Supporting Information

Catalyst-Free Cyclization of Anthranils and Cyclic Amines: One-step Synthesis of Rutaecarpine

Jian Li, * Zheng-Bing Wang, Yue Xu, Xue-Chen Lu, Shang-Rong Zhu, Li Liu
\dagger Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmaceutical Engineering \& Life Sciences, Changzhou University, Changzhou, 213164, China

Table of content:

General Information \quad S2
ORTEP diagram of compound $40 \quad$ S2
ORTEP diagram of compound $\mathbf{6 j}$ S3
Experimental Information and Control Experiments S 4
$\begin{array}{ll}\text { Characterization Data } & \text { S10 }\end{array}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of all the synthesised compounds S 25

General Information

All reactions were carried out under an air atmosphere condition. Solvents and reagents were purchased from commercial source and used without further purification. Flash column chromatography was performed using silica gel (200-300 mesh). Analytical thin-layer chromatography was performed using glass plates pre-coated with 200-300 mesh silica gel impregnated with a fluorescent indicator (254 nm). NMR spectra were recorded in CDCl_{3} on Bruker NMR-300 (300 MHz) and NMR-400 (400 MHz) with TMS as an internal reference. HRMS were performed on Agilent 6540 Q-TOF mass spectrometer (ESI). X-ray crystallographic data were collected using a SMART APEX II X-ray diffractometer.

Figure S1. ORTEP drawing (30\%) of the crystal structure $\mathbf{4 q}$

Figure S2. ORTEP drawing (30\%) of the crystal structure $\mathbf{6 j}$

Table S1. Crystal data parameter for compound $\mathbf{4 0 , 6 j}$		
	40	6j
Formula unit	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BrClN}_{2} \mathrm{O}_{2}$	$\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}$
Formula wt.	483.78	413.89
Crystal system	monoclinic	monoclinic
T [K]	210	193
$a[\AA$]	11.4651(6)	31.8664(15)
b [\AA]	10.5710(5)	8.9719(5)
$c[\AA]$	17.7266(9)	16.6944(8)
$\alpha\left[^{\circ}\right]$	90	90
$\beta\left[^{\circ}\right]$	105.480(2)	110.086(2)
$\gamma\left[{ }^{\circ}\right]$	90	90
Volume [$\AA 3$]	2070.48(18)	4482.7(4)
Space group	P 21/n	C 2 /c
Z	4	8
Reflns. Collected	16566	2136
$R_{1}[\mathrm{I}>2 \sigma(\mathrm{I})], w R_{2}$	0.0445, 0.1207	0.0696, 0.1014
GOF	1.058	0.922
CCDC Reference NO.	1943441	1940471

Synthesis of substituted anthranils $1^{[1]}$

Scheme S3. Synthesis of anthranils

To a solution of 2-nitroacylbenzene (2.0 mmol) in Ethyl acetate/Methanol $1: 1(10 \mathrm{~mL})$ was added $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1.35 \mathrm{~g}, 6.0 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 24 h . The reaction was quenched by saturated NaHCO_{3}, and filtered and washed with DCM. Organic layer was then washed with water and saturated brine solution, dried over MgSO_{4} and concentrated. Crude product was then purified by flash chromatography on silica gel using $(\mathrm{EA} /$ Hexane $=1: 50)$ to give substituted anthranils in $78-90 \%$ yield.

Synthesis of 1,2,3,4-tetrahydroisoquinoline derivatives ${ }^{[2]}$

Scheme S4. Synthesis of 1,2,3,4-tetrahydroisoquinoline

Synthesis of ethyl phenethylcarbamate derivatives (step 1). To a solution of substituted phenethylamine (8.0 mmol) and triethylamine ($1.2 \mathrm{~mL}, 8.8 \mathrm{mmol}, 1.1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added ethyl chloroformate $\left(0.68 \mathrm{~mL}, 8.8 \mathrm{mmol}, 1.1\right.$ equiv) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at room temperature, then water was added and extracted with ethyl acetate. The organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure to give the residue, which was used in the next step without further purification.

Synthesis of substituted 3,4-dihydro isoquinolin $-1(2 \mathrm{H})$ one (step 2). Trifluoromethanesulfonic acid ($5.30 \mathrm{~mL}, 50.0$ equiv) was slowly added to the obtained ethyl phenethylcarbamate derivatives $(5.0 \mathrm{mmol})$ at $20^{\circ} \mathrm{C}$, and trifluoromethanesulfonic acid ($5.30 \mathrm{~mL}, 50.0$ equiv) was added in portions over 10 min . was slowly added to the obtained chlorophenylethylcarbamic acid methyl ester (5.0 mmol) at $20^{\circ} \mathrm{C}$. After stirred at $70{ }^{\circ} \mathrm{C}$ for 16 h , the whole was poured into ice-water $(100 \mathrm{~mL})$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with brine, dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography to afford substituted 3,4-dihydro isoquinolin $-1(2 \mathrm{H})$ one .

Synthesis of 1,2,3,4-tetrahydroisoquinoline derivatives (step 3). An Universal Path: Under a N_{2} atmosphere, a solution of LiAlH_{4} in THF ($1.0 \mathrm{M}, 1.5$ equiv) was added rapidly to a solution of 3,4-dihydro-2H-isoquinolin-1-one (1.0 equiv) in THF (100 mL). The reaction mixture was stirred under reflux for 12 h . After cooling to room temperature, 1.0 M NaOH was added slowly to the whole for quenching the excess LiAlH_{4}, after filtering out the aluminum salts, the filtrate was washed with brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to afford 1,2,3,4-tetrahydroisoquinoline derivatives as a pale yellow oil ($46 \sim 67 \%$ yield).

$1 a$

1b

1c

1d

2a

2b

2c

2d

2e

2f

$2 g$

2h

$2 i$

2j

Scheme S5. Substrates employed for the synthesis of quinazolinone derivatives

Synthesis of target Compound 3-4

To a stirred solution of 1,2,3,4-tetrahydroisoquinoline derivatives (0.5 mmol) was added benzo[c]isoxazole derivatives (0.5 mmol). The mixture was heated at $130^{\circ} \mathrm{C}$ in a sealed tube for 1 h. After cooling to room temperature, water was added and extracted with DCM. The organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and purification of the crude product by column chromatography, the product was obtained as a white or light yellow solid in $65 \%-96 \%$ yield.

Synthesis of target Compound 5

To a stirred solution of 2,3,4,9-tetrahrdro- $1 H$-pyrido[3,4-b]indole (0.5 mmol) in toluene (2 mL) was added benzo[$c]$ isoxazole derivatives $(0.5 \mathrm{mmol})$. The mixture was heated at $130^{\circ} \mathrm{C}$ in a sealed tube for 1 h . After cooling to room temperature, water was added and extracted with DCM. The organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and purification of the crude product by column chromatography, the product was obtained as a white or light yellow solid in $52 \%-71 \%$ yield.

Synthesis of target Compound 9

To a stirred solution of Rutaecarpine (0.5 mmol) in DMF (2 mL) was added $\mathrm{NaH}(0.75 \mathrm{mmol}$, 60%), followed by benzyl 5-bromopentanoate $7(1.0 \mathrm{mmol})$, the mixture was heated at reflux in a tube for 4 h , most of DMF was distilled off. After cooling to room temperature, water was added and extracted with EA. The organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure to give a brown oil, which was added sodium hydroxide (1 $\mathrm{mL}, 2 \mathrm{~mol} / \mathrm{L}$) and THF (1 mL), the liquid was heated to reflux for 8 h . After cooling to room temperature, water was added, precipitate was formed and collected, the product 9 was obtained as a light yellow solid in 95\% yield.

Control Experiments

1)

1b

3)

4)

Scheme S6. Control experiments

Figure S1. Detection of intermediate 4'
GC-MS:7890A/5975C
Column: HP-5MS 5% Phenyl Methyl Silox $325^{\circ} \mathrm{C}: 30 \mathrm{~m} \times 250 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m}$
Detection method: Initial temperature $80^{\circ} \mathrm{C}$ keep 3 mins
Heating rate $\quad 10^{\circ} \mathrm{C} / \mathrm{min} \quad$ Final temperature $280^{\circ} \mathrm{C}$ keep 10 mins Split ratio 20:1

Figure S2. MS of Intermediate $\mathbf{4}^{\prime}(\mathbf{2 4 . 1 2 2} \mathbf{m i n})$

Figure S2. MS of Product 3(25.001min)

Characterization Data

1f. Colorless liquid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.81(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.27-4.20(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13}$ C_NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.2,152.5,149.4,144.0,114.8,101.0,65.2,64.5$. HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 178.0499$ found 178.0452.

3a, white solid. Spectral data for this compound was consistent with those previously reported ${ }^{[3]]}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.51(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 3 \mathrm{H})$, $7.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} _\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $161.4,149.8,146.8,137.2,134.5,132.3,127.8,127.6,127.0,126.9,126.8,120.5,39.7,27.4$.

3b, white solid. Spectral data for this compound was consistent with those previously reported ${ }^{[3]}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 1 \mathrm{H})$, $7.45-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ _NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.6,150.7,137.1,134.8,132.4,132.2,129.1,128.2,127.8,127.6,126.3,121.6,39.8,27.4$.

3c, light yellow solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6) $\delta 8.31(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.63-7.57 (m, 2H), $7.54-7.38(\mathrm{~m}, 4 \mathrm{H}), 4.29(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.30-3.27(\mathrm{~m}, 4 \mathrm{H}), 3.09(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 6 \mathrm{H})$ ${ }^{13} \mathrm{C}$ _NMR (75 MHz , DMSO-d6) $\delta 160.9,150.4,146.6,140.3,137.6,131.5,129.9,128.7,128.2,127.6,124.7$, 121.5, 108.7, 49.6, 27.1, 25.5, 24.3. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 332.1757$ found 332.1762 .

3d, white solid. Spectral data for this compound was consistent with those previously reported ${ }^{[2 b]}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.32$ $(\mathrm{m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}_{\mathrm{C}}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 161.1,150.7,148.5,140.5,137.2,132.3,128.4,128.3,127.8,127.6,127.2,126.9,119.1,39.7,27.3$.

3e, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.04(\mathrm{~s}, 1 \mathrm{H}), 8.19-8.16(\mathrm{~m}, 1 \mathrm{H})$, 7.45-7.42 (m, 1H), 7.36-7.32 (m, 2H), 7.29-7.26 (m, 2H), $4.75(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}_{-} \mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.5,147.6,147.3,133.6,130.9,128.3,128.2,125.7,119.7,118.4,117.6,114.8,43.4,28.1$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 294.0873 found 294.0879.

3f, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50-8.48(\mathrm{~m}, 2 \mathrm{H}), 8.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}_{-} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.1,160.8,150.7,146.3,137.3,135.7,132.8,128.8,128.7$, 128.0, 127.7, 127.4, 126.9, 123.2, 52.7, 39.9, 27.3. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 307.1077$ found 307.1079.

3g, white solid. Spectral data for this compound was consistent with those previously reported ${ }^{[2 b]} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ $(\mathrm{s}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}_{\mathrm{C}}$ NMR (75 MHz ,

3h, white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H})$, 7.22-7.19 (m, 2H), 4.33-4.30 (m, 4H), 4.28-4.26 (m, 2H), 3.01 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}_{-} N M R(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 160.7,149.8,148.4,143.7,136.9,131.7,127.7,127.5,113.6,64.6,64.2,39.6,37.5$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 307.1077 found 307.1080.

3i, white solid. Spectral data for this compound was consistent with those previously reported ${ }^{[2 b]}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25-8.22(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{t}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.5,158.4$ (d, $J=244.1 \mathrm{~Hz}$), $148.5,147.4,134.4,131.5,128.4(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 127.6,126.9,124.3(\mathrm{~d}, J=19.8 \mathrm{~Hz})$, 123.6, 120.8, 118.2 (d, $J=21.3 \mathrm{~Hz}$), 38.9, 20.1.

3j, white solid. Spectral data for this compound was consistent with those previously reported ${ }^{[26]}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J=7.9$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.1,149.1,146.3,136.2,134.8,133.0,132.8,130.4,137.3,127.2,127.0,126.9$, 120.4, 39.0, 24.5.

$\mathbf{3 k}$, white solid. Spectral data for this compound was consistent with those previously reported ${ }^{[26]}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{dd}, J=8.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.37$
$(\mathrm{m}, 1 \mathrm{H}), 7.05(\mathrm{dt}, J=5.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} _\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.0(\mathrm{~d}, J=246.5 \mathrm{~Hz}), 161.6,148.7,139.7(\mathrm{~d}, J=8.8 \mathrm{~Hz})$, $134.4,130.8(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 127.4,126.9,126.6,120.6$.

31, white solid. Spectral data for this compound was consistent with those previously reported ${ }^{[2 b]} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}$, $1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}_{-}$NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.0,149.2,138.8,134.8,130.2,128.3,127.7,127.1,126.7,120.3,39.5$, 27.2.

3m, white solid. Spectral data for this compound was consistent with those previously reported ${ }^{[2 b]} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.69(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}_{-}$NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.8,161.5,149.8,139.3,134.4$, $130.5,126.9,126.8,126.3,120.2,113.8,112.4,55.6,39.6,27.7$.

3n, white solid. Spectral data for this compound was consistent with those previously reported ${ }^{[26]}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{dd}, J=9.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39$ $(\mathrm{m}, 1 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{dt}, J=8.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ _NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.7(\mathrm{~d}, J=244.1 \mathrm{~Hz}), 161.4,148.5,147.1,134.5,132.8,131.0,129.2(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}), 127.5,127.0(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 120.7,119.3,118.9,114.7(\mathrm{~d}, J=24.1 \mathrm{~Hz}), 39.7,26.8$.

30, white solid. Spectral data for this compound was consistent with those previously reported ${ }^{[26]} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.26-8.23(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 2 \mathrm{H})$,
7.18-7.16(m, 1H), 4.34(t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} _\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.4$, $148.4,146.9,135.4,134.6,133.7,131.9,130.6,128.9,128.1,127.4,126.9,120.7,39.6,26.9$.

3p, white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.71$ $(\mathrm{m}, 2 \mathrm{H}), 7.53(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.00(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}_{-} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.4,148.2,146.9,135.8,134.8,134.6,131.0$, $130.9,129.2,127.4,127.1,126.9,121.5,120.7,39.5,27.1$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrN}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 327.0128 found 327.0125 .

3q, white solid, Spectral data for this compound was consistent with those previously reported ${ }^{[26]}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}_{-}$NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.6,149.8,137.5,134.4,134.3,132.9,128.4,127.5,127.3,126.9$, 126.6, 120.6, 39.8, 27.1, 21.3.

3r, white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.69(\mathrm{~m}, 2 \mathrm{H})$, 7.43-7.40 (m, 1H), $7.33(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}_{-} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 161.4,147.5,147.3,136.4,135.9,134.5,132.1,129.8,129.4,127.7127 .1,126.9,120.8,39.3,26.8$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 317.0243 found 317.0248.

3s, white solid. Spectral data for this compound was consistent with those previously reported ${ }^{[26]}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~d}, J=.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66$ $(\mathrm{s}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$.

light yellow solid. Spectral data for this compound was consistent with those previously reported. ${ }^{[4]}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.78(\mathrm{br}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.17$ ($\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$).

4a, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37(\mathrm{br}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 5 \mathrm{H})$, 7.07-7.04 (m, 2H), $6.71(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 3.29-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.86$ $(\mathrm{m}, 1 \mathrm{H}), 2.76-2.70(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}_{-} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.7,142.7,136.3,130.9,129.2,128.6,127.6$, 127, 127.2, 126.9, 126.2, 125.9, 65.2, 46.5, 28.4. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClN}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 345.1153$ found 345.1148 .

4b, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45(\mathrm{br}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}$, $4 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 3.39-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.04-$ $2.97(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.81(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}_{-} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.5,141.2,136.2,134.5,131.1,129.5$, 129.4, 128.8, 128.3, 127.6, 127.3, 127.2, 126.1, 125.5, 64.5, 46.5, 28.4. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 379.0763$ found 379.0761 .

4e, light yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=2.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.12$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ (s, 1H), 3.31-3.27 (m, $1 \mathrm{H})$, 3.16-3.10 (m, 1H), 2.95-2.88 (m, 1H), 2.78-2.72 (m, 1H). ${ }^{13} \mathrm{C}_{2} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.5,141.7$, 136.2, 132.3, 131.0, 129.4, 128.7, 128.6, 127.6, 127.3, 126.2, 126.1, 125.5, 122.6, 64.5, 46.5, 28.4. HRMS
(ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BrClN}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 423.0258 found 423.0254 .

4d, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $3 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.38-$ $3.34(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.81(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}_{2} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.8,151.6,136.3,132.3,128.6,128.3,127.8,127.3,126.2,114.5,113.7,64.5,55.3,46.4,28.3$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 375.1259$ found 375.1263 .

4e, light yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{br}, 1 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 3.31-3.27(\mathrm{~m}, 1 \mathrm{H})$, 3.22-3.19 (m, 1H), 2.97-2.89 (m, 1H), 2.79-2.74 (m, 1H), 1.19 (s, 9H). ${ }^{13} \mathrm{C}$ _NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.7$, 151.6, 139.4, 136.3, 131.1, 128.5, 127.8, 127.2, 126.6, 126.2, 126.1, 64.8, 46.5, 34.6, 31.3, 28.4. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{ClN}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 401.1779 found 401.1777 .

4f, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56(\mathrm{br}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=$ $4.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{~s}, 3 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 3.40-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.97$ $(\mathrm{m}, 1 \mathrm{H}), 2.87-2.80(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} _$NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.9,142.7,137.4,136.3,134.9,130.9,129.2$, 128.6, 127.6, 127.2, 126.9, 64.8, 46.6, 28.4. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 437.0509$ found 437.0512 .

$\mathbf{4 g}$, light yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{br}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.38$ $(\mathrm{m}, 2 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H})$, 3.41-3.35 (m, 1H), 3.26-3.19 (m, 1H), 3.05-2.97 (m, 1H), 2.86-2.80 (m, 1H). ${ }^{13} \mathrm{C} _N M R\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $151.8,141.0,137.7,136.2,134.9,134.5,129.4,128.4,127.7,127.3,87.9,64.1,46.6,28.3$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClIN}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 471.0119 found 471.0123 .

4h, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48$ (br, 1 H), 8.50 (dd, $J=8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47-7.45 $(\mathrm{m}, 2 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H})$, 3.39-3.37 (m, 1H), 3.27-3.21 (m, 1H), 3.05-2.98 (m, 1H), 2.87-2.81 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.8, 141.4, 137.7, 136.2, 134.9, 132.4, 128.7, 127.3, 122.8, 64.2, 46.7, 28.3. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BrIN}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 514.9614$ found 514.9608 .

4i, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53$ (br, 1 H), 7.49 (dd, $J=8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.42-7.40$ $(\mathrm{m}, 2 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.86-6.84(\mathrm{~m}, 2 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.38(\mathrm{~m}$, $1 \mathrm{H}), 3.30-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.79(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.8,151.8$, 137.5, 136.4, 135.0, 128.4, 128.0, 127.4, 114.5, 64.1, 55.3, 46.5, 28.2. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{IN}_{2} \mathrm{O}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 467.0615$ found 467.0612 .

4j, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=$ $4.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 5 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 3.41-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.04-$ $2.96(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}_{-} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.9,139.6,138.5,137.5$, 136.6, 134.9, 129.8, 129.1, 127.8, 127.2, 126.9, 64.5, 46.5, 28.3, 21.1. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{IN}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 451.0666$ found 451.0671.

$4 \mathbf{k}$, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50(\mathrm{br}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (br, $2 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 3.34-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.18(\mathrm{~m}$, $1 \mathrm{H}), 2.99-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.72(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}_{-} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.0,137.6,136.4$, 134.9, 127.3, 126.7, 126.2, 64.5, 46.7, 34.6, 31.2. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 493.1135$ found 493.1131.

4I, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{br}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.23(\mathrm{~m}$, $1 \mathrm{H}), 3.17-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}_{-} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $151.9,148.0,138.3,137.3,134.9,129.9,126.9,109.5,64.4,56.0,46.6,27.9,21.2$. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{IN}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 511.0877$ found 511.0882.

$\mathbf{4 m}$, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87$ (br, 1H), 7.39 (dd, $J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.18 (d, J $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.65(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}_{-}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.7,151.8,148.1,137.4,134.9,128.3,128.1,114.5,113.5,109.6,64.1,55.1$, 55.3, 49.8, 46.6. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{IN}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 527.0826 found 527.0823.

4n, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{br}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H})$, 3.37-3.26 (m, 1H), 3.21-3.15 (m, 1H), 2.91-2.83 (m, 1H), 2.72-2.65 (m, 1H). ${ }^{13} \mathrm{C}$ _NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 151.9,137.5,134.9,126.6,125.4,109.6,85.9,64.5,56.1,34.6,31.2,27.7$. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{IN}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 553.1346$ found 553.1351.

40, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98$ (br, 1 H), $7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 3 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.26(\mathrm{~m}$, $1 \mathrm{H}), 3.15-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.66(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}_{-} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.6,148.2$, 132.4, 128.6, 126.1, 109.6, 64.5, 56.1, 46.7, 27.8. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{BrClN}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 483.0469 found 483.0471 .

4p, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57(\mathrm{br}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 5 \mathrm{H})$, 7.23-7.19 (m, 4H), 7.08-7.06 (m, 1H), $6.98(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 3.39-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.20$ $(\mathrm{m}, 1 \mathrm{H}), 2.99-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.74(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ _NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.7,140.3,136.4,129.2$, 128.2, 127.5, 127.4, 127.3, 126.7, 124.9, 65.7, 46.8, 28.2. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{ClN}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 387.1856 found 387.1859 .

$\mathbf{4 q}$, light yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{br}, 1 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 4 \mathrm{H})$, 7.36-7.35 (m, 2H), 7.33-7.29 (m, 6H), 7.17-7.14 (m, 1H), 7.03 (s, 1H), 5.60 (s, 1H), 3.43-3.37 (m, 1H), 3.31$3.25(\mathrm{~m}, 1 \mathrm{H}), 3.06-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.82(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}_{2} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.0,142.9,136.3$, $132.0,131.5,129.7,129.1,128.5,128.3,128.1,127.8,127.2,127.0,124.5,123.4,89.7,89.4,65.3,46.6$, 28.4. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 411.1856$ found 411.1862 .

6a, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.15$ (br, 1 H), $7.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.34$ (m, $6 \mathrm{H})$, 7.26-7.17 (m, 3H), 7.11-7.04 (m, 2H), 5.60 (s, 1H), 3.67-3.60 (m, 1H), 3.43-3.37 (m, 1H). ${ }^{13} \mathrm{C}$ _NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.4,143.0,138.1,137.6,135.5,129.3,128.7,127.1,125.4,124.9,120.1,119.5$, 112.4, 87.7, 63.9, 48.1, 20.6. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{I} \mathrm{N}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 476.0618$ found 476.0621 .

6b, light yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.76(\mathrm{br}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=$ $8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 3 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 1 \mathrm{H})$, 3.42-3.36 (m, 1H), 3.09-2.95 (m, 2H). ${ }^{13} \mathrm{C}_{-}$NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.6,140.6,138.5,137.9,135.4$, 134.9, 129.7, 128.5, 125.9, 124.9, 120.6, 119.8, 112.7, 63.2, 48.2, 20.4. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{ClIN}_{3}$
$\left([\mathrm{M}+\mathrm{H}]^{+}\right): 510.0228$ found 510.0226 .

6c light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.59$ (br, 1 H), $7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.38-7.35$ (m, $1 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 3 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 3.61-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.27(\mathrm{~m}$, $1 \mathrm{H}), 3.00-2.85(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}_{-}$NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.4,140.7,138.8,138.1,135.5,132.7,128.9,126.5$, 124.5,123.4, 120.8, 119.9, 112.8, 63.3, 48.3, 20.4. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BrIN}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 553.9723$ found 553.9719.

6d, light yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.73(\mathrm{br}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 3 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 3.59-3.53(\mathrm{~m}, 1 \mathrm{H})$, 3.36-3.30 (m, 1H), 2.97-2.88 (m, 2H), $2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}_{-} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.8,139.4,138.9$, 137.7, 135.5, 130.1, 127.1, 126.7, 124.9, 120.5, 119.7, 112.7, 63.6, 48.1, 21.2. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{IN}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 490.0775$ found 490.0778 .

6e, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \quad 10.96(\mathrm{br}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=$ $8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 3.56-3.49(\mathrm{~m}, 1 \mathrm{H})$, 3.35-3.29 (m, 1H), 2.93-2.90 (m, 2H), $1.21(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}_{\mathrm{C}} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.5,148.5,139.9 \mathrm{~m}$ $137.9,137.4,135.4,129.9,126.6,126.1,125.6,125.5,125.4,124.6,119.9,119.5,116.4,112.3,87.5,63.5$, 47.9, 34.6, 31.3, 20.6. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{IN}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 532.1244$ found 532.1246.

6f, light yellow solid ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.87(\mathrm{br}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=$ $8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{~s}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.06-2.98(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.8,148.0,138.1,137.5,135.5,135.0,128.4,125.3,125.1,120.2,119.6,114.6,112.4,87.8,63.2,55.4$, 47.9, 20.6. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 506.0724$ found 506.0721.

$\mathbf{6 g}$, light yellow solid Compound. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.83(\mathrm{br}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 3.56-3.50$ $(\mathrm{m}, 1 \mathrm{H}), 3.31-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.89(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ _NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.1,141.5,137.9,134.5$, 129.5, 128.9, 128.5, 126.6, 125.4, 120.1, 119.6, 112.4, 63.6, 48.1, 20.6. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{3}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 418.0872$ found 418.0872 .

6h, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.60(\mathrm{br}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{br}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 3.55-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.24(\mathrm{~m}, 1 \mathrm{H})$, 2.97-2.87 (m, 2H). ${ }^{13} \mathrm{C}_{2} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.0,142.1,137.8,132.4,128.8,126.6,125.5,124.8$, 122.6, 120.1, 119.6, 112.2, 63.7, 48.0, 20.7. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BrClN}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 462.0367$ found 462.0362 .

6i, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.78(\mathrm{br}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}$, $4 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.05-7.01(\mathrm{M}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.42-$ $3.33(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.86(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}_{-} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.2,147.3,138.7,138.6$, 130.5, 128.9, 126.4, 126.1, 124.7, 120.6, 119.8, 112.9, 63.9, 48.2, 34.7, 31.2, 20.4. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{ClN}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 440.1888$ found 440.1888 .

6j, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.3(\mathrm{br}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}$, $1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.87(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}_{-} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.7,148.3,138.1,135.4,129.3,128.4,127.4,126.8,126.6,125.4,124.8,124.8,124.6,119.9,119.5,116.4$, $114.5,112.5,63.7,55.4,47.9,20.7$. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{ClN}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 414.1368$ found 414.1374.

8, Colorless liquid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.39(J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}$, $2 \mathrm{H}), 4.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-$ $1.96(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.78(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}_{-}$NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.2,161.6,146.9,145.3,140.0,135.9$, $134.3,128.5,128.2,127.1,126.9,125.5,124.2,120.7,120.4,120.2,110.5,66.2,44.8,40.9,34.0,22.4,19.8$.

9, white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $\left.\mathrm{d}_{6}\right) \delta 8.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.73(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-$ $1.73(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.50(\mathrm{~m}, 2 \mathrm{H})$.

References:

[1] (a) Biswas, A.; Karmakar, U.; Nandi, S.; Samanta, R. J Org. Chem. 2017, 82, 8933-8942. (b) Cheng, Q.; Xie, J-H.; Weng, Y.-C.; You, S-L. Angew. Chem. Int. Ed., 2019, 58, 5739-5743. (c) Li, L.; Wang, H.; Yu, S.; Yang, X.; Li, X. Org. Let. 2016, 18, 3662-3665.
[2] (a) Murashige, R.; Ohtsuka, Y.; Sagisawa, K.; Shiraishi, M. Tetrahedron Lett. 2015, 56, 3410-3412. (b) Lu, C.; Su, Z.; Jing, D.; Jin, S.; Xie, L.; Li, L.; Zheng, K. Org. Lett. 2019, 21, 1438-1443.
[3] Xie, F.; Chen, Q.; Xie, R.; Jiang, H.; Zhang, M. ACS Catal, 2018, 8, 5869-5874.

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3} \mathbf{b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 c}$ in DMSO-d6
ジj

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 d}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3} \mathbf{e}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 m}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 n}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 o}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 p}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 q}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of Rutaecarpine in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 a}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 e}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 f}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 h}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 h}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4} \mathbf{j}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 k}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of 41 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4 m}$ in CDCl_{3}

$\left.\right|_{\text {®̄ }} ^{\substack{0 \\ i n}}$

\qquad alde

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 n}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4} \mathbf{p}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{4} \mathbf{q}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 b}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ NMR of $\mathbf{6 b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{6 c}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{6 e}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{6 h}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{6 j}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{6 j}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{8}$ in CDCl_{3}

