Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

A Facile Oxygen-17 NMR Method to Determine Effective Viscosity in Dilute, Molecularly Crowded and Confined Aqueous Media

Nasrollah Rezaei-Ghaleh, *a,b Francesca Munari, ^c Stefan Becker, ^b Michael Assfalg ^c and Christian Griesinger ^b

^a Department of Neurology, University Medical Center Göttingen, Göttingen, Germany

^b Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany

^c Department of Biotechnology, University of Verona, Verona, Italy

EXPERIMENTAL SECTION

Materials

Ficoll 70 and 1,1,1,3,3,3-Hexafluoro-2-propanol (HFiP) were obtained from Sigma-Aldrich. Sucrose was from Merck and agarose from Invitrogen. Deionized Milli-Q water was used for all aqueous solutions.

The Ile-Phe dipeptide was purchased from Bachem (product number 4001668.0001) and used without further purification. The peptide was dissolved in HFiP at 200 mg/mL concentration. For gel formation, the stock solution of the peptide was diluted to 30 mg/mL by adding heated water containing 10% D_2O . The sample was then transferred to a 3-mm NMR tube before it formed the gel.

The FG-based peptide (sequence: Acetyl-GGGGGGLFGGNNNQQTNPTA-Amid) capped at both N-and C-termini, was obtained from Peptide Specialty Laboratory (PSL, Heidelberg, Germany). For gel formation, peptide solutions in 50 mM potassium phosphate (pH 6.8) were prepared at three concentrations, 1.6, 8 and 20 mM, and immediately transferred to 3-mm NMR tubes. The gel formation was evident in the samples leftover in the Eppendorf tube.

¹⁵N,¹³C-labeled ubiquitin and heterotrimeric G protein beta subunit 3 (GB3) were prepared recombinantly, as described in references^{3, 4}.

17O NMR

¹⁷O nucleus has spin quantum number *I* of 5/2 and natural abundance of 0.037%. The quadrupole moment (Q) of ¹⁷O is -2.63 fm², which interacts with the electric field gradient present at the site of ¹⁷O nuclei.⁵ The quadrupolar interaction is anisotropic and therefore in the absence of rotational averaging leads to broad powder patterns in NMR spectra.⁶ In solution, the traceless quadrupolar interaction is entirely averaged out by fast unrestrained molecular reorientations and only indirectly contributes to relaxation processes.⁷ As the dominant relaxation mechanism of ¹⁷O, the quadrupolar interaction in general case leads to a three-exponential relaxation process.⁸ However, in the extreme narrowing regime, the terms related to two of these relaxation processes are cancelled and consequently a single-exponential relaxation is recovered.^{7,8}

 17 O NMR experiments were performed at a Bruker spectrometer with proton Larmor frequency of 400.13 MHz. The spectrometer was equipped with a room-temperature triple resonance broadband (TBO) probe, where for the 17 O-detected experiments the inner coil of the probe was tuned and matched at 17 O Larmor frequency of ~ 54.24 MHz. The temperature was controlled to ± 0.05 K using the Bruker VT unit calibrated using a standardized thermocouple. The NMR samples contained H_2O/D_2O at a ratio of 90%/10% (v/v), unless specified otherwise, and the deuteron signal was used for frequency locking. The NMR samples were prepared using deionized Millipore water and were degassed under N_2 gas for ~ 10

minutes before NMR measurements. To alleviate the problem of baseline distortions potentially caused by the transient response of the NMR probe, a relatively long pre-acquisition delay of 18 μ s was used. The ¹⁷O spectra are shown using the frequency of H²DO lock signal as the chemical shift reference (4.700 ppm).

The ¹⁷O longitudinal relaxation rates (R_1) were measured through standard inversion-recovery (d_1 -180°-t-90°-acq) pulse sequence, where duration of recovery time, t, varied from 0.25 to 30 ms. A total of 21 recovery data points were collected. A recycle delay (d_1) of 0.5 s was used. The data were fitted to a three-parameter single-exponential recovery function, as follows:

$$I = I_{\infty}(1 - 2be^{-R_1t})$$
 (eq. S1)

where I_{∞} represents signal intensity after complete recovery, R_1 is the longitudinal relaxation rate, and parameter b takes care of slight imperfections in the inversion pulse.

The rotational correlation time of water molecules (τ_{rot}) were calculated from ¹⁷O R_1 rates through equation S2:

$$R_1 = \frac{3\pi^2}{10} \left(\frac{2I+3}{I^2(2I-1)} \right) \chi^2 \left(1 + \frac{\eta^2}{3} \right) \tau_{rot}$$
 (eq. S2)

where I=5/2 is the spin quantum number of ^{17}O , $\chi = \frac{e^2 Q q_{zz}}{h}$ is quadrupole coupling constant (C_Q) and η is the asymmetry parameter, describing the deviation of electric field gradient tensor, q, from axial symmetry. This equation relies on the assumption of the extreme-narrowing regime, where J(0)=J(0)=J(0)=J(0). This is a good approximation, when rotational correlation times are shorter than $1/(20\omega_O)$, i.e. ~ 150 ps, a condition which holds for bulk water ($H_2^{17}O$ or $D_2^{17}O$) molecules in all our experimental conditions. It is notable that the obtained τ_{rot} corresponds to the rotational correlation time of the principal axis of the electric field gradient tensor at the ^{17}O nucleus of water molecules, which is an out-of-plane vector orthogonal to O-H bonds, and therefore does not necessarily represent rotational correlation times around other axes of water molecules.

To find an empirical relation between the ^{17}O R_1 rates of water, which in the extreme narrowing regime are proportional to the τ_{rot} of water molecules, and solution viscosity in glycerol-water mixtures, polynomial equations of degrees 1, 2 and 3 were tried. At 298 K, the fit to a quadratic equation was significantly better than a linear equation (p-value < 0.001), but a cubic equation did not show a significant improvement in the fit when compared to a quadratic equation (p-value ~ 0.744). It is however important to note that the effective viscosity experienced by relatively large biomolecules is a collective property determined through a complex function of the properties of individual water molecules, e.g. their τ_{rot} . Consequently, the quadratic equation (equation 1 in the main text) should be seen only as an empirical relation without implying any particular physical model or interpretation for the coefficients.

¹⁵N relaxation

¹⁵N relaxation experiments were performed at a Bruker spectrometer with a proton Larmor frequency of 599.9 MHz equipped with a cryogenic QCI probe. NMR samples contained 4 mM uniformly labelled ubiquitin or 3 mM GB3, buffered with 50 mM sodium phosphate and 100 mM sodium chloride at pH 6.5. The 15 N/ 15 N- 1 H (CSA/DD) cross-correlated relaxation (*CCR*) rates were measured at 298 K, following a standard pulse sequence 10 , using relaxation delays of 40, 60, 80, 100 and 120 ms. The obtained *CCR* rates closely matched the rates measured through another pulse sequence, 11 where the use of four complementary experiments enabled cancelling errors due to pulse miscalibrations and uncontrolled attenuation factors. The residue-specific rotational correlation times (τ_c) were estimated from the *CCR* rates, using a 15 N CSA magnitude of -160 ppm and an angle of 17° between the principal axis of the 15 N CSA tensor and internuclear N-H vectors. 12

The ¹⁵N longitudinal (R_1) and transverse (R_2) relaxation rates of 0.37 mM ubiquitin in dilute and crowded solutions (200 mg/mL Ficoll 70 or 200 mg/mL sucrose) solutions were obtained from reference ¹³. The residue-specific τ_c values were calculated from R_2/R_1 ratios, ¹⁴ using an in-house MATLAB script (see below, page S14).

Hydrodynamic calculations

To predict viscosity in highly concentrated protein solutions, hydrodynamic calculations were performed using HYDROPRO 10, 15 which provide hydrodynamic parameters of proteins at infinite dilution using a bead model of their known atomistic structures as the starting point. The PDB entries of 1UBQ (ubiquitin) and 1P7F (GB3) were used for hydrodynamic calculations. $^{16, 17}$ The bead models were constructed using an atomic effective radius (AER) of 2.5 to 3.0 Å. 15 The errors in hydrodynamic calculations were estimated through standard deviation of the obtained results over the range of AER values. Taking the intrinsic viscosity-related radii from HYDROPRO 10 results, the volume occupancy (ϕ) was calculated, then, the relative viscosity (η/η_0) was predicted using the Guth-Gold-Simha equation, 18

$$\frac{\eta}{\eta_0} = 1 + 2.5\phi + 14.1\phi^2$$
 (eq. S3)

where η_0 is the bulk viscosity. Equation 3 reduces to the Einstein equation, ¹⁹

$$\frac{\eta}{\eta_0} = 1 + 2.5\phi$$
 (eq. S4)

at sufficiently small ϕ values. The calculated ϕ values were 5.2±0.2% in 4 mM ubiquitin and 2.7±0.1% in 3 mM GB3 solutions. Using the Guth-Gold-Simha equation (eq. S3), the increase in solution viscosity was predicted to be 17±1 % for 4 mM ubiquitin and ~ 8% for 3 mM GB3 protein.

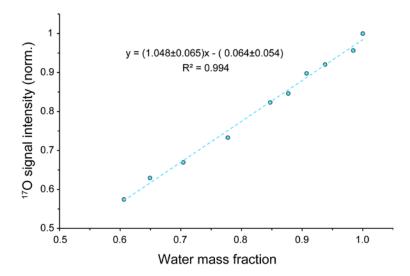


Figure S1. In 1D 17 O NMR spectra of water-glycerol mixtures, obtained through pulse-acquire experiments, the integrated intensity of the H_2^{17} O signals changes in line with water content of the measured samples. The signal intensities are normalized to the value obtained at 0% glycerol (i.e. 100% water). A good linear relation with a slope of 1.048 (95% CI: 0.983-1.113) is observed.

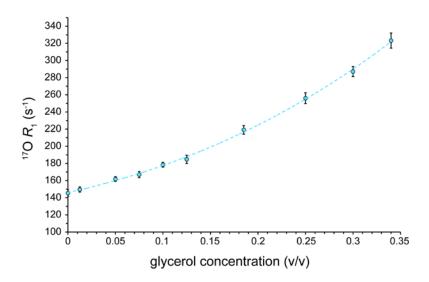


Figure S2. ¹⁷O longitudinal relaxation rate (R_1) of water in water-glycerol mixtures, measured through inversion-recovery experiments, as a function of glycerol (v/v) concentration.

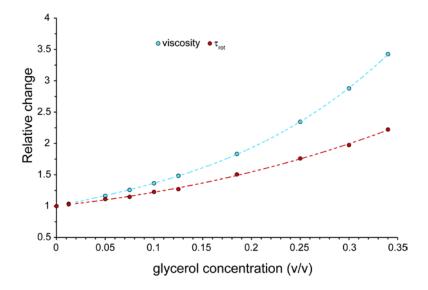


Figure S3. Upon increasing glycerol concentration, relative changes in solution viscosity and rotational correlation time (τ_{rot}) of water molecules calculated from ^{17}O R_1 rates are compared. The solution viscosity is affected by glycerol addition more prominently than the τ_{rot} of water molecules.

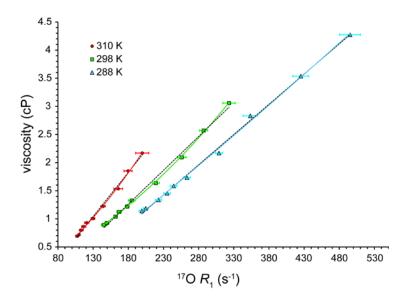


Figure S4. Relation between viscosity of water-glycerol mixtures and the 17 O longitudinal relaxation rate (R_1) of water, obtained at three temperatures of 288, 298 and 310 K. The linear (black dashed lines) and quadratic (solid lines) fits are shown.

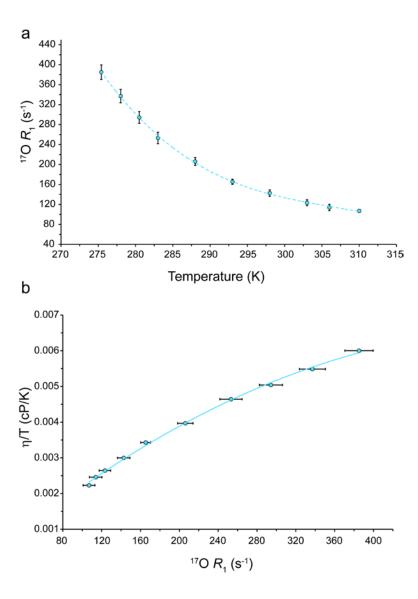


Figure S5. (a) Temperature-dependence of ¹⁷O longitudinal relaxation rate (R_1) of water, showing the expected decrease of ¹⁷O R_1 of water upon increasing temperature from 275.5 to 310 K. (b) The relation between viscosity/temperature ratio (η /T) and ¹⁷O R_1 of water exhibits a deviation from linearity. The quadratic fit corresponding to equation, $\frac{\eta}{T}\left(\frac{cP}{K}\right) = -2.037*10^{-8}*(R_1)^2 + 2.303*10^{-5}*R_1 + 9.305*10^{-5}$, is shown as solid line.

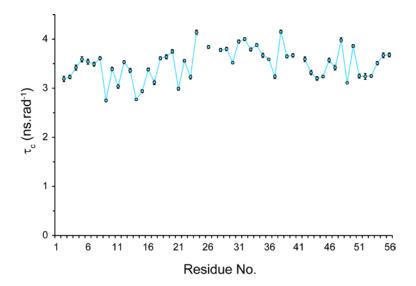


Figure S6. Residue-specific rotational correlation times (τ_c) of GB3 at 3 mM concentration, derived from $^{15}N/^{15}N^{-1}H$ CSA/DD *CCR* rates measured at 298 K. For the *CCR*-based calculation of τ_c , the Lipari-Szabo's N-H squared order parameters (S^2) of GB3 were taken from literature. Little variation (less than 0.02 ns.rad⁻¹) was observed when rotational correlation time of internal motion (τ_i) ranged between 40 and 100 ps.

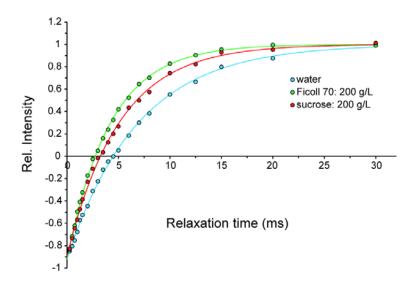


Figure S7. ¹⁷O longitudinal relaxation rate (R_1) of water in dilute and crowded (200 g/L Ficoll 70 or sucrose) media, measured through inversion-recovery experiments. Relative intensities of water ¹⁷O signals are shown as a function of recovery time. Faster recovery is observed in sucrose and particularly Ficoll solutions, compared to water.

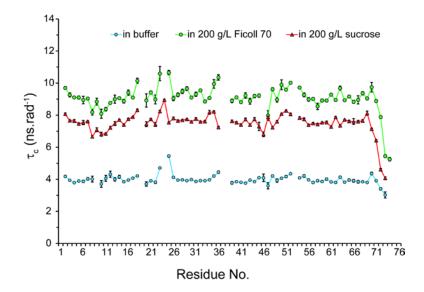


Figure S8. Residue-specific rotational correlation times (τ_c) of ubiquitin, derived from ¹⁵N R_2/R_1 ratios. The ¹⁵N R_1 and R_2 rates are taken from reference ¹³. The τ_c values are shown for 0.37 mM ubiquitin in buffer, in 200 g/L sucrose and 200 g/L Ficoll 70 concentrations.

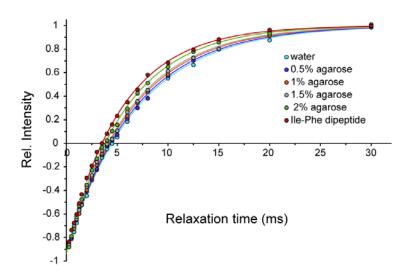


Figure S9. Water dynamics in the confined media of biological hydrogels, as probed by ^{17}O longitudinal relaxation rate (R_1) of water. ^{17}O R_1 of water in agarose and Ile-Phe hydrogels were measured through inversion-recovery experiments. Relative intensities of water ^{17}O signals are shown as a function of recovery time. Intensity recovery becomes faster when agarose concentration is increased.

```
റിറ
clear all
%% INTRODUCTION
% disp('AUTHOR: N. Rezaei-Ghaleh (Hessam): nare@nmr.mpibpc.mpq.de')
     disp('This program is to derive tauc from 15N R2/R1 ratio')
 % disp ('Based on Biochemistry 1989, 28(23): 8972-8979')
% disp(' ')
     disp('Check field (Bh), rhn and csan parameters and the input .xlsx file ')
     disp('Set n as the number of residues you have in the input file ')
% disp ('Results will be written in the output.txt file; There will be 8 tau-c solutions per
residue, take the physically meaningful values.')
%% INPUTS %%
n = 73; % No. of residues
Bh = 600.13 ; % (MHz)
rhn = 1.02*10^{-10} ; % (* m *)
% \text{ rhc} = 1.106*10^{-10} ; % (* m *)
csan = -160*10^{-6}; % CSA of 15N
R = xlsread ('input.xlsx','B3:B75'); % R2/R1 ratio taken from the input .xlsx file, column B
Gn = -2.712*10^7 ; % (* rad/(T s) *)
Gh = 2.6752*10^8 ; % (* rad/(T s) *)
GC = 6.728*10^7 ; % (* rad/(T s) *)
h=6.62606896*10^-34 ; % J.s
u0=4*pi*10^-7; % (* uo = Bo/H; H = A/m; uo = T m/A *)
B0=Bh*10^6*2*pi/Gh ; % (in Tesla)
dd = (u0/4/pi)^2*(h/2/pi)^2*Gn^2*Gh^2/((rhn)^6) /(10^9); dipolar coupling prefactor, scaled down
cc= csan^2*B0^2*Gn^2/3 /(10^9); % csa prefactor, scaled down
Wh=Bh*10^6*2*pi; % angular freq. of 1H
Wn=Wh*Gn/Gh; % angular freq. of 15N
for j=1:1:n ;
%% OPENING the file to write down the results
fid=fopen('output.txt','a+');
%% Solve the nonlinear equation f(t)=0
% Define x (tauc)
syms x
f = ((dd/8)*(4*x+(x/(1+((Wh-
 \texttt{Wn}) * \texttt{x}) ^2 )) + 3 * (\texttt{x}/(1 + ((\texttt{Wn}) * \texttt{x})^2)) + 6 * (\texttt{x}/(1 + ((\texttt{Wh}) * \texttt{x})^2)) + 6 * (\texttt{x}/(1 + ((\texttt{Wh} + \texttt{Wn}) * \texttt{x})^2))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2)))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2)))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2)))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2)))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2)))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2)))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2)))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + \texttt{x})^2)))) + (\texttt{cc}/6) * (3 * (\texttt{x}/(1 + ((\texttt{Wh}) + ((\texttt{x}/(1 + ((\texttt{Wh}) + (\texttt{x}/(1 + ((\texttt{Wh}) + ((\texttt{x}/(1 + ((\texttt{Wh}) + (\texttt{x}/(1 + ((\texttt{Wh}) + ((\texttt{x}/(1 + ((\texttt{Wh}) + ((\texttt{x}/(1 + ((\texttt{Wh}) + ((\texttt{x}/(1 + ((\texttt{Wh}) + ((\texttt{x}/(1 +
n)*x)^2)+4*(x))/((dd/4)*((x/(1+((Wh-
Wn)*x)^2)+3*(x/(1+((Wn)*x)^2))+6*(x/(1+((Wh+Wn)*x)^2)))+(cc)*((x/(1+(Wn*x)^2)))) - R(j);
%% DISPLAYING INPUTS
disp('INPUTS')
func=[' The equation to be solved is ' char(f), '=0'];
disp(func)
disp('')
% solving the equation
soln=solve(f,x);
solnvalue=double(soln);
disp('OUTPUTS')
fprintf(fid, '\nThe residue# %f ', j);
for i=1:1:length(solnvalue)
fprintf('\nThe solution# %g is %g', i,solnvalue(i))
fprintf(fid, '\nThe solution# %g is %g', i,solnvalue(i));
end
end
fclose(fid) ;
disp(' ')
```

References

- 1. N. S. de Groot, T. Parella, F. X. Aviles, J. Vendrell and S. Ventura, *Biophys. J.*, 2007, **92**, 1732-1741.
- 2. S. Mamone and S. Gloggler, *Phys. Chem. Chem. Phys.*, 2018, **20**, 22463-22467.
- 3. M. Renatus, S. G. Parrado, A. D'Arcy, U. Eidhoff, B. Gerhartz, U. Hassiepen, B. Pierrat, R. Riedl, D. Vinzenz, S. Worpenberg and M. Kroemer, *Structure*, 2006, **14**, 1293-1302.
- 4. A. M. Gronenborn, D. R. Filpula, N. Z. Essig, A. Achari, M. Whitlow, P. T. Wingfield and G. M. Clore, *Science*, 1991, **253**, 657-661.
- 5. I. P. Gerothanassis, *Prog. Nucl. Magn. Reson. Spectrosc.*, 2010, **56**, 95-197.
- 6. M. J. Duer, Introduction to Solid-State NMR Spectroscopy, Blackwell, 2004.
- 7. A. Abragam, *The Principles of Nuclear Magnetism*, Oxford University Press, 1961.
- 8. I. P. Gerothanassis and C. G. Tsanaktsidis, Conc. Magn. Reson., 1995, 8, 63-74.
- 9. J. Ropp, C. Lawrence, T. C. Farrar and J. L. Skinner, J. Am. Chem. Soc., 2001, 123, 8047-8052.
- 10. N. Tjandra, A. Szabo and A. Bax, J. Am. Chem. Soc., 1996, **118**, 6986-6991.
- 11. P. Pelupessy, G. M. Espallargas and G. Bodenhausen, J. Magn. Reson., 2003, 161, 258-264.
- 12. D. Fushman and D. Cowburn, *J. Am. Chem. Soc.*, 1998, **120**, 7109-7110.
- F. Munari, A. Bortot, S. Zanzoni, M. D'Onofrio, D. Fushman and M. Assfalg, FEBS Lett., 2017, 591, 979-990.
- 14. L. E. Kay, D. A. Torchia and A. Bax, *Biochemistry*, 1989, **28**, 8972-8979.
- 15. A. Ortega, D. Amoros and J. Garcia de la Torre, *Biophys. J.*, 2011, **101**, 892-898.
- 16. S. Vijaykumar, C. E. Bugg and W. J. Cook, *J. Mol. Biol.*, 1987, **194**, 531-544.
- 17. T. S. Ulmer, B. E. Ramirez, F. Delaglio and A. Bax, J. Am. Chem. Soc., 2003, 125, 9179-9191.
- 18. E. Guth and R. Simha, *Kolloid Z.*, 1936, **74**, 266-275.
- 19. A. Einstein, Ann. Phys., 1906, **19**, 289-306.
- 20. J. B. Hall and D. Fushman, J. Biomol. NMR, 2003, 27, 261-275.