Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Carbazole-Containing Porphyrinoids and Its Oligomers

Tongjing Wu,^a Taeyeon Kim,^b Bangshao Yin,^a Kaisheng Wang,^a Ling Xu,^a Mingbo Zhou,^a Dongho Kim*^b and Jianxin Song*^a

^aKey Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and appplication of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha 410081, China. E-mail: jxsong@hunnu.edu.cn
^bSpectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei UniversitySeoul 03722 (Korea) E-mail: dongho@yonsei.ac.kr

Table of Contents

Instrumentation and Materials	S2
General Procedures	S3
Compound Data	
Spectra of Compounds	S12
Photophysical Properties	S40
Quantum Mechanical Calculations	S44
X-ray crystal date	S46
Supporting Reference	

Instrumentation and Materials

¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were taken on a Bruker AVANCE-500 spectrometer, and chemical shifts were reported as the delta scale in ppm. The residual peak of CDCl₃ was used as internal reference for ¹H NMR (δ = 7.26 ppm) and the solvent CDCl₃ was used as internal reference for ¹³C NMR (δ = 77.16 ppm). UV/Vis absorption spectra were recorded on a Shimadzu UV-3600 spectrometer. IR spectra were recorded on a Nicolet 670 FTIR spectrometer. MALDI-TOF mass spectra were obtained with a Bruker ultrafleXtreme MALDI-TOF/TOF spectrometer with matrix. X-Ray data were taken on a Rigaku Supernova diffractometer equipped with a EOS S2 CCD detector. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Diboryltripyrrane **5** was systhesized as the procedure we reported before.^[1]

Steady-state absorption spectra were measured on a UV/Vis/NIR spectrometer (Varian, Cary5000) and fluorescence spectra were measured on a fluorescence spectrophotometer (Hitachi, F-2500). Fluorescence spectra are spectrally corrected by using correction factor of the fluorescence spectrophotometer. HPLC-grade solvents were purchased from Sigma-Aldrich and used without further purification. For the steady-state fluorescence excitation anisotropy measurement,

Picosecond time-resolved fluorescence measurements.

A time-correlated single-photon-counting (TCSPC) system was used for measurements of spontaneous fluorescence decay. As an excitation light source, we used a mode-locked Ti:sapphire laser (Spectra Physics, MaiTai BB) which provides ultrashort pulse (center wavelength of 800 nm with 80 fs at FWHM) with high repetition rate (80 MHz). This high repetition rate was reduced to 800 kHz by using homemade pulse-picker. The pulse-picked output was frequency doubled by a 1-mm-thick BBO crystal (type-I, $\theta = 29.2^{\circ}$, EKSMA). The fluorescence was collected by a microchannel plate photomultiplier (MCP-PMT, Hamamatsu, R3809U-51) with a thermoelectric cooler (Hamamatsu, C4878) connected to a TCSPC board (Becker & Hickel SPC-130). The overall instrumental response function was about 25 ps (FWHM). A vertically polarized pump pulse by a Glan-laser polarizer was irradiated to samples, and a sheet polarizer set at an angle complementary to the magic angle (54.7°), was placed in the fluorescence collection path to obtain polarization-independent fluorescence decays.

Femtosecond transient absorption measurements.

A femtosecond time-resolved transient absorption (TA) spectrometer used for this study consisted of a femtosecond optical parametric amplifier (Quantronix, Palitra-FS) pumped by a Ti:sapphire regenerative amplifier system (Quantronix, Integra-C) operating at 1 kHz repetition rate and an accompanying optical detection system. The generated OPA pulses had a pulse width of ~100 fs and an average power of 1 mW in the range 550 to 690 nm, which were used as pump pulses. White light continuum (WLC) probe pulses were generated using a sapphire window (2 mm

thick) by focusing of small portion of the fundamental 800 nm pulses, which were picked off by a quartz plate before entering into the OPA. The time delay between pump and probe beams was carefully controlled by making the pump beam travel along a variable optical delay (Newport, ILS250). Intensities of the spectrally dispersed WLC probe pulses were monitored by high speed spectrometer (Ultrafast Systems). To obtain the time-resolved transient absorption difference signal (ΔA) at a specific time, the pump pulses were chopped at 500 Hz and absorption spectra intensities were saved alternately with or without pump pulse. Typically, 4000 pulses were used to excite samples and to obtain the TA spectra at a particular delay time. The polarization angle between pump and probe beam was set at the magic angle (54.7°) using a Glan-laser polarizer with a halfwave retarder to prevent polarization-dependent signals. The cross-correlation FWHM in the pumpprobe experiments was less than 200 fs, and chirp of WLC probe pulses was measured to be 800 fs in the 450-1300 nm regions. To minimize chirp, all reflection optics were used in the probe beam path, and a guartz cell of 2 mm path length was employed. After completing each set of fluorescence and TA experiments, the absorption spectra of all compounds were carefully checked to rule out the presence of artifacts or spurious signals arising from, for example, degradation or photo-oxidation of the samples in question.

General Procedures

Synthesis of 2: In a 500 mL flask containing $AlCl_3$ (0.8 g, 6 mmol), 1 (1 g, 6 mmol) was dissolved in 20 mL dry CH_2Cl_2 and 4 mL solution of *t*-BuCl (1.32 mL, 12 mmol) in CH_2Cl_2 was added dropwise and the mixture was stirred at room temperature for 24 h. The reaction mixture was diluted with CH_2Cl_2 , washed with water, dried over anhydrous sodium sulfate, and recrystallization with *n*-hexane, 2 was obtained as white solid (1.4 g, 5 mmol, 83% yield).

Synthesis of 3: In a 250 mL flask, 2 (500 mg, 1.8 mmol) was dissolved in 100 mL CHCl₃ and NBS (673 mg, 3.8 mmol) was added, the mixture was stirred at room temperature for 3.5 h. The reaction mixture was washed with water, dried over anhydrous sodium sulfate, Evaporation of the solvent and recrystallization with *n*-hexane, **3** was obtained as yellow solid (699 mg, 1.6 mmol, 89% yield).

Synthesis of 4H and 4Pd: A toluene-DMF solution (2 mL/1 mL) of 3 (43.6 mg, 0.1 mmol), 5 (71.3 mg, 0.1 mmol), Pd₂(dba)₃ (9.2 mg, 0.01 mmol), Sphos (16.4 mg, 0.04 mmol), Cs₂CO₃ (65.2 mg, 0.2 mmol) and CsF (30.4 mg, 0.2 mmol) was degassed through three freeze-pump-thaw cycles, and the reaction flask was purged with argon. The resulting mixture was stirred at reflux for 48 h. The reaction mixture was diluted with CHCl₃, washed with water, and dried over anhydrous sodium sulfate. Evaporation of the solvent followed by silica-gel column chromatography (CH₂Cl₂/*n*-hexane as an eluent) and recrystallization with MeOH, **4H** was obtained as bluish violet solids (7.8 mg, 0.0106 mmol, 10.6% yield); **4Pd** was obtained as green solids (3.6 mg, 0.0043 mmol, 4.3% yield).

Synthesis of 4Zn: To a solution of 4H (20 mg, 0.03 mmol) in CHCl₃/MeOH (5 mL/1 mL) was added (22 mg, 0.09 mmol) $Zn(OAc)_2 \cdot 2H_2O$ and then the mixture was stirred at room temperature for 5 h, the reaction mixture was passed through a short alumina column. Evaporation of the solvent and recrystallized from methanol, 4Zn was obtained as a green solid (21 mg, 0.026 mmol, 96% yield).

Synthesis of 4Ni: To a solution of 4H (20 mg, 0.027 mmol) in toluene (6 mL) was added (20 mg, 0.09 mmol) Ni(OAc)₂·4H₂O and then the mixture was stirred at reflux for 12 h, After cooling down to room temperature, the reaction mixture was passed through a short alumina column. Evaporation of the solvent and recrystallized from methanol, 4Ni was obtained as a green solid (20 mg, 0.026 mmol, 96% yield).

Synthesis of 4-Br: A solution of 4H (200 mg, 0.27 mmol) in $CHCl_3$ (250 mL) was cooled to 0 °C and a solution of NBS (42.7 mg, 0.24 mmol) in $CHCl_3$ (50 mL) was added dropwise. The mixture was washed with water, dried over anhydrous sodium sulfate. Evaporation of the solvent followed by silica-gel column chromatography (CH_2Cl_2/n -hexane as an eluent) and recrystallization with MeOH, 4-Br was obtained as a green solid (165.6 mg, 0.2 mmol, 75% yield).

Synthesis of 4-2Br: **4H** (200 mg, 0.27 mmol) was dissolved in 250 mL CHCl₃ and a solution of NBS (178 mg1.0 mmol) in CHCl₃ (50 mL) was added dropwise at room temperature. The mixture was stirred at room temperature for another 3.5 h. The reaction mixture was washed with water, dried over anhydrous sodium sulfate. Evaporation of the solvent and recrystallization with *n*-hexane, **4-2Br** was obtained as green solid (240 mg, 0.27 mmol, 99% yield).

Synthesis of 4-Bpin: A Schlenk tube containing **4-Br** (100 mg, 0.123 mmol), (Bpin)₂ (91.4 mg, 0.36 mmol), Pd(dppf)Cl₂ (4.4 mg, 0.006 mmol) and KOAc (23.5 mg, 0.24 mmol) was purged with argon, and then charged with 1,4-dioxane (5 mL). The resulting mixture was then stirred at reflux for 12 h, the reaction mixture was diluted with CHCl₃, washed with water, and dried over anhydrous sodium sulfate. Evaporation of the solvent followed by GPC (CHCl₃ as an eluent) and recrystallization with MeOH, **4-Bpin** was obtained as green solid (95.5 mg, 0.111 mmol, 90% yield);

4-2Bpin: A Schlenk tube containing **4-2Br** (100 mg, 0.112 mmol), $(Bpin)_2$ (254 mg, 1.1 mmol), Pd(dppf)Cl₂ (7.3 mg, 0.01 mmol) and KOAc (43.2 mg, 0.44 mmol) was purged with argon, and then charged with 1,4-dioxane (5 mL). The resulting mixture was then stirred at reflux for 16 h, the reaction mixture was diluted with CHCl₃, washed with water, and dried over anhydrous sodium sulfate. Evaporation of the solvent followed by GPC (CHCl₃ as an eluent) and recrystallization with MeOH, **4-2Bpin** was obtained as green solid (93.5 mg, 0.095 mmol, 85% yield).

Synthesis of 6H: A toluene-DMF solution (6 mL/3 mL) of 4-Br (244.2 mg, 0.3 mmol), 4-Bpin (258.3 mg, 0.3 mmol), Pd₂(dba)₃ (27.5 mg, 0.03 mmol), PPh₃ (31.5 mg, 0.12 mmol), Cs₂CO₃ (293.2mg, 0.9 mmol) and CsF (136.7 mg, 0.9 mmol) was degassed through three freeze-pump-thaw cycles, and the reaction flask was purged with argon. The resulting mixture was stirred at reflux for 48 h. The reaction mixture was diluted with CHCl₃, washed with water, and dried over anhydrous sodium sulfate. Evaporation of the solvent followed by silica-gel column chromatography (CH₂Cl₂/*n*-hexane as an eluent) and recrystallization with MeOH, **6H** was obtained as green solid (271.6 mg, 0.185 mmol, 62% yield).

Synthesis of 6Zn: To a solution of 6H (20 mg, 0.0136 mmol) in CHCl₃/MeOH (5 mL/1 mL) was added (22 mg, 0.09 mmol) $Zn(OAc)_2 \cdot 2H_2O$ and then the mixture was stirred at room temperature for 5 h, the reaction mixture was passed through a short alumina column, evaporated of the solvent and recrystallized from methanol and dichloromethane. 6Zn was obtained as agreen solid (20.6 mg, 0.013 mmol, 95% yield).

Synthesis of 7H: A toluene-DMF solution (6 mL/3 mL) of the mixture of 4-Br (244.2 mg, 0.3 mmol), 4-2Bpin (148 mg, 0.15 mmol), $Pd_2(dba)_3$ (27.5 mg, 0.03 mmol), PPh_3 (31.5 mg, 0.12 mmol), Cs_2CO_3 (293.2mg, 0.9 mmol) and CsF (136.7 mg, 0.9 mmol) was degassed through three freeze-pump-thaw cycles, and the reaction flask was purged with argon. The resulting mixture was stirred at reflux for 48 h. The reaction mixture was diluted with CHCl₃, washed with water, and dried over anhydrous sodium sulfate. Evaporation of the solvent followed by silica-gel column chromatography (CH₂Cl₂/*n*-hexane as an eluent) and recrystallization with MeOH, **7H** was obtained as green solid (267.4 mg, 0.12 mmol, 40.6% yield); Synthesis of 7Zn: To a solution of **7H** (20 mg, 0.009 mmol) in CHCl₃/MeOH (5 mL/1 mL) was added (22 mg, 0.09 mmol) $Zn(OAc)_2 \cdot 2H_2O$ and then the mixture was stirred at room temperature for 5 h, the reaction mixture was passed through a short alumina column, evaporated of the solvent and recrystallized from methanol and dichloromethane. **6Zn** was obtained as agreen solid (20.4 mg, 0.0085 mmol, 95% yield).

Compound Data.

2: ¹H NMR (500 MHz, CDCl₃) : $\delta = 8.08$ (d, J = 1.5 Hz, 2H, carbazole-H), 7.85 (s, 1H, N-H), 7.46 (dd, 2H, J = 8.5, 1.5 Hz, carbazole-H), 7.34 (d, J = 8.5 Hz, 2H, carbazole-H), 1.45 (s, 18H, *t*-Bu-H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 142.35$, 138.14, 123.65, 123.41, 116.29, 110.17, 34.83, 32.18 ppm.

3: ¹H NMR (500 MHz, CDCl₃) : δ = 8.13 (s, 1H, N-H), 7.97 (d, *J* = 1.5 Hz, 2H, carbazole-H), 7.64 (d, *J* = 1.5 Hz, 2H, carbazole-H), 1.44 (s, 18H, *t*-Bu-H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 144.88, 136.44, 126.77, 124.94, 116.09, 104.14, 35.06, 32.05 ppm.

4H: ¹H NMR (500 MHz, CDCl₃) : δ = 9.03 (s, 2H, N-H), 8.79 (d, *J* = 1.0 Hz, 2H, carbazole-H), 8.72 (d, J = 1.0 Hz, 2H, carbazole-H), 8.03 (d, J = 4.5 Hz, 2H, pyrrole-β-H), 7.32 (d, *J* = 4.5 Hz, 2H, pyrrole-β-H), 7.05 (s, 4H, Ar-*m*-H), 6.67 (s, 2H, pyrrole-β-H), 2.45 (s, 6H, Me-H), 2.10 (s, 12H, Me-H), 1.68 (s, 18H, *t*-Bu-H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 167.51, 152.48, 142.42, 137.8, 137.79, 136.17, 135.97, 135.78, 132.18, 128.03, 125.13, 124.63, 124.42, 122.27, 119.79, 114.58, 35.36, 32.52, 21.39, 20.57 ppm; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻¹ cm⁻¹]) = 328 (33700), 386 (50400), 579 (19100), 629 (24200) nm; IR (KBr disk): v = 3373, 2957, 2914, 2862, 1602, 1567, 1484, 1382, 1332, 1256, 1179, 932, 800 cm⁻¹; MALDI-TOF-MS (positive mode): m/z = 732.4056 [M]⁺, calcd for (C₅₂H₅₂N₄)⁺ = 732.4186.

4Pd: ¹H NMR (500 MHz, CDCl₃): δ = 9.51 (s, 2H, carbazole-H), 9.34 (s, 2H, carbazole-H), 8.97 (d, J = 3.5 Hz, 2H, pyrrole-β-H), 7.65 (s, 2H, pyrrole-β-H), 7.17 (s, 4H, Ar-*m*-H), 2.55 (s, 6H, Me-H), 2.01 (s, 12H, Me-H), 1.87 (s, 18H, *t*-Bu-H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 151.06, 142.52, 140.17, 138.31, 138.29, 137.83, 137.24, 136.97, 133.24, 131.34, 128.06, 127.99, 126.53, 123.28, 122.07, 120.79, 112.58, 35.79, 32.69, 21.51, 20.98 ppm; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻¹ cm⁻¹]) = 361 (22700), 427 (46200), 629 (14000), 660 (19200), 692 (37800) nm; IR (KBr disk): v = 2956, 2911, 2860, 1607, 1549, 1462, 1356, 1322, 1234, 1196, 1005, 835, 790 cm⁻¹; MALDI-TOF-MS (positive mode): m/z = 832.2734 [M]⁺, calcd for (C₅₂H₅₀N₄Pd)⁺ = 832.3086.

4Zn: ¹H NMR (500 MHz, CDCl₃): δ = 9.28 (s, 2H, carbazole-H), 9.21 (s, 2H, carbazole-H), 8.68 (d, *J* = 4.5 Hz, 2H, pyrrole-β-H), 7.87 (d, *J* = 4.5 Hz, 2H, pyrrole-β-H), 7.37 (s, 2H, pyrrole-β-H), 7.14 (s, 4H, Ar-*m*-H), 2.53 (s, 6H, Me-H), 2.07 (s, 12H, Me-H), 1.83 (s, 18H, *t*-Bu-H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ =

162.16, 148.19, 147.22, 145.97, 141.21, 138.00, 137.52, 134.03, 133.03, 127.91, 127.29, 123.77, 122.85, 120.28, 112.86, 35.59, 32.74, 21.46, 20.86 ppm; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻¹ cm⁻¹]) = 350 (26600), 410 (36200), 433 (38400), 633 (16800), 698 (36000) nm; IR (KBr disk): v = 2955, 2918, 2860, 1593, 1543, 1477, 1342, 1308, 1259, 1236, 1080, 991, 959, 835, 790 cm⁻¹; MALDI-TOF-MS (positive mode): m/z = 794.3319 [M]⁺, calcd for (C₅₂H₅₀N₄Zn)⁺ = 794.3321.

4Ni: ¹H NMR (500 MHz, CDCl₃): $\delta = 9.14$ (s, 2H, carbazole-H), 9.04 (s, 2H, carbazole-H), 8.71 (d, J = 4.0 Hz, 2H, pyrrole- β -H), 7.45 (s, 2H, pyrrole- β -H), 7.11 (s, 4H, Ar-*m*-H), 2.50 (s, 6H, Me-H), 1.99 (s, 12H, Me-H), 1.78 (s, 18H, *t*-Bu-H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 153.53$, 142.60, 139.81, 139.31, 138.05, 137.75, 136.30, 134.01, 129.49, 127.95, 127.91, 127.50, 122.63, 121.85, 119.88, 111.71, 35.53, 32.55, 21.45, 20.76 ppm; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻¹ cm⁻¹]) = 356 (17500), 390 (18400), 439 (39700), 706 (20900) nm; IR (KBr disk): v = 2956, 2914, 2858, 1626, 1574, 1474, 1357, 1224, 1192, 995, 836, 793 cm⁻¹; MALDI-TOF-MS (positive mode): m/z = 788.3121 [M]⁺, calcd for (C₅₂H₅₀N₄Ni)⁺ = 788.3383.

4-Br: ¹H NMR (500 MHz, CDCl₃): $\delta = 9.91$ (d, J = 1.5 Hz, 1H, carbazole-H), 8.87 (s, 1H, N-H), 8.81 (d, 1H, J = 1.5 Hz, carbazole-H), 8.80 (d, J = 1.5 Hz, 1H, carbazole-H), 8.76 (s, 1H, N-H), 8.72 (d, J = 1.5 Hz, 1H, carbazole-H), 8.05 (d, J = 4.5 Hz, 1H, pyrrole-β-H), 7.42 (s, 1H, pyrrole-β-H), 7.32 (d, J = 4.5 Hz, 1H, pyrrole-β-H), 7.05 (s, 4H, Ar-*m*-H), 6.73-6.71 (m, 1H, pyrrole-β-H), 6.68-6.66 (m, 1H, pyrrole-β-H), 2.45 (s, 6H, Me-H), 2.09 (s, 6H, Me-H), 2.08 (s, 6H, Me-H), 1.69 (s, 9H, *t*-Bu-H), 1.68 (s, 9H, *t*-Bu-H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 167.97$, 159.74, 153.28, 148.26, 142.56, 142.23, 139.06, 138.82, 138.01, 137.88, 137.78, 137.67, 136.84, 136.26, 135.94, 135.78, 135.45, 133.45, 131.58, 128.12, 125.84, 125.78, 124.97, 124.70, 124.42, 123.85, 122.06, 120.02, 119.77, 114.50, 35.73, 35.34, 32.57, 32.48, 21.38, 20.59, 20.53 ppm.

4-2Br: ¹H NMR (500 MHz, CDCl₃): $\delta = 9.87$ (s, 2H, carbazole-H), 8.80 (s, 2H, carbazole-H), 8.62 (s, 1H, N-H), 8.51 (s, 1H, N-H), 7.41 (s, 2H, pyrrole- β -H), 7.04 (s, 4H, Ar-*m*-H), 6.70 (s, 2H, pyrrole- β -H), 2.45 (s, 6H, Me-H), 2.07 (s, 12H, Me-H), 1.69 (s, 18H, *t*-Bu-H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 160.37$, 149.02, 142.35, 138.79, 138.18, 138.08, 137.64, 135.95, 135.39, 132.92, 128.20, 126.03, 124.76, 123.51, 120.00, 115.32, 114.37, 35.71, 32.53, 21.38, 20.54 ppm.

4-Bpin: ¹H NMR (500 MHz, CDCl₃): δ = 9.55 (d, *J* = 1.5 Hz, 1H, carbazole-H), 9.07 (s, 1H, N-H), 9.05 (s, 1H, N-H), 8.77 (d, *J* = 1.5 Hz, 1H, carbazole-H), 8.74 (d, *J* = 1.5 Hz, 1H, carbazole-H), 8.67 (d, *J* = 1.5 Hz, 1H, carbazole-H), 8.01 (d, *J* = 4.5 Hz, 1H, pyrrole-*β*-H), 7.42 (s, 1H, pyrrole-*β*-H), 7.28 (d, *J* = 4.5 Hz, 1H, pyrrole-*β*-H), 7.04 (s, 4H, Ar-*m*-H), 6.62-6.61 (m, 1H, pyrrole-*β*-H), 6.59-6.57 (m, 1H, pyrrole-*β*-H),

2.46 (s, 3H, Me-H), 2.44 (s, 3H, Me-H), 2.09 (s, 6H, Me-H), 2.07 (s, 6H, Me-H), 1.71 (s, 9H, *t*-Bu-H), 1.67 (s, 9H, *t*-Bu-H). 1.44 (s, 12H, BPin-H) ppm; ¹³C NMR (125 MHz, CDCl₃):δ = 170.59, 167.80, 152.90, 151.27, 150.89, 142.28, 142.11, 138.44, 137.80, 137.72, 137.53, 136.50, 136.34, 135.71, 135.61, 135.51, 132.77, 131.66, 128.23, 128.07, 128.04, 125.51, 125.09, 124.28, 123.93, 123.16, 121.91, 119.64, 118.86, 116.62, 114.57, 84.10, 35.72, 35.29, 32.64, 32.49, 25.05, 21.42, 21.38, 20.64, 20.58 ppm.

4-2Bpin: ¹H NMR (500 MHz, CDCl₃): δ = 9.41 (d, *J* = 1.5 Hz, 2H, carbazole-H), 9.07 (s, 1H, N-H), 9.04 (s, 1H, N-H), 8.72 (d, *J* = 1.5 Hz, 2H, carbazole-H), 7.87 (s, 2H, pyrrole-β-H), 7.02 (s, 4H, Ar-*m*-H), 6.53 (s, 2H, pyrrole-β-H), 2.44 (s, 6H, Me-H), 2.06 (s, 12H, Me-H), 1.69 (s, 18H, *t*-Bu-H). 1.42(s, 24H, BPin-H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 171.05, 151.73, 150.51, 141.90, 138.23, 137.81, 137.56, 136.13, 135.96, 132.36, 128.09, 124.43, 122.76, 118.83, 116.60, 84.07, 35.64, 32.62, 25.04, 21.41, 20.65 ppm.

6H: ¹H NMR (500 MHz, CDCl₃): δ = 9.09 (s, 2H, N-H), 9.00 (s, 2H, N-H), 8.68 (s, 2H, carbazole-H), 8.61 (s, 4H, carbazole-H), 8.33 (s, 2H, carbazole-H), 8.04 (d, J = 4.5 Hz, 2H, pyrrole-β-H), 7.35-7.32 (m, 4H, pyrrole-β-H), 7.09-7.05 (m, 6H, Ar-*m*-H), 6.96 (s, 2H, Ar-*m*-H), 6.69 (s, 2H, pyrrole-β-H), 6.65 (s, 2H, pyrrole-β-H), 2.47 (s, 6H, Me-H), 2.38 (s, 6H, Me-H), 2.20 (s, 6H, Me-H), 2.17 (s, 6H, Me-H), 2.14 (s, 6H, Me-H), 2.12 (s, 6H, Me-H), 1.62 (s, 18H, *t*-Bu-H), 0.67 (s, 18H, *t*-Bu-H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 167.56, 165.91, 152.73, 150.45, 142.14, 141.87, 139.35, 138.24, 137.87, 137.83, 137.75, 137.73, 137.68, 137.62, 136.28, 136.12, 135.79, 135.71, 135.59, 132.44, 131.88, 128.07, 126.63, 125.31, 124.79, 124.23, 123.90, 122.64, 122.10, 119.57, 118.87, 115.24, 114.48, 35.25, 34.55, 32.45, 31.44, 21.42, 21.35, 20.82, 20.64 ppm; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻¹ cm⁻¹]) = 329 (82200), 393 (121300), 597 (48800), 654 (70600) nm; IR (KBr disk): ν = 3381, 2957, 2911, 2858, 1600, 1566, 1483, 1383, 1333, 1255, 1176, 930, 828 cm⁻¹; MALDI-TOF-MS (positive mode): *m/z* = 1462.8171 [M]⁺, calcd for (C₁₀₄H₁₀₂N₈)⁺ = 1462.8222.

6Zn: ¹H NMR (500 MHz, CDCl₃): δ = 9.51 (d, *J* = 1.0 Hz, 2H, carbazole-H), 9.26 (d, *J* = 1.0 Hz, 2H, carbazole-H), 9.06 (d, *J* = 1.0 Hz, 2H, carbazole-H), 8.80 (d, *J* = 1.0 Hz, 2H, carbazole-H), 8.72 (d, *J* = 4.5 Hz, 2H, pyrrole-β-H), 7.92 (d, *J* = 4.5 Hz, 2H, pyrrole-β-H), 7.90 (s, 2H, pyrrole-β-H), 7.42 (d, *J* = 4.5 Hz, 2H, pyrrole-β-H), 7.37 (d, *J* = 4.5 Hz, 2H, pyrrole-β-H), 7.17 (2H, Ar-*m*-H), 7.15 (2H, Ar-*m*-H), 7.07 (s, 2H, Ar-*m*-H), 6.95 (s, 2H, Ar-*m*-H), 2.55 (s, 6H, Me-H), 2.36 (s, 6H, Me-H), 2.18 (s, 6H, Me-H), 2.13 (s, 6H, Me-H), 2.08-2.07 (m, 12H, Me-H), 1.77 (s, 18H, *t*-Bu-H), 0.49 (s, 18H, *t*-Bu-H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 162.28, 160.07, 148.50, 148.48, 147.46, 146.03, 145.60, 141.19, 140.67, 138.14, 138.06, 137.99, 137.87, 137.65, 137.56, 137.49, 137.38, 135.65, 134.04, 132.98, 132.77, 128.16, 127.95, 127.83, 127.48, 127.42, 127.33, 126.73, 123.51, 123.01, 120.02, 119.50, 113.84, 112.80, 35.53, 34.60, 32.69, 31.45, 21.50, 21.32, 21.19, 21.15, 21.04, 20.94 ppm; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻¹ cm⁻¹]) = 354 (68000), 415 (89500),

438 (101700), 656 (43000), 728 (113600) nm; IR (KBr disk): v = 2954, 2914, 2861, 1589, 1536, 1445, 1339, 1287, 1260, 1232, 1204, 992, 951, 834, 792, 727 cm⁻¹; MALDI-TOF-MS (positive mode): $m/z = 1586.6171 \text{ [M]}^+$, calcd for $(C_{104}H_{98}N_8Zn_2)^+ = 1586.6492$.

7H: ¹H NMR (500 MHz, CDCl₃): δ = 9.12-9.09 (m, , 2H, N-H), 9.06-8.94 (m, 4H, N-H), 8.80 (d, J = 1.5 Hz, 1H, carbazole-H), 8.75 (d, J = 1.5 Hz, 1H, carbazole-H), 8.70 (d, J = 1.0 Hz, 1H, carbazole-H), 8.68 (d, J = 1.0 Hz, 1H, carbazole-H), 8.67 (d, J = 1.0 Hz, 2H, carbazole-H), 8.66 (d, J = 1.0 Hz, 1H, carbazole-H), 8.63 (d, J = 1.0 Hz, 1H, carbazole-H), 8.43 (d, J = 1.5 Hz, 1H, carbazole-H), 8.35 (d, J = 1.5 Hz, 1H, carbazole-H), 8.25 (d, J = 1.5 Hz, 1H, carbazole-H), 8.20 (d, J = 1.5 Hz, 1H, carbazole-H), 8.07-8.05 (m, 2H, pyrrole-β-H), 7.37-7.33 (m, 6H, pyrrole-β-H), 7.09-7.06 (m, 8H, Ar-m-H), 7.01-6.96 (m, 4H, Ar-m-H), 6.72-6.71 (m, 4H, pyrrole-β-H), 6.68-6.66 (s, 2H, pyrrole-β-H), 2.47 (s, 6H, Me-H), 2.43(s, 3H, Me-H), 2.40 (s, 6H, Me-H), 2.39 (s, 3H, Me-H), 2.29 (s, 3H, Me-H), 2.25 (s, 3H, Me-H), 2.21 (s, 12H, Me-H), 2.18 (s, 3H, Me-H), 2.17 (s, 6H, Me-H), 2.14 (s, 9H, Me-H), 1.64 (s, 9H, t-Bu-H), 1.62 (s, 9H, t-Bu-H), 0.81 (s, 9H, t-Bu-H H), 0.68 (s, 9H, *t*-Bu-H), 0.65 (s, 9H, *t*-Bu-H), 0.64 (s, 9H, *t*-Bu-H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta =$ 167.58, 165.96, 165.92, 165.88, 165.74, 152.74, 150.70, 150.65, 150.48, 142.20, 142.13, 141.97, 141.94, 141.82, 141.70, 139.73, 139.68, 139.59, 139.57, 138.36, 138.28, 138.24, 137.92, 137.89, 137.83, 137.78, 137.73, 137.65, 136.37, 136.30, 136.23, 136.19, 136.16, 136.03, 135.88, 135.82, 135.79, 135.75, 135.67, 135.59, 132.46, 132.38, 132.08, 131.94, 131.92, 131.88, 128.08, 127.02, 126.82, 126.67, 126.54, 125.31, 124.87, 124.83, 124.29, 124.26, 124.21, 123.97, 123.91, 122.64, 122.61, 122.52, 122.11, 119.57, 118.86, 118.72, 115.38, 115.26, 115.23, 114.54, 114.50, 35.27, 35.25, 34.70, 34.58, 34.50, 34.47, 32.46, 32.45, 31.61, 31.42, 31.39, 21.41, 21.38, 21.35, 20.99, 20.90, 20.87, 20.82, 20.63 ppm; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻¹ cm⁻ (1) = 332 (111800), 397 (161000), 607 (64000), 671 (82700) nm; IR (KBr disk): <math>v = 3379, 2956, 2923, 2858, 2923, 2858, 2923, 2956, 2923, 2956, 2923, 2958, 2958,1602, 1567, 1383, 1332, 1259, 1194, 1129, 1048, 929, 827 cm⁻¹; MALDI-TOF-MS (positive mode): m/z =2193.1797 [M]⁺, calcd for $(C_{156}H_{152}N_{12})^+$ = 2193.2257.

7Zn: ¹H NMR (500 MHz, CDCl₃): $\delta = 9.52$ (d, J = 1.0 Hz, 1H, carbazole-H), 9.51 (d, J = 1.0 Hz, 1H, carbazole-H), 9.48 (d, J = 1.0 Hz, 1H, carbazole-H), 9.41 (d, J = 1.0 Hz, 1H, carbazole-H), 9.26 (s, 2H, carbazole-H), 9.06 (s, 2H, carbazole-H), 8.80 (s, 2H, carbazole-H), 8.72 (d, J = 4.5 Hz, 2H, pyrrole-β-H), 8.67 (s, 1H, carbazole-H), 8.64 (s, 1H, carbazole-H), 8.02 (s, 1H, pyrrole-β-H), 7.99 (s, 2H, pyrrole-β-H), 7.97 (s, 1H, pyrrole-β-H), 7.92 (dd, J = 4.5, 1.5 Hz, 2H, pyrrole-β-H), 7.46 (s, 2H, pyrrole-β-H), 7.44-7.43 (m, 2H, pyrrole-β-H), 7.41-7.39 (m, 2H, pyrrole-β-H), 7.18 (s, 2H, Ar-*m*-H), 7.16 (s, 2H, Ar-*m*-H), 7.13-7.11 (m, 4H, Ar-*m*-H), 7.00 (s, 2H, Ar-*m*-H), 6.98 (s, 2H, Ar-*m*-H), 2.54 (s, 6H, Me-H), 2.41-2.39 (m, 12H, Me-H), 2.28 (s, 3H, Me-H), 2.21 (s, 3H), 2.17-2.16 (m, 15H, Me-H), 2.12 (s, 3H, Me-H), 2.10-2.09 (m, 12H, Me-H), 1.76 (s, 18H, *t*-Bu-H), 0.50 (s, 18H, *t*-Bu-H), 0.43 (s, 9H, *t*-Bu-H), 0.42 (s, 9H, *t*-Bu-H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 162.38$, 160.27, 160.20, 160.10, 148.95, 148.91, 148.59, 147.53, 146.05,

145.93, 145.69, 141.34, 140.87, 140.71, 138.16, 138.11, 138.04, 137.93, 137.68, 137.61, 137.47, 135.73, 134.11, 133.04, 132.76, 132.68, 132.56, 128.21, 127.98, 127.92, 127.71, 127.60, 127.51, 127.38, 126.79, 126.45, 123.53, 123.06, 120.08,119.51, 119.34, 113.88, 112.79, 35.54, 34.64, 34.61, 34.55, 34.51, 21.50, 21.36, 21.21, 20.95 ppm; UV/Vis (CH₂Cl₂): λ_{max} (ε [M⁻¹ cm⁻¹]) = 358 (89200), 441 (134400), 676 (56400), 715 (65600), 747 (140500) nm; IR (KBr disk): v = 2954, 2911, 2859, 1590, 1536, 1446, 1384, 1339, 1261, 1232, 1201, 993, 948, 833 cm⁻¹; MALDI-TOF-MS (positive mode): m/z = 2378.9586 [M]⁺, calcd for (C₁₅₆H₁₄₆N₁₂Zn₃)⁺ = 2378.9662.

Spectra of Compounds

Figure S1. ¹H NMR spectrum of 2 in CDCl₃.

Figure S2 . ¹³C NMR spectrum of 2 in CDCl₃.

Figure S4. ¹³C NMR spectrum of 3 in CDCl₃.

Figure S5. ¹H NMR spectrum of 4H in CDCl₃.

Figure S6. ¹³C NMR spectrum of 4H in CDCl₃.

Figure S7. ¹H NMR spectrum of 4Pd in CDCl₃.

Figure S8. ¹³C NMR spectrum of 4Pd in CDCl₃.

Figure S9. ¹H NMR spectrum of 4Zn in CDCl₃.

Figure S10. ¹³C NMR spectrum of 4Zn in CDCl₃.

Figure S11. ¹H NMR spectrum of 4Ni in CDCl₃.

Figure S12. ¹³C NMR spectrum of 4Ni in CDCl₃.

Figure S13. ¹H NMR spectrum of 4-Br in CDCl₃.

Figure S14. ¹³C NMR spectrum of 4-Br in CDCl₃.

Figure S15. ¹H NMR spectrum of 4-2Br in CDCl₃.

Figure S16. ¹³C NMR spectrum of 4-2Br in CDCl₃.

Figure S17. ¹H NMR spectrum of 4-Bpin in CDCl₃.

Figure S18. ¹³C NMR spectrum of 4-Bpin in CDCl₃.

Figure S19. ¹H NMR spectrum of 4-2Bpin in CDCl₃.

Figure S20 ¹³C NMR spectrum of 4-2Bpin in CDCl₃.

Figure S21. ¹H NMR spectrum of 6H in CDCl₃.

Figure S22. ¹³C NMR spectrum of 6H in CDCl₃.

Figure S23. ¹H NMR spectrum of 6Zn in CDCl₃.

Figure S24. ¹³C NMR spectrum of 6Zn in CDCl₃.

Figure S25. ¹H NMR spectrum of 7H in CDCl₃.

Figure S26. ¹³C NMR spectrum of 7H in CDCl₃.

Figure S27. H-D exchanged ¹H NMR spectrum of 7H in CDCl₃.

Figure S28. H-H COSY spectrum of 7H in CDCl₃.

Figure S29. ¹H NMR spectrum of 7Zn in CDCl₃.

Figure S30. ¹³C NMR spectrum of 7Zn in CDCl₃.

Photophysical Properties

Figure S31. UV/Vis absorption spectra of 4H, 4Pd, 4Ni and 4Zn in CH₂Cl₂.

Figure S32. UV/Vis absorption spectra of 6H, 6Zn, 7H and 7Zn in CH₂Cl₂.

Figure S33. Fluorescence decay profiles of 4Zn, 6Zn and 7Zn in toluene (left) and CH₂Cl₂ (right).

Figure S34. Absorption and fluorescence spectra of 4Zn, 6Zn, and 7Zn in toluene.

Table S1. Fluorescence parameters of 4Zn, 6Zn, and 7Zn in toluene and DCM.

Solvent	Compound	λ_{Fmax} (nm)	Φ_{F}	τ _F (ns)	k _r (s⁻¹)	k _{nr} (s⁻¹)
	4Zn	716	0.32	4.6	7.0x10 ⁷	1.5x10 ⁸
Toluene	6Zn	766	0.36	2.5	1.4x10 ⁸	2.6x10 ⁸
	7Zn	774	0.36	2.3	1.6x10 ⁸	2.7x10 ⁸
	4Zn	716	0.14	3.9	3.6x10 ⁷	2.2x10 ⁸
DCM	6Zn	743	0.10	1.4	7.1x10 ⁷	6.4x10 ⁸
	7Zn	770	0.19	1.4	1.4x10 ⁸	5.7x10 ⁸

Figure S35. Fs-transient absorption (TA) spectra of 4Zn, 6Zn, and 7Zn in toluene recorded during 5 ns.

Figure S36. (a) Extracted species associated spectra (SAS) and (b) scheme of excited-state dynamics of 4Zn, 6Zn, and 7Zn

Quantum mechanical calculations

Quantum mechanical calculations were carried out with Gaussian 16 program suite.² Geometry optimization in ground state (S_0) was performed by density functional theory (DFT) and time-dependent DFT (TD-DFT), respectively, method with B3LYP,³ employing a basis set consisting of 6-31G(d) for all atoms.⁴

Figure S37. Electron density difference maps (EDDM) of S_0 to S_1 transition. Arrows indicate the direction of the transition dipole moment, *f* the oscillator strength, and wavenumbers (cm⁻¹) the lowest transition energy. Red: positive isovalue and purple for negative isovalue.

Figure S38. Electron density difference maps (EDDM) of four lowest transitions of 6Zn

 T1: 625 nm
 T4: 488 nm

 Osc. Strength: 0.83
 T4: 488 nm

 Osc. Strength: 0.10
 T

 T2: 575 nm
 T5: 478 nm

 Osc. Strength: 0.28
 T5: 478 nm

 Osc. Strength: 0.28
 T

 T3: 557 nm
 T6: 478 nm

 Osc. Strength: 0.03
 T6: 478 nm

 Osc. Strength: 0.01
 T

Figure S39. Electron density difference maps (EDDM) of six lowest transitions of 7Zn.

Figure S40. Electron density difference map for the first electronic transitions.

Figure S41. HOMO and LUMO of Zn-free (left) and Zn monomer (right).

X-ray crystal data

Empirical formula	$C_{52}H_{52}N_4$			
Formula weight	732.42			
Temperature(K)	100.01(10)			
Wavelength(Å)	0.71073			
Crystal system	Triclinic			
Space group	<i>P</i> -1			
Unit cell dimensions	$a = 14.3365(2) \text{ Å} \alpha = 99.6885(12)^{\circ}$			
	b = 16.9978(3) Å β = 106.9925(12)°			
	$c = 21.8178(3) \text{ Å} \gamma = 99.9700(12)^{\circ}$			
Volume(Å ³)	4870.73(13)			
Ζ	2			
Density(calc) (Mg/cm ³)	1.090			
M(mm ⁻¹)	0.484			
F(000)	1712.0			
Crystal size(mm ³)	$0.15 \times 0.07 \times 0.03$			
2θ for data collection	8.208 to 133.2°			
Index ranges	$-17 \le h \le 17, -20 \le k \le 20, -26 \le l \le 26$			
Reflections collected	17184			
Independent reflections	17184 [R(int) = 0.0428]			
Data/restraints/parameters	17184 / 42 / 1113			
Goodness-of-fit on F ²	1.050			
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0605, wR_2 = 0.1714$			
R indexes (all data)	$R_1 = 0.0748, wR_2 = 0.1829$			
Largest diff. peak and hole(e Å-3)	0.88 and -0.54			
CCDC No.	1921822			

Table S2. Crystal data and structure refinement for 4H

Figure S42. X-ray crystal structure of **4H**. (a) Top view, black figures indicate the C-C bond lengths (Å), blue figures indicate the C-C bond lengths (Å), pink figures indicate the C-N-C bond angles (°) (b) side view. The thermal ellipsoids are 50% probability level. Hydrogen atoms (except hydrogen atoms of nitrogen), *tert*-Butyl groups and solvent molecules are omitted for clarity.

Empirical formula	$C_{52}H_{50}N_4Pd$		
Formula weight	837.36		
Temperature(K)	99.99(10)		
Wavelength(Å)	0.71073		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	$a = 14.3716(2) \text{ Å} \alpha = 99.8281(10)^{\circ}$		
	$b = 16.9373(2) \text{ Å} \beta = 106.8207(13)^{\circ}$		
	$c = 21.8677(2) \text{ Å} \gamma = 100.5416(12)^{\circ}$		
Volume(Å ³)	4865.73(12)		
Ζ	2		
Density(calc) (Mg/cm ³)	1.143		
M(mm ⁻¹)	3.338		
F(000)	1744.0		
Crystal size(mm ³)	$0.20\times0.15\times0.05$		
2θ for data collection	8.208 to 133.2°		
Index ranges	$-17 \le h \le 17, -20 \le k \le 20, -27 \le l \le 2$		
Reflections collected	66551		
Independent reflections	17134 [R(int) = 0.0686]		
Data/restraints/parameters	17134 / 0 / 1051		
Goodness-of-fit on F ²	1.073		
Final R indexes [$I \ge 2\sigma$ (I)]	$R_1 = 0.0492, wR_2 = 0.1336$		
R indexes (all data)	$R_1 = 0.0545, wR_2 = 0.1382$		
Largest diff. peak and hole(e Å-3)	1.52 and -1.99		
CCDC No.	1921946		

Table S3. Crystal data and structure refinement for 4Pd

Figure S43. X-ray crystal structure of **4Pd**. (a) Top view, black figures indicate the C-C bond lengths (Å), blue figures indicate the C-C bond lengths (Å), pink figures indicate the C-N-C bond angles (°) (b) side view. The thermal ellipsoids are 50% probability level. Hydrogen atoms, *tert*-Butyl groups are omitted for clarity.

Empirical formula	$C_{104}H_{102}N_8$
Formula weight	1463.93
Temperature(K)	100.02(10)
Wavelength(Å)	0.71073
Crystal system	Triclinic
Space group	<i>P</i> -1
Unit cell dimensions	$a = 14.9926(4) \text{ Å} \alpha = 88.588(2)^{\circ}$
	$b = 19.2244(6) \text{ Å} \beta = 88.777(2)^{\circ}$
	$c = 19.7967(6) \text{ Å} \gamma = 70.557(3)^{\circ}$
Volume(Å ³)	5378.4(3)
Ζ	2
Density(calc) (Mg/cm ³)	0.904
M(mm ⁻¹)	0.402
F(000)	1564.0
Crystal size(mm ³)	0.6 imes 0.2 imes 0.15
Radiation	CuK α (λ = 1.54184)
2θ for data collection	9.124 to 133.2°
Index ranges	$-17 \le h \le 18, -23 \le k \le 23, -24 \le l \le 24$
Reflections collected	18980
Independent reflections	18980 [R(int) = 0.0621]
Data/restraints/parameters	18980/12/1033
Goodness-of-fit on F ²	1.105
R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0930, wR_2 = 0.2734$
R indexes (all data)	$R_1 = 0.1173, wR_2 = 0.2952$
Largest diff. peak and hole(e Å-3)	0.67 and -0.49
CCDC No.	1921824

Table S4. Crystal data and structure refinement for $\mathbf{6H}$

Figure S44. X-ray crystal structure of **6H**. The thermal ellipsoids are 30% probability level. (a) Top view, (b) side view. Hydrogen atoms (except hydrogen atoms of nitrogen) and *tert*-Butyl groups are omitted for clarity.

Table 55. Crystal data and structure refinement for OZ		Table S5.	Crystal	data	and	structure	refinement	for	6Z1
---	--	-----------	---------	------	-----	-----------	------------	-----	-----

Empirical formula	$C_{108}H_{110}N_8O_2Zn_2$
Formula weight	1682.77
Temperature(K)	100.01(10)
Wavelength(Å)	0.71073
Crystal system	Monoclinic
Space group	$P2_1/n$
Unit cell dimensions	$a = 25.7916(8) \text{ Å} \alpha = 90^{\circ}$
	$b = 12.9587(3) \text{ Å} \beta = 106.236(3)^{\circ}$
	$c = 36.5620(11) \text{ Å} \gamma = 90^{\circ}$
Volume(Å ³)	11732.6(6)
Z	4
Density(calc) (Mg/cm ³)	0.953
M(mm ⁻¹)	0.830
F(000)	3560.0
Crystal size(mm ³)	$0.3\times0.3\times0.06$
Radiation	CuK α (λ = 1.54184)
20 for data collection	7.14 to 133.2°
Index ranges	$-30 \le h \le 30, -15 \le k \le 13, -43 \le l \le 37$
Reflections collected	20751
Independent reflections	20751 [R(int) = 0.1037]
Data/restraints/parameters	20751/54/1114
Goodness-of-fit on F ²	0.888
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0598, wR_2 = 0.1464$
Final R indexes (all data)	$R_1 = 0.0951, wR_2 = 0.1620$
Largest diff. peak and hole(e Å-3)	0.83 and -0.49
CCDC No.	1921825

Figure S45. X-ray crystal structure of **6Zn**. (a) Top view, (b) side view. The thermal ellipsoids are 50% probability level. Hydrogen atoms, *tert*-Butyl groups, methanol and *i*-propanol coordinate to Zn are omitted for clarity.

Supporting Reference

- Y. Rao, T. Kim, K. Park, F. Peng, L. Liu, Y. Liu, B. Wen, S. Liu, S. R. Kirk, L. Wu, B. Chen, M. Ma, M. Zhou, B. Yin, Y. Zhang, D. Kim, J. Song, *Angew. Chem. Int. Ed.*, 2016, 11088.
- (2) M. J. Frisch, G.W. Trucks, H.B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino,G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr. J. R. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J. J Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L.Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, revision A.1; Gaussian Inc.; Wallingford CT, 2009.
- (3) T. Yanai, D. W. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51.
- (4) R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724.