energy values for hydroamination (entry 2) are close to the experimental values (entry 3).^{S12} Notably, the calculation without correction of translational entropy obviously overestimate the entropic penalty (entry 1). Based on these results, we concluded that the thermodynamic parameters obtained by the above calculation is certainly valid.

	*			
entry	∆G (kcal/mol)	∆ <i>H</i> (kcal/mol)	∆S (cal/mol·K)	method
1 ^a	5.2	-10.9	-43	calc.
2 ^{a,b}	1.3	-10.9	-32	calc.
3 ^c	-0.28 ± 0.05	-10.0 ± 0.8	-27 ± 4	exp.

^aDFT calculation were performed by B3LYP-GD3(BJ)/6-311++G(d,p) with PCM solvent model (solvent=toluene). Energies were calculated at 378.150 K and 1 atm. ^bTranslational entropy was corrected by the method of Whiteside. ^cThese values were experimentally measured by Hartwig.^{S12}

 Table S2. Thermodynamics of hydroamination of styrene with N-methylaniline.

Cartesian coordinates for optimized compounds.

Benzop	ohenone 1a			0	-0.000005	2.348607	0.00001
С	-1.288193	0.36845	0.031285	Н	-0.543027	-1.307941	1.164695
С	-1.406813	-0.863582	0.687307	Н	-2.728641	-2.450789	1.275649
С	-2.640597	-1.506034	0.752796	Н	-4.715198	-1.441644	0.187496
С	-3.758163	-0.934957	0.145918	Н	-4.513851	0.734037	-0.98701
С	-3.645876	0.291048	-0.513334	Н	-2.324353	1.90212	-1.057061
С	-2.42079	0.945623	-0.558731	Н	2.72871	-2.450759	-1.275667
С	2.640637	-1.506012	-0.752805	Н	4.715209	-1.44162	-0.187403
С	3.75817	-0.934938	-0.145864	Н	4.513795	0.734045	0.987123
С	3.645845	0.291057	0.513399	Н	2.324288	1.902115	1.057085
С	2.420753	0.945625	0.558747	Н	0.543085	-1.307923	-1.164803
С	1.288188	0.368455	-0.031333	N–diph	enylmethylamine	2a	
С	1.406846	-0.863567	-0.687365	С	1.226216	0.331709	-0.091091
С	-0.000005	1.122084	-0.000051	С	1.307517	-0.969952	-0.627839

С	2.512843	-1.657386	-0.644784	Amino	alchol 3aa		
C	3.679546	-1.074767	-0.141074	С	2.27338	-1.066784	-0.596911
С	3.610311	0.21386	0.380376	С	3.526148	-0.571777	-1.005648
С	2.403774	0.913004	0.412684	С	4.685454	-1.306471	-0.788023
С	-2.634296	-1.34198	0.994803	С	4.634872	-2.559598	-0.174203
С	-3.697613	-0.962539	0.175164	С	3.395971	-3.060894	0.219616
С	-3.520147	0.074418	-0.740517	С	2.22753	-2.328139	0.021674
С	-2.289527	0.718359	-0.844835	С	0.424325	3.123998	-2.065264
С	-1.222383	0.343677	-0.021001	С	1.132997	3.88893	-1.142086
С	-1.407845	-0.689153	0.905766	С	1.855316	3.242685	-0.137021
Ν	0.018535	1.03432	-0.118338	С	1.85472	1.857214	-0.046196
С	0.011932	2.451314	0.235258	С	1.137613	1.081587	-0.9668
Н	0.419349	-1.43379	-1.036502	С	0.43223	1.732555	-1.986298
Н	2.543682	-2.656094	-1.0662	Ν	1.102411	-0.332423	-0.838486
Н	4.618561	-1.6144	-0.159758	С	-0.180176	-0.997639	-0.999849
Н	4.501367	0.687772	0.777141	С	-1.13664	-1.030566	0.247872
Н	2.385162	1.907518	0.835774	0	-0.87593	-2.306209	0.861795
Н	-2.7626	-2.140841	1.716268	С	-2.592766	-0.970877	-0.23194
Н	-4.652598	-1.46892	0.249292	С	-0.807961	0.079066	1.257127
Н	-4.336605	0.374704	-1.387133	С	0.257227	-0.120001	2.144648
Н	-2.147666	1.509661	-1.571488	С	0.617355	0.862135	3.0625
Н	-0.587675	-0.979884	1.550516	С	-0.076016	2.06994	3.105759
Н	0.765348	2.989754	-0.3425	С	-3.013548	-0.00473	-1.155539
Н	-0.964135	2.869665	0.000986	С	-4.342622	0.066375	-1.565892
Н	0.206085	2.611218	1.304509	С	-5.281184	-0.832888	-1.062596

С	-4.874542	-1.800281	-0.146893	Н	-1.688261	3.210983	2.252705
С	-3.542875	-1.867882	0.261955	Н	-2.336192	1.473662	0.654389
С	-1.136739	2.278183	2.228493	N,N-d	imethylaniline 2h		
С	-1.501991	1.289811	1.315873	С	1.939572	1.197633	0.018662
Н	3.586672	0.388476	-1.499984	С	2.653785	0.00001	0.042906
Н	5.6359	-0.899841	-1.11562	С	1.939588	-1.197625	0.018569
Н	5.540625	-3.130496	-0.009215	С	0.549463	-1.207328	-0.035418
Н	3.33148	-4.030622	0.701006	С	-0.184756	-0.000006	-0.079611
Н	1.280907	-2.723809	0.362044	С	0.549444	1.20732	-0.035325
Н	-0.13191	3.606735	-2.860698	Ν	-1.568029	-0.000013	-0.177056
Н	1.124501	4.970609	-1.203429	С	-2.291022	-1.24001	0.06838
Н	2.405156	3.822415	0.595598	Н	2.467741	2.144563	0.048154
Н	2.391576	1.366331	0.753159	Н	3.735991	0.000013	0.08802
Н	-0.106241	1.159532	-2.729865	Н	2.467775	-2.144547	0.04798
Н	-0.707081	-0.530669	-1.824434	Н	0.036954	-2.158521	-0.044555
Н	-0.012305	-2.034341	-1.28918	Н	0.036922	2.158507	-0.04438
Н	-1.202663	-2.287913	1.769042	Н	-3.355063	-1.061604	-0.075993
Н	0.818242	-1.043811	2.109353	Н	-1.987484	-2.015356	-0.638157
Н	1.448326	0.685901	3.735998	Н	-2.137216	-1.623127	1.087448
Н	0.207105	2.839033	3.81496	С	-2.291019	1.240011	0.06821
Н	-2.309405	0.715023	-1.554245	Н	-3.355047	1.061634	-0.076303
Н	-4.641955	0.824861	-2.279888	Н	-2.137349	1.623204	1.087275
Н	-6.315031	-0.781519	-1.383345	Н	-1.987355	2.015299	-0.638337
Н	-5.591678	-2.510093	0.249224	Amino	alchol 3ah		
Н	-3.245671	-2.637526	0.961302	С	-2.647451	-0.461363	0.436582

С	-3.881701	0.061322	0.882127	Н	-1.768716	-1.905055	-0.910887
С	-5.08836	-0.453592	0.414002	Н	0.295407	-0.598515	1.788832
С	-5.1174	-1.504041	-0.500527	Н	-0.416064	-1.755639	0.686824
C	-3.902165	-2.024521	-0.949996	Н	0.551728	-0.272798	-2.255914
С	-2.688748	-1.516259	-0.502071	Н	-0.982171	1.437877	-1.388253
Ν	-1.446542	0.059392	0.897768	Н	-0.91245	3.896403	-1.525181
С	-0.209354	-0.693849	0.828975	Н	1.026715	5.143399	-0.594273
С	0.785893	-0.272865	-0.298718	Н	2.308307	-0.402775	2.023731
0	0.185394	-0.760244	-1.508968	Н	4.447593	-1.525374	2.381099
С	2.126351	-0.976512	-0.054319	Н	5.552564	-2.752488	0.522529
С	0.914216	1.252364	-0.391097	Н	4.449702	-2.843089	-1.70305
С	-0.130693	1.971745	-0.989673	Н	2.281903	-1.740624	-2.057006
С	-0.091339	3.360903	-1.062441	Н	2.90171	3.886661	0.443094
С	0.995479	4.061386	-0.539784	Н	2.836271	1.439154	0.565073
С	2.757267	-0.938086	1.196815	С	-1.469335	1.158486	1.852536
С	3.980821	-1.571457	1.403995	Н	-2.046881	1.999487	1.463843
С	4.601177	-2.258847	0.362487	Н	-1.891961	0.858894	2.821616
С	3.9825	-2.307742	-0.884369	Н	-0.451625	1.508919	2.010266
С	2.756111	-1.675676	-1.087337	Ketone	e 11		
С	2.044421	3.356374	0.04458	С	-1.28258	0.697705	0.049738
С	2.004906	1.963496	0.115666	С	-1.401486	-0.554212	0.676861
Н	-3.906386	0.866906	1.601651	С	-2.626534	-1.192993	0.758766
Н	-6.015659	-0.026753	0.780841	С	-3.766566	-0.603332	0.194478
Н	-6.058649	-1.902582	-0.85921	С	-3.665591	0.644693	-0.43494
Н	-3.894263	-2.833398	-1.672862	С	-2.433638	1.284573	-0.487707

С	2.626591	-1.192852	-0.758995	Н	6.366672	0.192793	-0.237012
С	3.766618	-0.603203	-0.194679	Amino	alchol 31a		
С	3.665602	0.644762	0.434852	С	-2.389227	-2.040624	0.234277
С	2.433626	1.284598	0.4877	С	-3.627757	-2.09148	0.900614
С	1.282587	0.697746	-0.049791	С	-4.652756	-2.904266	0.43164
С	1.401529	-0.554124	-0.677015	С	-4.472954	-3.701977	-0.700238
С	-0.00008	1.447694	0.000003	С	-3.243761	-3.666436	-1.355463
0	-0.000025	2.679373	0.00005	С	-2.213419	-2.843379	-0.905324
Н	-0.534167	-1.018273	1.128085	С	-1.113505	1.464578	3.286971
Н	-2.725142	-2.149424	1.257025	С	-2.104169	2.342755	2.854828
Н	-4.530589	1.117409	-0.877874	С	-2.861513	2.008158	1.730715
Н	-2.353891	2.25391	-0.963828	С	-2.621247	0.826706	1.042405
Н	2.725221	-2.149263	-1.257296	С	-1.618112	-0.057637	1.464407
Н	4.530596	1.117486	0.877784	С	-0.875732	0.272128	2.605862
Н	2.35387	2.253899	0.963889	Ν	-1.346724	-1.236695	0.723878
Н	0.53422	-1.018189	-1.128253	С	0.043211	-1.614417	0.51591
0	-4.917939	-1.309957	0.307554	С	0.820742	-0.88735	-0.640846
0	4.918044	-1.309716	-0.307918	Ο	0.690959	-1.771121	-1.771797
С	-6.117863	-0.756562	-0.242604	С	2.29639	-0.760871	-0.247673
Н	-6.022573	-0.613079	-1.32193	С	0.184924	0.460496	-0.995883
Н	-6.898676	-1.485119	-0.037925	С	-0.953737	0.476411	-1.816268
Н	-6.365967	0.193217	0.237871	С	-1.611934	1.657877	-2.114913
С	6.117702	-0.756831	0.243331	С	-1.156467	2.869468	-1.584843
Н	6.021475	-0.613192	1.322554	С	2.681699	-0.232298	0.994457
Н	6.898377	-1.485753	0.039428	С	4.016876	-0.084523	1.337565

С	5.020314	-0.469358	0.441238	Н	1.520959	1.719739	0.124863
C	4.660301	-1.003747	-0.796237	0	-1.884818	3.978058	-1.903637
С	3.309554	-1.143455	-1.123235	0	6.30503	-0.289255	0.862846
С	-0.01621	2.878119	-0.782002	C	7.361845	-0.659512	-0.023716
С	0.640789	1.679548	-0.500659	Н	7.315094	-0.0846	-0.953018
Н	-3.780733	-1.495493	1.790403	Н	8.285719	-0.427852	0.501749
Н	-5.595879	-2.924976	0.966529	Н	7.328601	-1.728777	-0.251312
Н	-5.273516	-4.336771	-1.06044	С	-1.471325	5.232354	-1.359933
Н	-3.08218	-4.274489	-2.238842	Н	-2.192587	5.964047	-1.717553
Н	-1.277074	-2.806864	-1.444454	Н	-1.483446	5.209715	-0.266543
Н	-0.522686	1.698932	4.165224	Н	-0.471345	5.503081	-1.710766
Н	-2.28426	3.271488	3.382891	Diketo	ne 1q		
Н	-3.630895	2.682896	1.372831	С	-3.851286	0.416017	0.072551
Н	-3.195489	0.591996	0.157419	С	-3.893993	-0.893275	0.569753
Н	-0.114611	-0.400598	2.978346	С	-5.086394	-1.611793	0.546852
Н	0.585087	-1.460068	1.442895	С	-6.23734	-1.037153	0.009977
Н	0.093822	-2.682098	0.306079	С	-6.200987	0.266573	-0.489889
Н	0.887144	-1.273376	-2.574402	С	-5.018041	0.993744	-0.447296
Н	-1.344353	-0.451705	-2.211215	С	0.211076	-1.127791	-0.789979
Н	-2.497328	1.65706	-2.73942	С	1.277298	-0.568066	-0.077341
Н	1.934307	0.088004	1.709587	С	1.055585	0.564183	0.717437
Н	4.299736	0.327365	2.298738	С	-0.211025	1.127575	0.79113
Н	5.409262	-1.319112	-1.509161	С	-1.277265	0.567868	0.07848
Н	3.057923	-1.573731	-2.083111	С	-1.055537	-0.564368	-0.716314
Н	0.369497	3.797982	-0.365692	С	-2.612425	1.241656	0.136958

0	-2.675498	2.461335	0.23545	С	4.655285	-2.708251	0.148781
Н	-3.005909	-1.341858	0.995582	С	5.543805	-3.445231	-0.630409
Н	-5.116295	-2.618212	0.946526	С	6.282196	-2.843275	-1.646915
Н	-7.161962	-1.601655	-0.017547	С	6.101639	-1.477815	-1.876373
Н	-7.095392	0.712334	-0.908451	С	5.211866	-0.728499	-1.116079
Н	-4.979644	2.008683	-0.82244	Ν	3.582676	-0.596236	0.704151
Н	0.386475	-2.000973	-1.405275	C	3.619252	0.851094	0.771724
Н	1.867117	0.99217	1.291306	C	2.551433	1.604129	-0.087422
Н	-0.386436	2.00077	1.406407	Ο	3.042144	1.51052	-1.434739
Н	-1.867057	-0.992304	-1.290234	C	2.505184	3.070797	0.35652
С	2.612508	-1.241813	-0.135858	С	1.19101	0.906495	-0.007748
С	3.851307	-0.416027	-0.072562	С	1.00942	-0.281101	-0.732222
С	3.893472	0.893204	-0.569997	С	-0.175324	-0.997402	-0.642336
С	5.018537	-0.993513	0.446481	С	-1.224067	-0.548942	0.164702
С	5.085786	1.61188	-0.548101	С	2.379896	3.424421	1.707082
Н	3.00502	1.34161	-0.995239	С	2.330259	4.760721	2.097967
C	6.201435	-0.266195	0.488031	С	2.404395	5.774586	1.144641
Н	4.980559	-2.008394	0.821826	С	2.529807	5.436204	-0.200616
C	6.237232	1.037461	-0.012047	С	2.582998	4.09772	-0.587959
Н	5.115248	2.618257	-0.947914	С	-1.056793	0.638376	0.87147
Н	7.096221	-0.711793	0.90595	С	0.136202	1.35668	0.78528
Н	7.161801	1.602087	0.01467	Н	4.113295	-3.21351	0.935084
0	2.675573	-2.461551	-0.233545	Н	5.660082	-4.50472	-0.428813
Amino	alchol 3qh			Н	6.973673	-3.420822	-2.248339
С	4.470081	-1.324978	-0.071977	Н	6.652674	-0.985118	-2.670457

Н	5.057107	0.311935	-1.356907	0	-3.296923	-0.785416	1.295354
Н	3.490948	1.1394	1.813357	Н	-4.101966	-1.306825	1.38752
Н	4.595916	1.225027	0.460886	С	-3.308152	-1.104852	-1.129461
Н	2.305915	1.64455	-2.042854	Н	-4.22595	-1.694115	-1.106808
Н	1.810725	-0.654042	-1.354583	Н	-2.70895	-1.498683	-1.950471
Н	-0.277901	-1.920598	-1.201074	Ν	-3.608899	0.280694	-1.429298
Н	2.307322	2.660788	2.471019	С	-4.729909	0.922802	-0.928647
Н	2.233116	5.006742	3.149058	С	-4.842568	2.329173	-1.004758
Н	2.367199	6.814462	1.447534	С	-5.816455	0.221024	-0.357973
Н	2.59209	6.213488	-0.953666	С	-5.978153	2.986776	-0.538331
Н	2.698793	3.854229	-1.635159	Н	-4.035408	2.916872	-1.417662
Н	-1.863927	1.010654	1.486427	С	-6.941862	0.89198	0.102624
Н	0.227517	2.27702	1.344631	Н	-5.79584	-0.856227	-0.27728
С	-2.251698	-2.807793	0.475228	С	-7.04141	2.282491	0.021377
С	-1.728329	-3.15281	1.728546	Н	-6.021502	4.068197	-0.611202
С	-2.463359	-3.820389	-0.46218	Н	-7.753956	0.314535	0.531072
С	-1.429724	-4.474264	2.038627	Н	-7.920709	2.798619	0.38679
Н	-1.554408	-2.372428	2.459305	С	2.828865	-1.272172	1.750653
С	-2.162794	-5.149612	-0.153103	Н	2.108865	-0.575088	2.173596
Н	-2.859735	-3.596868	-1.443295	Н	2.265054	-2.114948	1.345243
С	-1.646735	-5.48134	1.095303	Н	3.477946	-1.638935	2.557419
Н	-1.024984	-4.720769	3.013564	С	-2.624203	1.046393	-2.181579
Н	-2.334548	-5.921704	-0.894144	Н	-3.112847	1.618754	-2.975792
Н	-1.413046	-6.512408	1.333677	Н	-2.052464	1.738503	-1.554155
С	-2.535254	-1.325662	0.205444	Н	-1.919135	0.357144	-2.641685

Amino	alchol 3qa			С	-2.660237	5.592211	-0.320914
С	-3.420767	-1.257096	1.800362	С	-2.405727	4.428227	0.403777
C	-3.695217	-2.637331	1.74144	С	0.311582	0.537556	-1.685071
С	-3.681259	-3.414831	2.892935	С	-0.777663	1.266042	-1.216003
С	-3.411171	-2.846605	4.139432	Н	-3.925698	-3.096971	0.789991
С	-3.153268	-1.478994	4.206398	Н	-3.898262	-4.474516	2.814536
С	-3.148996	-0.689885	3.058163	Н	-3.403128	-3.456355	5.0348
С	-3.837507	-1.218428	-2.993604	Н	-2.936741	-1.013857	5.16196
С	-2.772229	-2.089038	-3.211342	Н	-2.912232	0.361913	3.133561
С	-1.957596	-2.44971	-2.137055	Н	-4.490416	-0.938225	-3.812444
С	-2.191003	-1.932812	-0.869783	Н	-2.578064	-2.482264	-4.202273
С	-3.25252	-1.04738	-0.645034	Н	-1.120364	-3.117132	-2.290033
С	-4.083211	-0.708389	-1.720009	Н	-1.531831	-2.19162	-0.053593
Ν	-3.457421	-0.472693	0.640024	Н	-4.931554	-0.05338	-1.568141
С	-3.684746	0.962446	0.705581	Н	-4.333331	1.239756	-0.117377
С	-2.417828	1.89575	0.674728	Н	-4.226753	1.200785	1.619979
0	-2.176964	2.217423	2.057214	Н	-1.27185	2.537835	2.148263
С	-2.742643	3.17345	-0.109464	Н	-0.759718	0.21302	1.994902
С	-1.19057	1.167919	0.113045	Н	1.158751	-1.023329	1.19502
С	-0.466363	0.322208	0.960099	Н	-3.622106	2.162663	-1.80577
С	0.62609	-0.397084	0.493635	Н	-4.078742	4.205251	-3.070345
С	1.031416	-0.302128	-0.837445	Н	-3.463281	6.426572	-2.137745
С	-3.352506	3.116827	-1.369766	Н	-2.390992	6.553824	0.100821
С	-3.608065	4.277148	-2.096669	Н	-1.952534	4.506569	1.382718
С	-3.262326	5.522537	-1.574974	Н	0.614644	0.637861	-2.71759

Н	-1.2991	1.914527	-1.905211	Н	5.889047	0.393843	-0.946282
С	1.738979	-2.516141	-1.756228	С	4.626926	3.446259	-1.754648
С	1.691068	-2.908687	-3.094863	Н	2.731141	4.209033	-1.073306
С	1.312095	-3.423997	-0.779512	Н	6.451038	2.420771	-2.262197
С	1.242579	-4.18172	-3.450255	Н	4.870779	4.333607	-2.327073
Н	1.991434	-2.212856	-3.866354	С	3.750028	-0.032517	1.830803
С	0.864319	-4.693741	-1.130556	С	3.39089	-1.146198	2.619291
Н	1.304679	-3.142856	0.265773	С	4.219235	1.112662	2.511396
С	0.830785	-5.080911	-2.470648	С	3.477411	-1.099688	4.008214
Н	1.211856	-4.464667	-4.496163	Н	3.042665	-2.065173	2.170844
Н	0.534726	-5.37782	-0.357307	С	4.298404	1.143734	3.898384
Н	0.479288	-6.068345	-2.745485	Н	4.522549	1.9825	1.946768
С	2.215549	-1.102639	-1.368106	С	3.925741	0.041805	4.668358
0	2.687385	-0.402792	-2.523513	Н	3.186515	-1.977059	4.575351
Н	3.510542	-0.812653	-2.812434	Н	4.662734	2.044757	4.379759
С	3.374385	-1.226333	-0.334582	Н	3.987698	0.070846	5.749193
Н	4.263726	-1.541442	-0.896148				
Н	3.157074	-2.039293	0.345412				
Ν	3.651038	-0.026824	0.439172				
С	3.992381	1.15659	-0.290453				
С	3.105834	2.233577	-0.321579				
С	5.200469	1.230106	-0.982611				
С	3.425138	3.376802	-1.048482				
Н	2.168839	2.161225	0.215212				
С	5.513496	2.370465	-1.720643				

6. References

- [S1] Weber, P.; Scherpf, T.; Rodstein, I.; Lichte, D.; Scharf, L. T.; Gooßen, L. J.; Gessner, V. H. Angew. Chem. Int. Ed. 2019, 58, 3203–3207.
- [S2] Wang, C.; Qin, J.; Shen, X.; Riedel, R.; Harms, K.; Meggers, E. Angew. Chem. Int. Ed. 2016, 55, 685–688.
- [S3] Zhao, X.; Chen, M.; Huang, B.; Yang, C.; Gao, Y.; Xia, W. Synthesis 2018, 50, 2981–2989.
- [S4] Liu, X. F.; Li, X. Y.; Qiao, C.; Fu, H. C.; He, L. N.; Angew. Chem. Int. Ed. 2017, 56, 7425-7429.
- [S5] Barker, T. J.; Jarvo, E. R. J. Am. Chem. Soc. 2009, 131, 15598–15599.
- [S6] Sumita, A.; Otani, Y.; Ohwada, T. Chem. Commun. 2017, 53, 1482–1485.
- [S7] Ding, W.; Lu, L. Q.; Liu, J.; Liu, D.; Song, H. T.; Xiao, W. J. J. Org. Chem. 2016, 81, 7237–7243.
- [S8] Tahara, A.; Miyamoto, Y.; Aoto, R.; Shigeta, K.; Une, Y.; Sunada, Y.; Motoyama, Y.; Nagashima, H. Organometallics 2015, 34, 4895–4907.
- [S9] Gaussian 09 (Revision E.01), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
- [S10] (a) Grimme, S.; J. Comp. Chem., 2006, 27, 1787-1799. (b) Grimme, S.; Ehrlich, S.; Goerigk, L.
 J. Comp. Chem. 2011, 32, 1456-1465.

[S11] M. Mammen, E. I. Shakhnovich, J. M. Deutch and G. M. Whitesides, J. Org. Chem., 1998, 63, 3821.

7. ¹H and ¹³C NMR spectra

Figure S2. ¹H NMR Spectrum of *N*,*N*–methylpheneylaniline.

Figure S3. ¹³C NMR Spectrum of *N*,*N*–methylpheneylaniline.

Figure S4. ¹H NMR Spectrum of *N*-methyl-di-p-tolylamine.

Figure S5. ¹³C NMR Spectrum of *N*-methyl-di-p-tolylamine.

Figure S6. ¹H NMR Spectrum of *N*-methyl-*N*-phenyl-4-fluorolaniline.

Figure S7. ¹³C NMR Spectrum of *N*-methyl-*N*-phenyl-4-fluorolaniline.

Figure S8. ¹H NMR Spectrum of *N*-methylcarbazole.

Figure S9. ¹H NMR Spectrum of *N*-methylcarbazole.

Figure S10. ¹H NMR Spectrum of *N*,*N*–ethylmethylaniline.

Figure S11. ¹³C NMR Spectrum of *N*,*N*–ethylmethylaniline.

Figure S12. ¹H NMR Spectrum of *N*,*N*–benzylmethylaniline.

Figure S13. ¹³C NMR Spectrum of *N*,*N*–benzylmethylaniline.

Figure S14. ¹H NMR Spectrum of 1,4–benzoylbenzene.

Figure S15. ¹³C NMR Spectrum of 1,4–benzoylbenzene.

Figure S16. ¹H NMR Spectrum of 3a.

Figure S17. ¹³C NMR Spectrum of 3a.

Figure S18. ¹H NMR Spectrum of 3b.

Figure S19. ¹³C NMR Spectrum of 3b.

Figure S20. ¹H NMR Spectrum of 3c.

Figure S21. ¹³C NMR Spectrum of 3c.

Figure S22. ¹H NMR Spectrum of 3d.

Figure S23. ¹³C NMR Spectrum of 3d.

Figure S24. ¹H NMR Spectrum of 3e.

Figure S25. ¹³C NMR Spectrum of 3e.

Figure S26. ¹H NMR Spectrum of 3f.

Figure S27. ¹³C NMR Spectrum of 3f.

Figure S28. ¹H NMR Spectrum of 3g.

Figure S29. ¹³C NMR Spectrum of 3g.

Figure S30. ¹H NMR Spectrum of 3h.

Figure S31. ¹³C NMR Spectrum of 3h.

Figure S32. ¹H NMR Spectrum of 3i.

Figure S33. ¹³C NMR Spectrum of 3i.

Figure S34. ¹H NMR Spectrum of 3j.

Figure S35. ¹³C NMR Spectrum of 3j.

Figure S36. ¹H NMR Spectrum of 3k.

Figure S37. ¹³C NMR Spectrum of 3k.

Figure S38. ¹H NMR Spectrum of 31.

Figure S39. ¹³C NMR Spectrum of 31.

Figure S40. ¹H NMR Spectrum of **3m**.

Figure S41. ¹³C NMR Spectrum of **3m**.

Figure S42. ¹H NMR Spectrum of **3n**.

Figure S43. ¹³C NMR Spectrum of **3n**.

Figure S44. ¹H NMR Spectrum of 30.

Figure S45. ¹³C NMR Spectrum of 30.

Figure S46. ¹H NMR Spectrum of **3p**.

Figure S47. ¹³C NMR Spectrum of **3p**.

Figure S48. ¹H NMR Spectrum of 3q.

Figure S49. ¹³C NMR Spectrum of 3q.

Figure S50. ¹H NMR Spectrum of 3r.

Figure S51. ¹³C NMR Spectrum of **3r**.

Figure S52. ¹H NMR Spectrum of 3s.

Figure S53. ¹³C NMR Spectrum of 3s.

Figure S54. ¹H NMR Spectrum of 3t.

Figure S55. ¹³C NMR Spectrum of 3t.

Figure S56. ¹H NMR Spectrum of 4a.

Figure S57. ¹³C NMR Spectrum of 4a.

Figure S58. ¹H NMR Spectrum of 4b.

Figure S59. ¹³C NMR Spectrum of 4b.

Figure S60. ¹H NMR Spectrum of 4c.

Figure S61. ¹³C NMR Spectrum of 4c.