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S1. Computational Details

Present details of the periodic Density Functional Theory (DFT) calculations follow the discussion in the 

main text. The valence electron density was expanded in a plane wave basis set with a kinetic energy cutoff 

of 415 eV. The effect of core electrons on the valence electron density was taken into account through the 

Projected Augmented Wave (PAW) method.1,2 The employed k-point meshes have been selected by a 

Monkhorst-Pack scheme,3 and a 9×9×1 mesh was used for all the slab calculations. A separating vacuum 

region of 10 Å between periodically repeated slabs was found to be sufficient to avoid spurious interactions 

between the interleaved slabs. The slabs were constructed using the lattice parameter taken from the 

optimized bulk TMC crystal.4 Each slab contains four atomic layers; the two uppermost ones have been 

allowed to fully relax, whereas the two bottom layers were fixed at optimized bulk crystal positions to 

simulate the bulk rigidity. To represent the (001) surface of the different TMCs, ( )R45° supercells 2 2 × 2 2

containing 32 C and 32 M (metal) atoms were used. All surface geometries were optimized before placing 

any adsorbate. Initial guesses for adsorbate geometries were obtained by placing the adsorbate at different 

sites. For atomic structure optimizations, the conjugated-gradient algorithm has been employed with an 

energy convergence criterion for electronic updates of 10-5 eV, and an atomic force convergence criterion of 

0.02 eV Å-1. Final total energies were obtained by extrapolation to 0 K (no smearing). The optimized 

geometries have been characterized as minima in the potential energy surface by frequency analysis with 

elements of the Hessian matrix computed as finite differences (0.03 Å displacements) of analytical 

gradients. 

The gas-phase energy for molecular hydrogen, , is calculated by placing the  molecule in an 
𝐸𝐻2(𝑔) 𝐻2
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asymmetric box of 9×10×11 Å at the -point. Then, the adsorption energy, , of either the adsorbed H2 ∆𝐸𝑖,𝑎𝑑𝑠

or the H species is calculated as:

∆𝐸𝐻2,𝑎𝑑𝑠
= 𝐸𝐻2,𝑠𝑙𝑎𝑏

‒ (𝐸𝑠𝑙𝑎𝑏+ 𝐸𝐻2(𝑔)) (1),

∆𝐸𝐻,𝑎𝑑𝑠= 𝐸𝐻,𝑠𝑙𝑎𝑏 ‒ (𝐸𝑠𝑙𝑎𝑏+ 12𝐸𝐻2(𝑔)) (2),

where  is the energy of the species 𝑖 adsorbed on the corresponding slab model and  is the energy of 𝐸𝑖,𝑠𝑙𝑎𝑏 𝐸𝑠𝑙𝑎𝑏

the relaxed clean slab. With this definition, the more negative the  value is, the stronger the adsorption ∆𝐸𝑖,𝑎𝑑𝑠

is. Note that the Zero Point Energy (ZPE) term is included in all reported energy values. 
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S2. Optimized Geometries of Adsorbate Species

Figure S1. Optimized geometries (top view) for H2, H, and H2,Kubas on all TMCs studied. C and H atoms are 

shown as grey and white spheres, respectively, whereas M atoms (M = Ti, Zr, Hf, V, Nb, Ta, Mo) are 

represented by spheres with a different color.
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S3. Optimized Geometries of Transition States

Figure S2a. Optimized geometries (top view) for the TSs I-III on all studied TMCs. Colour code is as in 

Figure S1. 
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Figure S2b. Optimized geometries (top view) for the TSs IV-VI on all studied TMCs. Colour code is as in 

Figure S1. 
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Figure S2c. Optimized geometries (top view) for the TSs VII and VIII on TaC. Colour code is as in Figure 

S1. 
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S4. Energy Profile for TaC

Figure S3. Energy profile (PBE-D3, including ZPE) for the H2 adsorption, diffusion, desorption, and 

dissociation on TaC(001) including TSs IV, V, VII, and VIII. 
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S5. Adsorption Energies without Dispersive Forces

Table S1. Calculated adsorption energy values ( ) for H2, H, and H2,Kubas on the (001) surface of the ∆𝐸𝑎𝑑𝑠

studied TMCs. All values have been obtained using the PBE exchange-correlation functional, and include 

the ZPE term.

 (eV)∆𝐸𝑎𝑑𝑠

Site TiC ZrC HfC VC NbC TaC -MoC𝛿

𝐻 ∗ (𝑡𝑜𝑝 ‒ 𝑀)
2 0.04 0.00 -0.01 0.10 0.03 0.00 -0.27

𝐻 ∗ (𝑡𝑜𝑝 ‒ 𝐶)
2 0.03 0.03 0.03 0.06 0.05 0.04 -0.49

𝐻 ∗ (𝑡𝑜𝑝 ‒ 𝑀) 1.77 1.57 1.20 0.88 0.58 0.26 0.46

𝐻 ∗ (𝑡𝑜𝑝 ‒ 𝐶) -0.15 -0.26 -0.19 0.46 0.48 0.57 -0.09

𝐻 ∗ (𝑡𝑜𝑝 ‒ 𝐶)
2,𝐾𝑢𝑏𝑎𝑠 -0.20 -0.36 -0.11 0.41 0.34 0.58 -0.91
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S6. Adsorption Energies without Dispersive Forces

Table S2. Calculated H-H bond length, d(H2), and interaction energy in between both H atoms, Eint — Eint = 

EKubas – 2·Hvac— for the obtained H2,Kubas situations on the (001) surface of the studied TMCs. Distances are 

given in Å and energies in eV, respectively.

TMC d(H2) Eint

TiC 1.73 -0.79

ZrC 1.72 -0.82

HfC 1.72 -0.83

VC 1.69 -0.90

NbC 1.69 -0.92

TaC 1.71 -0.85

-MoC𝛿 1.80 -0.55
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S7. Comparison with Other Materials on the Literature

Table S3. Calculated energy barriers for H2 dissociation with respect to H2(g) ( ) on different TMCs 𝐻2(𝑔)→2𝐻

and transition metal surfaces. All values except that for Ni(111) include the ZPE term.

Surface Energy barrier (eV) Ref.

TiC(001) 0.59 This work

ZrC(001) 0.41 This work

HfC(001) 0.37 This work

VC(001) 0.60 This work

NbC(001) 0.54 This work

TaC(001) 0.34 This work

-MoC(001)𝛿 ~0.00 This work

WC(001) ~0.00 5

Cu(111) 0.47 6

Cu(100) 0.54 6

Cu(211) 0.56 6

Ag(111) 1.03 6

Ag(100) 1.06 6

Ag(211) 1.03 6

Au(111) 0.95 6

Au(100) 0.68 6

Au(211) 0.75 6

Ni(111) 0.13 7

Pt(111) ~0.00 8
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