Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Total synthesis of verucopeptin, an inhibitor of hypoxia-inducible factor 1 (HIF-1)

Nobuaki Takahashi^a, Hideaki Hayashi^a, Viktors Poznaks^a, Hideaki Kakeya^{*a}

^aDepartment of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.

Table of Contents

General S-1 Experimental procedures and spectroscopic data S-2 – S-27 ¹H and ¹³C NMR spectra of synthetic compounds and synthetic verucopeptin (**1**) S-28 – S-62

General. IR: recorded on a JASCO FT/IR-4100 spectrophotometer. ¹H and ¹³C NMR spectra: recorded on JEOL NMR spectrometers at 500 MHz (¹H NMR) and at 125 MHz (¹³C NMR) or Bruker Avance I at 150 MHz (¹³C NMR). J values are given in Hz. Multiplicities are given as s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and br = broad. ESI-MS: recorded on LC-IT-TOF MS (Shimadzu) mass spectrometers. Optical rotation: measured with a JASCO P-2200 polarimeter. TLC: precoated silica gel 60 F254 plates (Merck, 0.25 mm thick). Column chromatography: Silica Gel 60N [KANTO, 40-50 µm (for flash column chromatography)]. High performance liquid chromatography (HPLC): performed using a Prominence CBM-20A (Shimadzu) system equipped with a Prominence SPD-20A UV/VIS detector (Shimadzu).

Aldehyde 38: To a stirred solution of 10 (1.25 g, 7.27 mmol) in dry DMSO (20.0 mL) was added IBX (4.20 g, 15.00 mmol) under N₂ atmosphere and the mixture was stirred at room temperature. After stirring for 3 hours, the reaction was quenched by adding a mixture of sat. Na₂S₂O₃ aq and sat. NaHCO₃ aq (1:1). The whole mixture was extracted three times with ethyl acetate and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/*n*-hexane = 30:70) to afford 1.05 g (85%) of **38** as a colorless oil; $[\alpha]_D^{20}$ –12.3 (*c* 0.98, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2969, 1771 (CO), 1731, 1053; ¹H NMR (500 MHz, CDCl₃) δ ppm: 9.59 (1H, s), 3.92 (2H, dd, *J* = 10.5, 5.5), 2.48 (1H, m), 2.06 (3H, s), 1.92-1.80 (2H, overlapped), 1.18 (1H, dddd, *J* = 6.0, 6.0, 6.0, 6.0), 1.12 (3h, d, *J* = 6.5), 0.96 (3H, d, *J* = 6.5); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 204.6, 171.1, 68.8, 43.9, 34.5, 30.2, 20.9, 17.2, 14.2; HR-ESI-MS calcd for C₉H₁₇O₃ [M+H]⁺: 173.1178, found: 173.1178.

Propargylalcohol 11: A round-bottomed flask was charged with $Pd(OAc)_2$ (14.8 mg, 0.066 mmol) and PPh₃ (17.8 mg, 0.068 mmol). The flask was fitted with a rubber septum, evacuated and then backfilled with N₂, and Freshly degassed dry THF (5.0 mL) was added to the flask. After the flask was cooled to -78 °C, mesylate **12** (132.9 mg, 0.898 mmol) and aldehyde **38** (117.7 mg, 0.692 mmol) were added followed by dropwise addition of diethylzinc (1.9 mL, 1 M in toluene, 1.9 mmol). The solution was then warmed to -20 °C. After stirring for 6 h, the reaction was quenched with 1*N* HCl aq., and the layers were separated. The aqueous layer was extracted two times with ethyl acetate and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/*n*-hexane = 20:80) to afford 109.9 mg (70%) of **11** as a pale yellow oil; $[\alpha]_D^{20}$ +12.5 (*c* 0.50, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2972, 2932, 1733 (CO), 1461, 1397, 1372, 1245, 1043, 981; ¹H NMR (500 MHz, CDCl₃) δ ppm: 3.96 (1H, dd, *J* = 11.0, 5.0), 3.21 (1H, dd, *J* = 6.5, 5.5), 2.66 (1H, dq, *J* = 6.5, 2.0), 2.13 (1H, d, *J* = 2.5), 2.05 (3H, s), 1.92 (1H, m), 1.80 (1H, br-s), 1.73 (1H, m), 1.50 (1H, m),

1.19 (3H, d, J = 7.5), 1.08 (1H, m), 0.95 (3H, d, J = 8.0), 0.93 (3H, s, J = 8.0); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 171.2, 85.7, 71.0, 68.9, 37.6, 32.9, 30.7, 29.8, 20.9, 17.9, 17.6, 14.2, 13.9 HR-ESI-MS calcd for C₁₃H₂₃O₃ [M+H]⁺: 227.1647, found: 227.1670.

Acetate 39: To a stirred solution of compound 11 (940. 0 mg, 4.16 mmol) in MeOH (40.0 mL) was added Pd/C (10%, 94.0 mg) and the mixture was stirred at room temperature under H₂ atmosphere for 18 h. The mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (ethyl acetate */n*-haxane = 20:80) to afford 813.5 mg (85%) of acetate 39 as a colorless oil; $[\alpha]_D^{20}$ +1.3 (*c* 0.40, CHCl₃); IR (ATR) v_{max} cm⁻¹: 2969, 1736 (CO), 1246, 1039; ¹H NMR (500 MHz, CDCl₃) δ ppm: 3.96 (1H, dd, *J* = 11.0, 6.0), 3.86 (1H, dd, *J* = 10.5, 6.5), 3.15 (1H, dd, *J* = 8.5, 3.0), 2.06 (3H, s), 1.89 (dq, *J* = 6.5, 2.0), 1.78 (1H, m), 1.72 (1H, m), 1.50 (br-s), 1.47 (1H, m), 1.17-1.06 (2H, overlapped), 0.94 (3H, d, *J* = 5.5), 0.91 (3H, d, *J* = 7.5), 0.85 (3H, d, *J* = 7.0), 0.82 (3H, d, *J* = 7.0); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 171.2, 77.6, 69.4, 38.1, 37.6, 31.6, 29.7, 25.1, 17.6, 15.1, 12.9, 11.0; HR-ESI-MS calcd for C₁₃H₂₇O₃ [M+H]⁺: 231.1960, found: 231.1944.

Carbonothioate 40: To a stirred solution of compound **39** (24.5 mg, 0.064 mmol) in dry CH₂Cl₂ (0.25 mL) and dry pyridine (0.25 mL) were added Phenyl Chlorothionoformate (43.2 μ L, 0.32 mmol) and DMAP (7.8 mg, 6.4 μ mol) under N₂ atmosphere and the mixture was stirred at room temperature. After stirring for 3.5 hours, the reaction was quenched with 1*N* HCl aq., and the layers were separated. The aqueous layer was extracted two times with ethyl acetate and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/*n*-hexane = 3:97) to afford 28.3 mg (74%) of **40** as a yellow oil; [α]_D²⁰ -6.00 (*c* 0.11, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2972, 1740 (CO), 1287, 1232, 1192; ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.40 (2H, m), 7.28 (1H, m), 7.09

(2H, d, J = 7.5), 5.27 (1H, dd, J = 8.0, 3.0), 3.91 (2H, m), 2.10-2.00 (1H, overlapped), 2.05 (3H, s), 1.88 (1H, m), 1.63-1.50 (3H, overlapped), 1.18 (1H, m), 1.08 (1H, m), 0.97 (3H, dd, J = 7.0, 7.0), 0.96 (3H, d, J = 7.0), 0.94 (3H, d, J = 7.0), 0.92 (3H, d, J = 7.5); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 195.9, 171.3, 153.4, 129.6, 129.4, 126.4, 122.0, 120.9, 91.6, 69.0, 37.6, 36.6, 31.9, 29.9, 29.7, 24.8, 21.0, 17.6, 15.2, 14.2, 11.4; HR-ESI-MS calcd for C₂₀H₃₁O₄S [M+H]⁺: 367.1943, found: 367.1955.

Alcohol 9: To a stirred solution of **40** (913.0 mg, 2.54 mmol) in toluene (32.0 mL) were added AIBN (26.8 mg, 0.163 mol) and nBu_3SnH (1.40 mL, 5.20 mmol). After stirring for 16 h at 100 °C, the reaction was quenched with sat. KF aq. and the mixture were extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated to give a crude product that was subjected to the next reaction without further purification.

To a stirred solution of the above crude product in MeOH (40.0 mL) was added K₂CO₃ (699.5 mg, 5.07 mmol) at 0 °C. After stirring for 2 h at room temperature, the reaction was quenched with sat. NH₄Cl aq. and the layers were separated. The aqueous layer was extracted two times with ethyl acetate and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/*n*-hexane = 10:90) to afford 421.8 mg (96%, 2 steps) of **9** as a colorless oil; $[\alpha]_D^{20}$ -37.6 (*c* 0.33, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2959, 2914, 2874, 1461, 1382, 1032; ¹H NMR (400 MHz, CDCl₃) δ ppm: 3.51 (1H, dd, *J* = 10.4, 5.2), 3.38 (1H, dd, *J* = 10.4, 7.2), 1.72 (1H, m), 1.58 (1H, m), 1.37 (2H, m), 1.25 (2H, m), 1.18-0.96 (4H, overlapped), 0.91 (3H, d, *J* = 6.4), 0.86 (3H, d, *J* = 7.6), 0.85 (3H, d, *J* = 7.2), 0.82 (3H, dd, *J* = 7.2, 5.6); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 68.5, 43.9, 41.9, 33.0, 31.7, 30.6, 27.4, 20.3, 18.8, 17.1, 11.5; HR-ESI-MS calcd for C₁₁H₂₅O [M+H]⁺: 173.1905, found: 173.1915.

Diol 13: To a stirred solution of **11** (23.4 mg, 0.104 mmol) in MeOH (1.0 mL) was added K₂CO₃ (43.0 mg, 0.312 mmol) at 0 °C. After stirring for 3 h at room temperature, the reaction was quenched with sat. NH₄Cl aq. and the layers were separated. The aqueous layer was extracted two times with ethyl acetate and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/*n*-hexane = 30:70) to afford 16.2 mg (85%) of **13** as a colorless oil; $[\alpha]_D^{20}$ +5.7 (*c* 0.68, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2965, 2918, 2877, 1453, 1375, 1033, 983, 637; ¹H NMR (500 MHz, CDCl₃) δ ppm: 3.51 (1H, dd, *J* = 10.5, 5.5), 3.45 (1H, dd, *J* = 10.5, 6.0), 3.27 (1H, t, *J* = 5.5), 2.68 (1H, dddd, *J* = 13.0, 7.0, 7.0, 2.0), 2.15 (1H, d, *J* = 2.0), 1.98 (1H, br-s), 1.74 (3H, m), 1.55 (1H, ddd, *J* = 14.0, 7.0, 7.0), 1.20 (3H, d, *J* = 7.0), 0.94 (3H, d, *J* = 6.5), 0.93 (3H, d, *J* = 6.5); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 85.9, 76.8, 70.9, 67.8, 37.2, 33.0, 32.8, 30.6, 17.6, 17.5, 14.3; HR-ESI-MS calcd for C₁₁H₂₁O₂ [M+H]⁺: 185.1542, found: 185.1535.

Aldehyde 41: To a stirred solution of alcohol **9** (18.0 mg, 0.105 mmol) in CH₂Cl₂ (1.0 mL) were added PhI(OAc)₂ (50.4 mg, 0.156 mmol), and TEMPO (0.82 mg, 5.3 µmol) at 0 °C under N₂ atmosphere. After stirring for 3 h at room temperature, the reaction was quenched with sat. NaHCO₃ aq., and the layers were separated. The aqueous layer was extracted two times with ethyl acetate and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/*n*-hexane = 5:95) to afford 16.7 mg (88%) of **41** as a pale yellow oil; $[\alpha]_D^{20}$ +15.9 (*c* 0.39, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2968, 1741 (CO), 1211; ¹H NMR (500 MHz, CDCl₃) δ ppm: 9.59 (1H, s), 2.44 (1H, dq, *J* = 7.0, 2.5), 1.67 (1H, dq, *J* = 13.5, 7.0), 1.56 (1H, m), 1.41 (1H, m), 1.32-1.21 (2H, overlapped), 1.15 (2H, m), 1.08 (3H, d, *J* = 8.0), 1.08-1.04 (2H, overlapped), 0.87 (3H, d, *J* = 8.0), 0.85 (3H, d, *J* = 8.0), 0.82 (3H, d, *J* = 8.5); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 205.6, 44.1, 40.0, 39.0, 31.6, 30.4, 27.7, 19.7, 18.8, 14.0, 11.4; HR-ESI-MS calcd for C₁₁H₂₃O [M+H]⁺: 171.1749, found: 171.1769.

Unsaturated ester 15: To a stirred solution of aldehyde **41** (153.0 mg, 0.900 mmol) in CH₃CN (10.0 mL) was added ethyl 2-(triphenylphosphoranylidene)propionate (**14**, 650.0 mg, 1.796 mmol) at room temperature under N₂ atmosphere. After stirring for 12 h at 80 °C, the reaction mixture was evaporated and purified by silica gel open column chromatography (ethyl acetate/*n*-hexane = 95:5) to afford 171.4 mg (75%) of **15** as a pale yellow oil; $[\alpha]_D^{20}$ +7.2 (*c* 0.24, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2966, 2915, 2873, 1716 (CO), 1213, 1208, 1153, 1105, 771; ¹H NMR (400 MHz, CDCl₃) δ ppm: 6.51 (1H, d, *J* = 10.4), 4.18 (2H, m), 2.62 (1H, m), 1.85 (3H, d, *J* = 1.2), 1.56 (1H, s), 1.38 (2H, m), 1.29 (3H, dd, *J* = 7.0, 7.0), 1.29-1.27 (2H, overlapped), 1.19-1.02 (3H, overlapped), 0.97 (3H, d, *J* = 6.4), 0.85 (3H, dd, *J* = 7.2, 7.2), 0.82-0.76 (6H, overlapped); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 168.5, 148.3, 126.1, 60.3, 45.2, 44.8, 31.6, 30.8, 30.2, 28.0, 20.4, 19.6, 19.0, 14.3, 12.5, 11.4; HR-ESI-MS calcd for C₁₆H₃₀NaO [M+Na]⁺: 277.2143, found: 277.2130.

Unsaturated aldehyde 16: To a stirred solution of **15** (114.4 mg, 0.50 mmol) in dry toluene (5.0 mL) was added DIBAL-H (1.0 M in toluene, 1.5 mL, 1.5 mmol) at -78 °C under N₂ atmosphere. After stirring for 4 h, the reaction was quenched with sat. Rochelle salt aq. and then the whole mixture was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated to give a crude product that was subjected to the next reaction without further purification.

To a stirred solution of the above crude product in dry CH_2CI_2 (11.0 mL) was added DMP (424.3 mg, 1.0 mmol) at 0 °C under N₂ atmosphere. After stirring for 2 h at room temperature, the reaction was quenched with sat. NaHCO₃ aq./sat. Na₂S₂O₃ aq. (1:1) and then the whole mixture was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/*n*-hexane = 10:90) to afford 78.8 mg (75%, 2 steps) of **16** as a colorless oil; $[\alpha]_D^{20}$ -11.4 (*c* 0.18,

CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2963, 2922, 2877, 1690 (CO), 1644, 1461, 1380, 1283, 672; ¹H NMR (400 MHz, CDCl₃) δ ppm: 9.39 (1H, s), 6.23 (1H, d, *J* = 9.6), 2.82 (1H, m), 1.77 (3H, s), 1.44-1.18 (5H, m), 1.15-0.98 (3H, overlapped), 1.05 (3H, d, *J* = 6.4), 0.86 (3H, dd, *J* = 7.2, 7.2), 0.82 (3H, d, *J* = 6.4), 0.79 (3H, d, *J* = 6.4); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 195.7, 160.9, 137.8, 45.1, 44.8, 31.6, 31.2, 30.2, 28.1, 20.3, 19.4, 19.0, 11.4, 9.3; HR-ESI-MS calcd for C₁₄H₂₇O [M+H]⁺: 211.2062, found: 211.2057.

Aldol product 18: To a stirred solution of oxazoridinone 17 (69.3 mg, 0.278 mmol) in dry CH₂Cl₂ (0.7 mL) were added *n*Bu₂BOTf (1.0 M in CH₂Cl₂, 0.35 mL, 0.350 mmol) and NEt₃ (48.5 µL, 0.348 mmol) at 0 °C under N₂ atmosphere. After 1 h, the reaction mixture was cooled to -78 °C and 16 (48.7 mg, 0.232 mmol) in CH₂Cl₂ (0.3 mL) was added dropwise and stirred at -78 °C for 1 h. The reaction was then warmed up to 0 °C and stirred for 1 h. MeOH/ pH 7.4 PBS buffer (2:1, 730 µL) and MeOH/30% H₂O₂ (2:1, 300 μ L) were added and the whole reaction mixture was stirred at room temperature. After 12 h, the whole mixture was extracted three times with ethyl acetate and then the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/*n*-hexane = 20:80) to afford 102.2 mg (96%) of **18** as a colorless oil; $\left[\alpha\right]_{D}^{20}$ -8.7 (c 0.49, CHCl₃); IR (ATR) v_{max} cm⁻¹: 2956, 2922, 2872, 2837, 1779 (CO), 1706 (CO), 1456, 1382, 1352, 1293, 1212, 1194, 1126, 1109, 1071, 1051, 966, 763, 752, 704; ¹H NMR (500 MHz, $CDCl_3$) δ ppm: 7.34 (2H, dd, J = 8.0, 6.5), 7.29 (1H, dd, J = 7.0, 7.0), 7.23 (2H, d, J = 7.0), 5.19 (2H, dd, J = 4.0, 3.5), 4.67 (1H, m), 4.26 (1H, br-s), 4.21 (2H, m), 3.46 (3H, s), 3.39 (1H, dd, J = 11.5, 3.0), 3.84 (1H, dd, J = 13.0, 9.5), 2.61 (1H, m), 2.53 (1H, m), 1.72 (3H, s), 1.47 (1H, m), 1.38 (1H, m), 1.30-1.18 (2H, overlapped), 1.14 (4H, overlapped), 0.86 (3H, d, J = 8.0), 0.85 (3H, d, J = 8.0, 7.5), 0.80 (3H, d, J = 6.5), 0.78 (3H, d, J = 6.5); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 171.2, 153.2, 135.0, 134.1, 131.1, 129.4, 129.0, 127.5, 80.5, 76.6, 58.8, 55.8, 45.8, 45.0, 37.8, 31.6, 29.7, 27.8, 19.3, 19.1, 12.7, 11.4; HR-ESI-MS calcd for C₁₆H₃₀NaO [M+Na]⁺: 482.2882, found: 482.2887.

Diol 19: To a stirred solution of aldol product **18** (55.0 mg, 0.21 mmol) in THF (1.0 mL) were added NaBH₄ (30.7 mg, 0.808 mmol) and LiCl (33.8 mg, 0.805 mmol) at 0 °C. After 1 h, EtOH (1.0 mL) was added dropwise and stirred at room temperature for 2 h. The reaction was quenched with H₂O and the layers were separated. The aqueous layer was extracted two times with CHCl₃ and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/*n*-hexane = 45:55) to afford 18.0 mg (55%) of **19** as a pale yellow oil; $[\alpha]_D^{20}$ -2.1 (*c* 0.30, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2959, 2924, 2871, 2842, 1119, 1055, 1014, 775, 671, 647; ¹H NMR (500 MHz, CDCl₃) δ ppm: 5.25 (1H, d, *J* = 10.0), 4.02 (1h d, *J* = 7.5), 3.72 (1H, dd, *J* = 12.0, 4.0), 3.53 (1H, dd, *J* = 12.0, 4.0), 3.52 (3H, s), 3.27 (1H, m), 2.52 (1H, m), 1.67 (3H, d, *J* = 1.5), 1.45 (1H, m), 1.38 (1H, m), 1.25 (2H, m), 1.14-0.98 (4H, overlapped), 0.90 (3H, d, *J* = 7.0), 0.85 (3H, dd, *J* = 7.5, 7.5), 0.80 (3H, d, *J* = 4.0), 0.79 (3H, d, *J* = 4.0); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 135.8, 131.9, 82.8, 77.1, 60.9, 58.8, 45.7, 44.8, 31.6, 30.2, 29.5, 27.8, 21.1, 19.5, 19.0, 12.2, 11.4; HR-ESI-MS calcd for C₁₇H₃₅O₃ [M+Na]⁺:287.2586, found: 287.2595.

Acetal 42: To a stirred solution of diol **19** (13.0 mg, 0.046 mmol) in CH₂Cl₂ (1.0 mL) were added dimethoxypropane (17.0 μ L, 0.139 mmol) and PPTS (11.5 mg, 0.046 mmol) at 0 °C. After stirring for 16 h at room temperature, the reaction was quenched with sat. NH₄Cl aq. and then the whole mixture were extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/*n*-hexane = 10:90) to afford 9.5 mg (66%) of **42** as a colorless oil; $[\alpha]_{D}^{20}$ +19.3 (*c* 0.45, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2960, 2924, 2871, 2841, 1456, 1376, 1276, 1195, 1096, 864, 772, 761; ¹H NMR (500 MHz, CDCl₃) δ ppm: 5.25 (1H, d, *J* = 9.0), 4.22 (1H, s), 4.02-3.92 (2H, overlapped), 3.35 (3H, s), 3.06 (1H, d, *J* = 1.5), 2.53 (1H, m), 1.70 (3H, s), 1.51 (1H, m), 1.47 (3H, s), 1.46 (3H, s), 1.39 (1H, m), 1.25 (2H, m), 1.10 (1H, m), 1.02 (3H, dd, *J* = 7.0, 7.0), 0.92 (3H, d, *J* = 7.0), 0.85 (3H, dd, *J* = 7.5, 7.0), 0.81 (3H, d, *J* =

6.5), 0.80 (3H, d, J = 7.0); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 132.6, 130.5, 98.6, 75.0, 74.8, 62.1, 57.9, 46.0, 44.7, 31.7, 30.4, 29.3, 29.2, 27.7, 21.2, 19.8, 19.0, 18.9, 13.5, 11.5; HR-ESI-MS calcd for C₂₀H₃₉O₃ [M+H]⁺: 327.2899, found: 327.2878.

Mono-TBS-protected compound 43: To a stirred solution of diol 19 (49.6 mg, 0.183 mmol) in CH₂Cl₂ (2.0 mL) were added TBSCI (32.8 mg, 0.217 mmol), and imidazole (18.7 mg, 0.275 mmol) at 0 °C. After stirring for 2 h at room temperature, the reaction was quenched with H₂O, and the layers were separated. The aqueous layer was extracted two times with ethyl acetate and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/n-hexane = 5:95) to afford 59.3 mg (81%) of **43** as a pale yellow oil; $[\alpha]_{D}^{20}$ +2.9 (*c* 0.20, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2955, 2927, 2858, 1455, 1255, 1125, 1087, 1007, 836, 773, 670; ¹H NMR (500 MHz, CDCl₃) δ ppm: 5.20 (1H, d, J = 9.5), 3.93 (1H, d, J = 7.0), 3.71 (1H, dd, J = 11.0, 3.5), 3.57 (1H, dd, 11.0, 3.5), 3.50 (3H, s), 3.22 (1H, m), 2.52 (1H, m), 1.66 (3H, d, J = 10.0), 1.48 (1H, m), 1.38 (1H, m), 1.25 (2H, m), 1.14-0.98 (4H, overlapped), 0.90 (9H, s), 0.88 (3H, overlapped), 0.85 (3H, dd, J = 7.5, 7.5), 0.80 (3H, d, J = 6.5), 0.78 (3H, d, J = 6.0), 0.05 (6H, s); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 135.0, 132.1, 83.0, 76.1, 62.7, 59.2, 45.8, 44.9, 31.6, 30.2, 29.5, 27.8, 25.9, 21.2, 19.5, 19.1, 18.2, 12.4, 11.4, -5.5; HR-ESI-MS calcd for C₂₃H₄₈NaO₃Si [M+Na]⁺: 423.3270, found: 423.3265.

(R)-MTPA ester 44: To a stirred solution of alcohol 43 (4.8 mg, 0.012 mmol) in dry CH₂Cl₂(1.0 mL) were added (S)-MTPACI (60.0 µL, 0.321 mmol), NEt₃ (61.2 µL, 0.440 mmol), and DMAP (cat. amount) at 0 °C under N₂ atmosphere. After stired for 18 h at room temperature, the reaction was quenched with H_2O , and the layers were separated. The aqueous layer was extracted two times with ethyl acetate and the combined organic layers were washed with brine, dried over Na_2SO_4 , and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/n-hexane = 5:95) to afford 6.5 mg (88%) of (*R*)-44 as a colorless oil; $[\alpha]_{D}^{20}$ -3.2 (*c* 1.08, CHCl₃); IR (ATR) v_{max} cm⁻¹: 2956, 2927, 2857, 1748 (CO), 1256, 1187, 1171, 1017, 839, 773; ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.53 (2H, m), 7.41-7.34 (3H, overlapped), 5.41 (1H, d, J = 9.0), 5.36 (1H, d, J = 10.0), 3.62 (1H, dd, J = 11.0, 3.0), 3.54 (3H, s), 3.48 (1H, dd, J = 10.5, 5.5), 3.32 (1H, m), 3.24 (3H, s), 2.50 (1H, m), 1.69 (3H, s), 1.48-1.33 (2H, overlapped), 1.28-1.18 (2H, overlapped), 1.10-0.96 (3H, overlapped), 0.89 (3H, d, J = 4.5), 0.88 (9H, s), 0.84 (3H, dd, J = 7.5, 7.5), 0.77 (3H, d, J = 3.5), 0.76 (3H, d, J = 3.5), 0.07 (6H, s); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 165.4, 139.4, 132.7, 129.6, 129.3, 128.5, 128.4, 127.6, 127.3, 82.1, 81.6, 65.5, 59.1, 55.3, 45.5, 45.0, 31.6, 30.3, 29.6, 27.9, 25.9, 20.6, 19.4, 18.9, 18.1, 14.0, 12.7, 11.4, -5.5; HR-ESI-MS calcd for C₃₃H₅₅F₃NaO₅Si[M+Na]⁺: 639.3669, found: 639.3664.

(S)-MTPA ester 44: To a stirred solution of alcohol 43 (4.0 mg, 0.010 mmol) in dry CH_2CI_2 (1.0 mL) were added (*R*)-MTPACI (60.0 μ L, 0.321 mmol), NEt₃ (62.5 μ L, 0.449 mmol), and DMAP (cat. amount) at 0 °C under N₂ atmosphere. After stired for 18 h at room temperature, the reaction was quenched with H₂O, and the layers were separated. The aqueous layer was extracted two times with ethyl acetate and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/*n*-hexane

= 5:95) to afford 5.9 mg (96%) of (*S*)-44 as a colorless oil; $[\alpha]_D^{20}$ +8.2 (*c* 1.07, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2955, 2928, 2858, 1749 (CO), 1259, 1188, 1170, 1017, 837, 776; ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.53 (2H, m), 7.40-7.32 (3H, overlapped), 5.34 (1H, d, *J* = 9.5), 5.32 (1H, d, *J* = 9.5), 3.68 (1H, dd, *J* = 11.0, 3.0), 3.58 (3H, s), 3.50 (1H, dd, *J* = 11.0, 5.0), 3.43 (3H, s), 3.40 (1H, m), 2.48 (1H, m), 1.56 (3H, s), 1.42 (1H, m), 1.30-1.18 (3H, overlapped), 1.15-0.96 (3H, overlapped), 0.89 (9H, s), 0.87 (3H, dd, *J* = 9.5, 3.5), 0.84 (3H, d, *J* = 7.5), 0.81 (3H, d, *J* = 7.5), 0.79 (3H, d, *J* = 6.5), 0.05 (6H, s); ¹³C NMR (125 MHz, CDCl₃) δ ppm:165.5, 139.5, 132.4, 129.4, 128.2, 127.9, 127.5, 82.1, 81.7, 62.1, 58.8, 55.4, 45.6, 45.0, 31.6, 30.2, 29.6, 27.9, 25.9, 20.9, 19.3, 18.9, 18.2, 12.3, 11.4, -5.5;HR-ESI-MS calcd for C₃₃H₅₅F₃NaO₅Si[M+Na]⁺: 639.3669, found: 639.3656.

Phenyl ester 20: To a stirred solution of 43 (7.1 mg, 0.018 mmol), PhCOOH (8.8 mg, 0.072 mmol) and PPh₃ (18.9 mg, 0.072 mmol) in THF (0.5 mL) was added DEAD (2.2 M in toluene, 32.3 µL, 0.072 mmol) under N₂ atmosphere at 0 °C. After stirring for 15 h at room temperature, the reaction was quenched with H₂O, and the layers were separated. The aqueous layer was extracted two times with ethyl acetate and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/n-hexane = 2:98) to afford 8.6 mg (95%) of **20** as a pale yellow oil; $[\alpha]_D^{20}$ -2.3 (*c* 0.08, CHCl₃); IR (ATR) v_{max} cm⁻¹: 2956, 2928, 2855, 1725 (CO), 1270, 1111, 956, 838, 776, 712; ¹H NMR $(500 \text{ MHz}, \text{CDCI}_3) \delta$ ppm: 8.03 (2H, d, J = 7.0), 7.56 (1H, dd, J = 7.5, 7.0), 7.44 (2H, dd, J = 8.0, 7.5), 5.41 (1H, d, J = 5.5), 5.26 (1H, d, J = 9.5), 3.79 (1H, dd, J = 10.5, 3.0), 3.70 (1H, dd, J = 11.0, 7.0), 3.54 (1H, m), 3.49 (3H, s), 2.52 (1H, m), 1.78 (3H, d, J = 1.0),1.38 (1H, m), 1.32 (1H, m), 1.18 (2H, m), 1.06-0.98 (3H, overlapped), 0.94 (1H, m), 0.92 (3H, d, J = 7.0), 0.89 (9H, s), 0.80 (3H, dd, J = 7.5, 7.5), 0.76 (3H, d, J = 6.5), 0.72 (3H, d, J = 6.5), 0.04 (6H, s); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 165.1, 136.1, 132.8, 130.6, 129.5, 129.3, 128.3, 83.0, 78.0, 63.2, 59.3, 45.8, 45.0, 31.6, 30.2, 29.6, 27.8, 25.9, 21.3, 19.3, 19.0, 18.3, 13.9, 11.3, -5.3; HR-ESI-MS calcd for C₃₀H₅₂NaO₄Si [M+Na]⁺: 527.3533, found: 527.3516.

Di-TBS-protected compound 21: To a stirred solution of **20** (159.1 mg, 0.316 mmol) in MeOH (3.0 mL) was added K_2CO_3 (128.3 mg, 0.930 mmol) at 0 °C. After stirring for 16 h at room temperature, the reaction was quenched with sat. NH₄Cl aq. and the mixture were extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated to give a crude product that was subjected to the next reaction without further purification.

To a stirred solution of the above crude product in dry CH₂Cl₂ (3.0 mL) were added 2.6-litidine (0.11 mL, 0.954 mmol), and TBSOTf (0.15 mL, 0,632 mmol) at -78 °C under N₂ atmosphere. After stirring for 2 h, the reaction was guenched with sat. NH₄Cl ag. and the layers were separated. The aqueous layer was extracted two times with ethyl acetate and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/n-hexane = 2:98) to afford 159.2 mg (98%, 2 steps) of 21 as a colorless oil; [α]_D²⁰ -13.2 (*c* 0.75, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2955, 2927, 2857, 1461, 1251, 1135, 1091, 1064, 835, 775, 668; ¹H NMR (500 MHz, CDCl₃) δ ppm: 5.06 (1H, d, J = 9.5), 3.90 (1H, d, J = 6.5), 3.84 (1H, dd, J = 11.5, 1.0), 3.58 (1H, dd, J = 10.5, 6.5), 3.39 (3H, s), 3.17 (1H, dt, J = 7.0, 2.5), 2.51 (1H, m), 1.66-1.58 (1H, overlapped), 1.63 (3H, d, J = 1.0), 1.48 (1H, m), 1.37 (1H, m), 1.29-0.94 (4H, overlapped), 0.92-0.85 (1H, overlapped), 0.91 (3H, d, J = 8.0), 0.90 (9H, s), 0.87 (9H, s), 0.86 (3H, dd, J = 7.5, 7.5), 0.79 (3H, d, J = 9.5), 0.78 (3H, d, J = 9.5), 0.05 (6H, s), 0.02 (6H, s); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 134.9, 133.0, 83.9, 78.0, 63.9, 59.1, 46.1, 45.1, 31.6, 30.4, 29.5, 27.8, 25.9, 25.8, 21.3, 19.1, 19.0, 18.3, 18.1, 12.0, 11.4, -4.5, -5.2, -5.29, -5.31; HR-ESI-MS calcd for C₂₉H₆₂NaO₃Si₂ [M+Na]⁺: 537.4135, found: 537.4131.

Alcohol 45: To a stirred solution of **21** (25.0 mg, 0.048 mmol) in EtOH (0.56 mL) was added PPTS (1.2 mg, 4.78 μ mol) at 0 °C. After stirring for 16 h at room temperature, the reaction mixture was evaporated and the residue was purified by silica gel flash column chromatography (ethyl acetate/*n*-hexane = 5:95) to afford 15.4 mg (80%) of **45** as a

colorless oil; $[\alpha]_D^{20}$ -21.5 (*c* 0.23, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2957, 2926, 2862, 1059, 1033, 1009, 836, 773, 670, 654; ¹H NMR (500 MHz, CDCl₃) δ ppm: 5.16 (1H, d, *J* = 9.5), 4.00 (1H, d, *J* = 6.5), 3.75 (1H, dd, *J* = 11.5, 4.5), 3.64 (1H, dd, *J* = 11.0, 5.0), 3.38 (3H, s), 3.18 (1H, dt, *J* = 6.0, 5.5), 2.52 (1H, m), 1.64 (3H, d, *J* = 1.0), 1.46 (1H, m), 1.37 (1H, m), 1.26-0.94 (5H, overlapped), 0.91 (3H, d, *J* = 7.0), 0.88-0.85 (1H, overlapped), 0.88 (9H, s), 0.85 (3H, dd, *J* = 7.5, 7.5), 0.79 (3H, d, *J* = 7.0), 0.78 (3H, d, *J* = 6.5), 0.06 (3H, s), 0.00 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 135.3, 132.6, 82.0, 78.9, 61.7, 58.3, 46.0, 45.1, 31.6, 30.4, 29.5, 27.9, 25.8, 21.2, 19.04, 18.97, 18.1, 12.2, 11.4, -4.5, -5.3; HR-ESI-MS calcd for C₂₃H₄₈NaO₃Si [M+Na]⁺: 423.3270, found: 423.3262.

Alkyne 7: To a stirred solution of **45** (30.0 mg, 0.075 mmol) in CH_2Cl_2 (1.0 mL) was added DMP (63.6 mg, 0.15 mmol) at 0 °C under N₂ atmosphere. After stirring for 2 h at room temperature, the reaction was quenched with sat. NaHCO₃ aq. / sat. NaHCO₃ aq. (1:1) and the mixture was extracted three times with CHCl3. The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated to give a crude product that was subjed to the next reaction without further purification.

To a stirred solution of MeCOCN₂PO(OMe)₂ (43.2 mg, 0.225 mmol) in dry MeOH (0.8 mL) was added K₂CO₃ (50.4 mg, 0.156 mmol) at 0 °C under N₂ atmosphere and the mixture was stirred at room temperature. After stirring for 10 min, the reaction mixture was cooled to 0 °C and the above crude aldehyde in dry MeOH (0.5 mL) was added dropwise. After stirring for 18 h at room temperature, the reaction mixture was quenched with sat. NH₄Cl aq. and the layers were separated. The aqueous layer was extracted two times with ethyl acetate and the combined organic layers were washed with brine, dried over Na_2SO_4 , and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/n-hexane = 1:99) to afford 17.0 mg (58% in 2 steps) of 7 as a colorless oil; $[\alpha]_{D}^{20}$ +4.8 (c 0.20, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2963, 1057, 774, 669, 652; ¹H NMR (500 MHz, CDCl₃) δ ppm: 5.09 (1H, d, J = 9.5), 4.02 (1H, d, J = 7.5), 3.86 (1H, dd, J = 11.5, 4.5), 3.35 (3H, s), 2.52 (1H, m), 1.59 (3H, d, J = 1.0), 1.47 (1H, m), 1.37 (1H, m), 1.28-0.94 (5H, overlapped), 0.90 (3H, d, J = 6.5), 0.89-0.83 (1H, overlapped), 0.88 (9H, s), 0.85 (3H, dd, J = 7.5, 7.5), 0.79 (3H, d, J = 6.5), 0.77 (3H, d, J = 7.0), 0.08 (3H, s), 0.02 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 136.1, 132.3, 82.2, 80.2, 73.9, 73.4, 56.6, 46.0, 45.2, 31.7, 30.4, 29.6, 27.7, 25.8, 21.2, 18.99, 18.97, 18.2,

11.4, 11.0, -4.6, -4.9; HR-ESI-MS calcd for $C_{24}H_{46}NaO_2Si [M+Na]^+$: 417.3165, found: 417.3145.

Acetal 22: To a stirred solution of known diol 8 (1.50 g, 6.25 mmol) and p-methoxy-benzaldehyde dimethyl acetal (4.74 mL, 28.12 mmol) in dichloromethane (50.0 mL) was added PPTS (156.8 mg, 0.625 mmol) at 0 °C. After stirring for 18 h at room temperature, the reaction was quenched with sat. NaHCO₃ aq., and the layers were separated. The aqueous layer was extracted three times with chloroform and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/*n*-hexane = 30:70) to afford 2.19 g (98%) of **22** as a colorless oil; $[\alpha]_{D}^{20}$ +64.6 (*c* 1.08, CHCl₃); IR (ATR) V_{max} cm⁻¹: 2972, 2838, 1716 (CO), 1606, 1510, 1457, 1394, 1316, 1253, 1169, 1102, 1073, 1031, 980, 848, 831, 770; ¹H NMR (500 MHz, CDCl₃) δ ppm: 8.03 (0.8H, d, J = 8.5), 8.00 (1.2H, d, J = 8.5), 7.44 (0.8H, d, J = 3.0), 7.43 (1.2H, d, J = 2.5), 6.95-6.86 (4H, overlapped), 5.95 (0.4H, s), 5.89 (0.6H, s), 4.40 (1.2H, m), 4.29 (0.8H, m), 4.07 (0.4H, d, J = 8.5), 3.95 (0.6H, d, J = 8.5), 3.86 (1.2H, s), 3.81 (1.2H, s), 3.79 (1.8H, s), 1.52 (1.2H, s), 1.50 (1.8H, s); 13 C NMR (125 MHz, CDCl₃) δ ppm: 166.1, 163.7, 163.6, 160.62, 160.59, 131.9, 131.8, 129.9, 129.4, 128.3, 128.2, 122.3, 113.84, 113.76, 104.6, 103.8, 79.8, 79.5, 73.6, 73.1, 68.3, 67.7, 55.6, 55.41, 55.39, 23.2, 21.6; HR-ESI-MS calcd for $C_{20}H_{22}NaO_6[M+Na]^+$: 381.1314, found: 381.1313.

O-silylated compound 23: To a stirred solution of **22** (1.52 g, 4.24 mmol) in MeOH (30.0 mL) was added NaOMe (687.0 mg, 12.72 mmol) at 0 °C. After stirring for 18 h at room temperature, the reaction was quenched with sat. NH_4CI aq. and the mixture were extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over Na_2SO_4 , and evaporated to give a crude product that was subjected to the next reaction without further purification.

To a stirred solution of the above crude alcohol in dichloromethane (80.0 mL) were added imidazole (910.7 mg, 13.4 mmol) and TBSCI (1.50 g, 13.8 mmol) at 0 °C. After stirring for 16 h at room temperature, the reaction was quenched with sat. NaHCO₃ aq., and the layers were separated. The aqueous layer was extracted three times with Chloroform and the combined organic layers were washed with brine, dried over Na_2SO_4 , and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/n-hexane = 5:95) to afford 2.08 g (92%, 2 steps) of 23 as a pale yellow oil; $[\alpha]_{D}^{20}$ +5.7 (*c* 0.38, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2954, 2931, 2856, 1615, 1586, 1520, 1469, 1390, 1302, 1249, 1170, 1100, 1074, 1035, 980, 834, 777, 670; ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.41 (1H, d, J = 9.0), 7.41 (1H, d, J = 8.5), 6.90 (1H, d, J = 9.0), 6.89 (1H, d, J = 8.5), 5.87 (0.5H, s), 5.83 (0.5H, s), 4.21 (0.5H, d, J = 8.0), 4.08 (0.5H, d, J = 8.0), 3.84-3.78 (0.5H, overlapped), 3.81 (3H, s), 3.72 (0.5H, d, J = 10.5), 3.63 (1H, J = 9.0), 3.59 (0.5H, d, J = 10.0), 3.49 (0.5H, d, J = 8.5), 1.38 (3H, s), 0.92 (4.5H, s), 0.90 (4.5H, s), 0.068 (3H, s), 0.065 (3H, s); 13 C NMR (125 MHz, CDCl₃) δ ppm: 160.4, 160.3, 130.2, 129.8, 128.1, 128.0, 113.71, 113.67, 104.4, 103.2, 80.95, 80.94, 73.4, 72.8, 67.8, 67.4, 55.3, 25.85, 25.82, 22.8, 21.5, 18.24, 18.21; HR-ESI-MS calcd for C₁₈H₃₀O₄Si [M+H]⁺: 339.1992, found: 339.1961.

Alcohol 24: To a stirred solution of **23** (2.40 g, 7.1 mmol) in dichloromethane (40.0 mL) was added DIBAL-H (28.4 mL, 1.0 M in toluene, 28.4 mmol) at 0 °C. After stirring for 4 h, the reaction was quenched with sat. Rochelle salt aq., and then stirred vigorously for 16 h. After the layers were separated, the aqueous layer was extracted three times with Chloroform and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/*n*-hexane = 10:90) to afford 869.1 mg (36%) of **24** as a colorless oil; $[\alpha]_D^{20}$ -4.3 (*c* 0.38, CHCl₃); IR (ATR) v_{max} cm⁻¹: 2954, 2927, 2856, 1613, 1585, 1514, 1462, 1363, 1301, 1248, 1172, 1097, 1038, 891, 837, 775, 669; ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.26 (2H, d, *J* = 8.5), 6.87 (2H, d, *J* = 8.5), 4.48 (2H, s), 3.80 (3H, s), 3.73 (1H, d, *J* = 10.0), 3.63 (1H, d, 7.0), 3.59 (1H, d, *J* = 10.5), 1.23 (3H, s), 0.90 (9H, s), 0.07 (6H, s); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 159.0, 131.2, 129.0, 113.8, 77.4, 66.9, 66.1, 64.2, 55.3, 25.8, 18.1, 17.5; HR-ESI-MS calcd for C₁₈H₃₂NaO₄Si [M+Na]⁺: 363.1968, found: 363.1916.

Aldehyde 46: To a stirred solution of alcohol 24 (781.2 mg, 2.30 mmol) in DMSO (12.5 mL) were added NEt₃ (1.05 mL, 10.4 mmol) and SO₃-pyridine complex (1.14 g, 7.17 mmol) at room temperature. After stirring for 2 h at the same temperature, the reaction was quenched with sat. NH₄Cl aq. and the layers were separated. The aqueous layer was extracted two times with Ethyl Acetate and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/*n*-hexane = 5:95) to afford 636.8 mg (82%) of 46 as a pale yellow oil; $[\alpha]_D^{20}$ -2.5 (*c* 0.38, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2998, 2936, 2836, 1736 (CO), 1612, 1514, 1454, 1378, 1303, 1247, 1174, 1137, 1105, 1082, 1035, 824; ¹H NMR (500 MHz, CDCl₃) δ ppm: 9.67 (1H, s), 7.29 (2H, d, *J* = 8.5), 6.88 (2H, d, *J* = 9.0), 4.53 (1H, d, *J* = 10.5), 4.42 (1H, d, *J* = 10.5), 3.86 (1H, d, *J* = 11.0), 3.80 (3H, s), 3.73 (1H, d, *J* = 10.5), 1.33 (3H, s), 0.88 (9H, s), 0.04 (6H, s); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 159.2, 130.4, 129.3, 113.8, 82.7, 66.3, 66.1, 55.3, 25.7, 18.1, 15.8; HR-ESI-MS calcd for C₁₈H₃₀NaO₄Si [M+Na]⁺: 361.1889, found: 361.1854.

Alcohol 47: To a stirred solution of aldehyde **46** (618.5 mg, 1.83 mmol) in dry CH_2CI_2 (20.0 mL) was added trimethyl orthoformate (0.80 mL, 7.32 mmol) and PPTS (45.9 mg, 0.183 mmol) at 0 °C. After stirring for 16 h at room temperature, the reaction was quenched with sat. NaHCO₃ aq. and then the whole mixture was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated to give a crude product that was subjected to the next reaction without further purification.

To a stirred solution of the above crude product in dry THF (20.0 mL) was added TBAF (1.0 mM, 5.5 mL, 5.5 mmol) at 0 °C under N₂ atmosphere. After stirring for 16 h at room temperature, the reaction was quenched with H₂O and then the whole mixture was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash

column chromatography (ethyl acetate/*n*-hexane = 40:60) to afford 450.9 mg (91%, 2 steps) of **47** as a colorless oil; $[\alpha]_D^{20}$ -2.4 (*c* 0.38, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2936, 2836, 1739, 1514, 1244, 1184, 1134, 1078, 1031, 773, 669, 650; ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.27 (2H, d, *J* = 8.5), 6.87 (2H, d, *J* = 8.5), 4.55-4.51 (2H, overlapped), 4.27 (1H, s), 3.80 (3H, s), 3.65 (2H, m), 3.55 (3H, s), 3.54 (3H, s), 2.50 (1H, dd, *J* = 6.5, 6.5), 1.22 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 158.9, 131.3, 128.8, 113.7, 109.8, 79.4, 65.1, 64.3, 58.1, 55.2, 14.7; HR-ESI-MS calcd for C₁₄H₂₂NaO₅ [M+Na]⁺: 293.1365, found: 293.1322.

Aldehyde 6: To a stirred solution of alcohol 47 (220.0 mg, 0.815 mmol) in DMSO (2.0 mL) were added NEt₃ (0.37 mL, 2.69 mmol) and SO₃-Pyridine complex (393.8 mg, 2.47 mmol) at room temperature. After stirring for 4 h at the same temperature, the reaction was quenched with sat. NH₄Cl aq. and the layers were separated. The aqueous layer was extracted two times with Ethyl Acetate and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/*n*-hexane = 10:90) to afford 150.5 mg (69%) of **6** as a colorless oil; $[\alpha]_D^{20}$ +8.7 (*c* 0.43, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2996, 2937, 2835, 1736 (CO), 1613, 1513, 1458, 1383, 1301, 1248, 1177, 1139, 1106, 1079, 1030, 820; ¹H NMR (500 MHz, CDCl₃) δ ppm: 9.61 (1H, s), 7.29 (2H, d, *J* = 8.5), 6.87 (2H, d, *J* = 9.0), 4.53 (1H, d, *J* = 11.0), 4.39 (1H, d, *J* = 11.0), 4.37 (1H, s), 3.80 (3H, s), 3.53 (3H, s), 3.49 (3H, s), 1.39 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 202.0, 159.1, 130.4, 129.0, 113.7, 107.9, 84.5, 66.3, 58.1, 57.4, 55.2, 13.2; HR-ESI-MS calcd for C₁₄H₂₀NaO₅ [M+Na]⁺: 291.1208, found: 291.1159.

Alcohol 26: To a stirred solution of alkyne 7 (22.0 mg, 0.056 mmol) in dry THF (0.6 mL) was added LHMDS (1.04 M in hexane, 0.21 mL, 0.218 mmol) at -78 $^{\circ}$ C under N₂ atmosphere. After stirring for 30 min at 0 $^{\circ}$ C, the reaction mixture was cooled to -78 $^{\circ}$ C

and aldehyde 6 (60.0 mg, 0.224 mmol) in dry THF (0.6 mL) was added dropwise. After stirring for 1 h at 0 °C, the reaction was quenched with sat. NH₄Cl aq. and the layers were separated. The aqueous layer was extracted two times with ethyl acetate and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/n-hexane = 15:85) to afford 35.4 mg (95%) of **26** as a colorless oil; $\left[\alpha\right]_{D}^{20}$ -68.2 (c 0.10, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2955, 2926, 1515, 1458, 1378, 1249, 1107, 1078, 1036, 838, 775 ; ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.29-7.26 (2H, overlapped), 6.87-6.84 (2H, overlapped), 5.13-5.08 (1H, overlapped), 4.72-4.60 (2H, overlapped), 4.54 (0.4H, s), 4.46 (1H, d, J = 8.0), 4.42 (0.6H, s), 4.04 (1H, d, J = 7.0), 3.96-3.93 (1H, overlapped), 3.80 (1.8H, s), 3.79 (1.2H, s), 3.58 (1.2H, s), 3.57 (1.8H, s), 3.54 (1.2H, s), 3.52 (1.8H, s), 3.33 (1.8H, s), 3.32 (1.2H, s), 2.98-2.93 (1H, overlapped), 2.51 (1H, m), 1.60-1.39 (3H, overlapped), 1.47 (1H, m), 1.40 (4H, overlapped), 1.25 (1H, m), 1.11 (1H, m), 1.04 (2H, m), 0.97 (1H, m), 0.90 (3H, overlapped), 0.87 (6H, s), 0.86 (3H, s), 0.84 (2H, d, J = 7.5), 0.79 (3H, d, J = 7.0), 0.78-0.76 (3H, overlapped), 0.07 (3H, s), 0.01 (3H, s); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 158.91, 158.86, 135.7, 135.6, 132.5, 132.4, 131.4, 129.0, 128.9, 113.6, 109.3, 108.8, 84.8, 84.2, 84.1, 80.6, 80.4, 80.2, 80.1, 73.8, 73.7, 66.9, 66.5, 65.8, 65.6, 58.9, 58.2, 57.6, 56.4, 56.2, 55.2, 46.1, 46.06, 45.1, 31.6, 30.4, 30.36, 29.5, 27.8, 25.8, 21.3, 19.1, 18.9, 18.2, 14.0, 13.7, 11.4, 11.37, 11.2, -4.7, -4.78, -4.83; HR-ESI-MS calcd for C₃₈H₆₆NaO₇Si [M+Na]⁺: 685.4476, found: 685.4447.

Ketone 48: To a stirred solution of alcohol **26** (33.0 mg, 0.050 mmol) in CH₂Cl₂ (1.0 mL) was added DMP (52.8 mg, 0.125 mmol) at 0 °C. After stirring for 1 h at room temperature, the reaction was quenched with sat. NaHCO₃ aq./sat. Na₂S₂O₃ aq. (1:1) and then the whole mixture was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/*n*-hexane = 10:90) to afford 31.7 mg (quant) of **48** as a colorless oil; $[\alpha]_D^{20}$ +35.6 (*c* 0.75, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2955, 2926, 2854, 2207, 1682 (CO), 1612, 1517, 1459, 1378, 1247, 1140, 1111, 1087, 1036, 987, 836, 778; ¹H NMR (400 MHz, CDCl₃) δ ppm: 7.29 (2H, d, *J* = 8.8), 6.87 (2H, d, *J* = 9.6), 5.13 (1H, d, *J* = 10.0), 4.60 (1H, s), 4.46 (1H, d, *J* = 11.2), 4.33 (1H, d, *J* = 11.2), 4.08 (1H, d, *J* = 7.6), 4.04 (1H, d, *J* = 7.6), 3.80 (3H, s), 3.58 (3H,

s), 3.46 (3H, s), 3.33 (3H, s), 2.50 (1H, m), 1.57 (3H, s), 1.46 (3H, s), 1.37 (1H, m), 1.30-0.96 (4H, overlapped), 0.91 (3H, d, J = 6.4), 0.88-0.82 (12H, overlapped), 0.80 (3H, d, J = 6.4), 0.77 (3H, d, J = 6.4), 0.06 (3H, s), 0.00 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ ppm: 187.2, 159.0, 136.5, 131.8, 130.5, 129.0, 113.6, 107.4, 93.0, 86.2, 84.0, 79.7, 73.8, 66.1, 58.9, 57.1, 56.8, 55.2, 46.0, 45.1, 31.6, 30.4, 29.6, 27.8, 25.7, 21.2, 19.0, 18.9, 18.1, 13.1, 11.4, 11.1, -4.7, -5.0; HR-ESI-MS calcd for C₃₈H₆₄NaO₇Si [M+Na]⁺: 683.4319, found: 683.4328.

Carboxylic acid 3: To a stirred solution of ketone **48** (17.5 mg, 0.027 mmol) in AcOEt (1.0 mL) was added Pd/C (10%, 15.0 mg) and the mixture was stirred at room temperature under H_2 atmosphere for 3 h. The mixture was filtered through Celite and the filtrate was concentrated under reduced pressure to give a crude product that was subjected to the next reaction without further purification.

To a stirred solution of the above crude product in dry CH_2CI_2 (1.0 mL) were added 2,4,6-collidine (71.4 µL, 0.540 mmol), and TMSOTf (121.8 µL, 0.675 mmol) at 0 °C under N₂ atmosphere. After stirring for 5 h, the reaction was quenched with sat. NH₄Cl aq. and the mixture were extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated to give a crude product that was subjected to the next reaction without further purification.

To a stirred solution of the above crude product and 2-methyl-2-butene (16.2 μ L, 0.153 mmol) in *t*BuOH (0.8 mL) at 0°C was added a solution of NaClO₂ (6.3 mg, 0.070 mmol) and NaH₂PO₄ monohydrate (3.2 mg, 0.027 mmol) in H₂O (0.2 mL). After stirring for 3 h at room temperature, the reaction was quenched with sat. NH₄Cl aq. and the layers were separated. The aqueous layer was extracted two times with ethyl acetate and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/*n*-hexane = 20:80) to afford 9.5 mg (69% in 3 steps) of carboxylic acid **3** as a colorless oil; $[\alpha]_D^{20}$ -8.2 (*c* 0.25, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2955, 2925, 2856, 1711 (COOH), 1463, 1255, 840, 774; ¹H NMR (500 MHz, CDCl₃) δ ppm:5.14 (1H, d, *J* = 10.0), 3.90 (1H, d, *J* = 5.0), 3.36 (3H, s), 3.17 (1H, m), 2.49-2.45 (3H, overlapped), 1.82 (1H, m), 1.73 (1H, m), 1.62 (3H, d, *J* = 1.5), 1.55 (1H, m), 1.45 (1H, m), 1.37 (1H, m), 1.25

(3H, s), 1.25-1.20 (1H, overlapped), 1.19 (1H, m), 1.12 (1H, m), 1.05 (1H, m), 0.98 (1H, m); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 177.1, 135.1, 132.8, 82.6, 79.2, 58.5, 46.1, 45.0, 31.6, 30.41, 30.38, 29.7, 29.5, 27.9, 25.8, 25.4, 22.7, 21.2, 19.1, 18.9, 18.1, 14.1, 12.5, 11.4, -4.5, -5.2; HR-ESI-MS calcd for C₂₈H₅₄NaO₆Si [M+Na]⁺: 537.3587, found: 537.3580.

Hydroxyl glycine **48**: To a stirred solution of compound **32** (1.45 g, 6.10 mmol) in 1.4-dioxane (20.0 mL) and sat. NaHCO₃ aq. (20.0 mL) was added FmocCl (1.74 g, 6.72 mmol) at 0 °C. After stirring for 1 h at room temperature, the reaction mixture was diluted with AcOEt and the layers were separated. The organic layer was washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (ethyl acetate/*n*-hexane = 15:85) to afford 2.33 g (83%) of **48** as a white solid; IR (ATR) ν_{max} cm⁻¹: 2980, 1746 (CO), 1715 (CO), 1453, 1416, 1369, 1340, 1253, 1229, 1156, 1095, 996, 760, 742; ¹H NMR (500 MHz, CDCl₃) *δ* ppm: 7.76 (2H, d, *J* = 8.0), 7.65 (2H, d, *J* = 7.5), 7.40 (2H, dd, *J* = 7.5, 7.5), 7.37-7.29 (7H, overlapped), 4.84 (2H, s), 4.56 (2H, d, *J* = 7.0), 4.29 (1H, dd, *J* = 7.0, 6.5), 4.00 (2H, s), 1.45 (9H, s); ¹³C NMR (125 MHz, CDCl₃) *δ* ppm: 167.1, 157.6, 143.5, 141.1, 135.2, 129.2, 128.3, 128.2, 127.6, 126.9, 125.0, 119.8, 82.0, 77.2, 67.8, 52.9, 46.9, 27.8; HR-ESI-MS calcd for C₂₈H₂₉NNaO₅ [M+Na]⁺: 482.1943, found: 482.1962.

Fmoc hydroxyl glycine **29**: To a stirred solution of compound **48** (343.3 mg, 0.748 mmol) in CH₂Cl₂ (3.4 mL) was added TFA (3.4 mL) at 0 °C. After stirring for 1 h at room temperature, the volatile substances were evaporated and the remained TFA was removed by co-evaporation with toluene to afford 271.3 mg (90%) of Fmoc hydroxyl glycine **29** as a white solid; IR (ATR) ν_{max} cm⁻¹: 1731 (CO), 1714 (CO), 1454, 1418, 1340, 1255, 1102, 759, 741; ¹H NMR (500 MHz, CDCl₃) δ ppm: 7.74 (2H, d, *J* = 7.0), 7.63 (2H, d, *J* = 7.5), 7.39 (2H, dd, *J* = 7.5, 7.0), 7.34-7.25 (7H, overlapped), 4.78 (2H, s), 4.61 (2H, d, *J* = 6.5), 4.28 (1H, dd, *J* = 6.5, 6.0), 4.06 (2H, s); ¹³C NMR (125 MHz, CDCl₃) δ ppm: 173.8, 157.7, 143.5, 141.3, 135.0, 129.5, 128.7, 128.5, 127.8, 127.1, 125.0, 120.0, 77.5, 68.0, 51.9, 47.1; HR-ESI-MS calcd for C₂₄H₂₁NNaO₅ [M+Na]⁺: 426.1317, found:

426.1313.

Tripeptide 33: The solid-phase peptide synthesis was started from Fmoc glycine loaded resin **5**. 20% piperidine in DMF was added to the reaction tube containing resin **5** (0.80 mmol/g, 145.0 mg, 0.116 mmol) and the mixture was shaken for 1 h at room temperature. The resin was washed with DMF three times. In another flask, Fmoc-sarcosine **28** (110.0 mg, 0.354 mmol) was activated with DIC (55.0 μ L, 0.355 mmol), HOBt (48.0 mg, 0.355 mmol), DIEA (61.7 μ L, 0.355 mmol) in DMF and resultant mixture was transferred to the above reaction tube. After shaken for 2 h, the resin was washed with DMF three times.

Introduction of hydloxyglycine **29** was conducted in the same manner. 20% piperidine in DMF was added to the reaction tube containing resin and the mixture was shaken for 1 h at room temperature. The resin was washed with DMF three times. In another flask, **29** (143.1 mg, 0.355 mmol) was activated with HATU (134.9 mg, 0.355 mmol), HOAt (47.9 mg, 0.355 mmol), DIEA (123.4 μ L, 0.710 mmol) in DMF and resultant mixture was transferred to the above reaction tube. After shaken for 1 h, the resin was washed with DMF three times.

Tetrapeptide 34: 20% piperidine in DMF was added to the reaction tube containing the above resin **33** (0.116 mmol) and the mixture was shaken for 1 h at room temperature. The resin was washed with DMF three times. In another flask, piperazic acid **30** (93.7 mg, 0.355 mmol) was activated with HATU (134.9 mg, 0.355 mmol), HOAt (47.9 mg, 0.355 mmol), DIEA (123.4 μ L, 0.710 mmol) in DMF and resultant mixture was

transferred to the above reaction tube. After shaken for 12 h, the resin was washed with DMF three times.

Acid chloride 35: To a stirred solution of dipeptide 31 (68.2 mg, 0.139 mmol) in benzene (0.50 mL) was added (COCI)₂ (0.42 mL, 4.90 mmol) at room temperature. After stirring for 2.5 h at the same temperature, the volatile substances were evaporated and the remained (COCI)₂ was removed by co-evaporation with benzene to afford acid chloride 35 as a white amorphous.

Hexapeptide 36: To the reaction tube containing resin **34** (0.116 mmol) and AgCN (23.3 mg, 0.174 mmol) was added dry toluene (0.9 mL) and shaken for 5 min. The solution of the above dipeptide **35** (0.139 mmol) in toluene (0.6 mL) was added to the whole mixture via cannula and coupling reaction was conducted at 60 °C for 20 min. After washing the reaction tube with DMF for 5 times, CH_2CI_2 was added and the floating resin was collected. (The resultant silver salt sank to the bottom of the reaction tube.)

Liner peptide 4: To the resin-bound peptide **36** was added 98% aqueous TFA (2.0 mL). After being stirred for 1 h, the reaction mixture was filtered, and washed with CH_2CI_2

three times. The filtrate was concentrated to give the crude product. The residue was purified by reversed-phase HPLC (column: Cosmosil AR-II 20 × 250 mm, eluent A: MeCN + 0.1% TFA, eluent B: H_2O + 0.1% TFA, A/B = 55/45, flow rate: 8.0 mL/min, detection: UV 220 nm) to give 4 (Rt = 31.3 min, 24.0 mg, 36% from resin 5) as a white amorphous ; $[\alpha]_{D}^{20}$ -4.0 (c 0.10, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 1732, 1716, 1698, 1683, 1669, 1653, 1634, 1614, 1558, 1540, 1416; ¹H NMR (500 MHz, CD₃OD, 40 °C, as a mixture of conformational isomers) δ ppm: 7.58-7.20 (10H, overlapped), 6.88-6.20 (0.5H, m), 5.90 (0.5H, m), 5.45 (0.5H, m), 5.36-5.02 (4H, overlapped), 5.01-4.70 (4H, overlapped), 4.53 (1H, m), 4.24-3.74 (7H, overlapped), 3.08 (1H, s), 2.95 (2H, m), 2.76 (2H, m), 2.60 (2H, m), 2.15 (1H, m), 1.86 (1H, m), 1.55 (1H, m), 1.30 (3H, m), 1.02 (3H, d, J = 7.5), 1.00-0.90 (5H, overlapped); 13 C NMR (125 MHz, CD₃OD, 40 °C, as a mixture of conformational isomers) δ ppm: 176.2, 175.0, 173.4, 173.0, 172.8, 172.8, 172.1, 171.9, 171.7, 171.1, 171.0, 170.7, 170.6, 169.3, 167.4, 165.0, 164.9, 157.6, 156.84, 156.76, 156.5, 156.39, 156.35, 156.2, 156.1, 156.0, 137.6, 137.1, 136.9, 136.0, 135.9, 135.8, 131.0, 130.9, 130.7, 130.6, 130.1, 129.8, 129.7, 129.6, 129.5, 129.2, 128.6, 97.0, 95.4, 80.6, 79.4, 79.2, 78.9, 78.7, 78.3, 75.8, 75.7, 75.4, 70.2, 69.4, 58.3, 57.8, 52.8, 52.7, 52.0, 50.8, 50.1, 49.7, 47.5, 46.3, 41.9, 41.8, 41.7, 36.3, 36.1, 35.9, 35.7, 33.9, 33.8, 33.7, 33.6, 30.3, 30.2, 29.7, 29.6, 26.5, 26.3, 26.1, 20.3, 19.82, 19.77, 19.7, 18.7, 18.3, 17.4, 16.1, 15.9; HR-ESI-MS calcd for C₃₉H₅₁Cl₃N₇O₁₃ [M+H]⁺: 930.2610, found: 930.2604.

Cyclic peptide 38: To a stirred solution of HATU (391.7 mg, 1.03 mmol) in dry CH_2CI_2 (200.0 mL) at 0 °C under N₂ was added a mixture of **4** (95.7 mg, 0.103 mmol) and *N*-ethylmorpholine (175.6 µL, 1.39 mmol) in dry CH_2CI_2 (50.0 mL) using syringe pump over a 6 h. After the addition was completed, the reaction mixture was allowed to warm up to rt and the whole mixture was stirred for 48 h. The solvent was then removed in vacuo, and the residue was diluted with EtOAc. The solution was washed successively with 1N HCl aq., sat.NaHCO₃ aq. and brine. The organic layer was dried over Na₂SO₄ and evaporated. The residue was purified by silica gel flash column chromatography

(MeOH/CHCl₃ = 10:90) to afford 51.1 mg (54%) of **38** as a yellow solid; $[\alpha]_{D}^{20}$ -2.5 (*c* 0.10, CHCl₃); IR (ATR) v_{max} cm⁻¹: 1748, 1736, 1697, 1684, 1670, 1654, 1635, 1626; ¹H NMR (500 MHz, CDCl₃ as a mixture of conformational isomers) δ ppm: 7.51-7.13 (10H, overlapped), 7.00 (1H, m), 7.65 (0.3H, m), 6.18 (0.3H, m), 5.94 (0.3H, m), 5.62 (0.4H, d, J = 6.5), 5.30-4.60 (10H, overlapped), 4.52 (0.5H, m), 4.42-4.25 (2H, overlapped), 4.18-3.69 (4H, overlapped), 3.32 (0.3H, d, J = 17.5), 3.29 (0.3H, d, J = 17.5), 3.17-3.07 (3H, overlapped), 3.07 (2H, s), 2.92 (2H, s), 2.85 (1H, s), 2.62 (0.7H, m), 2.48 (0.3H, m), 2.30 (0.8H, m), 1.96-1.38 (4H, overlapped), 1.02 (1.2H, d, J = 6.0), 0.98-0.90 (3.6H, overlapped), 0.88 (1.2H, d, J = 6.5); ¹³C NMR (125 MHz, CDCl₃ as a mixture of conformational isomers) δ ppm: 171.9, 171.4, 170.7, 169.7, 169.6, 168.7, 168.6, 168.3, 168.1, 167.8, 167.3, 166.6, 155.8, 155.4, 155.3, 154.0, 153.9, 153.6, 151.7, 150.5, 135.7, 132.3, 132.5, 131.0, 130.0, 129.5, 129.0, 128.8, 128.5, 128.4, 128.32, 128.27, 128.1, 95.8, 95.4, 95.3, 95.0, 79.5, 77.8, 77.5, 76.2, 74.8, 74.7, 74.2, 69.4, 69.0, 53.9, 53.4, 52.3, 51.9, 51.8, 51.0, 50.9, 50.2, 50.1, 49.7, 49.5, 49.1, 47.9, 47.6, 47.5, 47.0, 43.0, 40.4, 40.2, 37.5, 36.4, 35.2, 29.0, 28.8, 28.5, 25.2, 25.0, 20.3, 19.3, 19.1, 18.0, 16.5, 16.3; HR-ESI-MS calcd for $C_{39}H_{48}Cl_3N_7NaO_{12}$ [M+Na]⁺: 934.2324, found: 934.2292.

Cyclic peptide 39: To a stirred solution of **38** (12.3 mg, 13.5 μ mol) in AcOH/H₂O (9:1, 0.6 mL) at was added Zn powder (158.8 mg, 2.44 mmol). After stirring for 2 h at room temperature, the reaction mixture was diluted with THF and filtered through Celite. The filtrate was then concentrated in vacuo, and the resulting residue co-evaporated with toluene to remove the excess acetic acid.

To a stirred solution of the above crude in CH₂Cl₂ (1.0 mL) and 10% NaHCO₃ aq. (1.0 mL) was added CbzCl (5.7 μ L, 40.4 μ mol) at 0 °C. After stirring for 2 h at room temperature, the reaction mixture was diluted with EtOAc, washed with brine. The organic layer was dried over Na₂SO₄, and evaporated. The residue was purified by silica gel flash column chromatography (MeOH/CHCl₃ = 10:90) to afford 9.3 mg (79%, 2 steps) of **39** as a yellow solid; [α]_D²⁰ +5.9 (*c* 0.25, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 1749, 1733, 1718, 1671, 1664, 1655, 1649, 1637; ¹H NMR (600 MHz, CDCl₃, as a mixture of

conformational isomers) δ ppm: 7.52-7.20 (15H, overlapped), 7.18 (1H, m), 7.10 (1H, m), 6.98 (1H, m), 6.62 (1H, d, J = 9.6), 5.87 (1H, br-s), 5.63 (1H, d, J = 4.2), 5.26-5.10 (m), 5.07 (m), 4.95 (1H, m), 4.89 (m), 4.72 (m), 4.59 (1H, m), 4.52 (1H, m), 4.29 (2H, m), 4.08 (1H, m), 3.98 (m), 3.82 (1H, m), 3.28 (1H, m), 3.10 (m), 3.06 (1H, m), 2.92 (m), 2.89 (m), 2.73 (2H, s), 2.62 (2H, m), 2.48 (1H, m), 2.28 (1H, m), 1.98 (1H, m), 1.83 (m), 1.58 (m), 1.30 (1H, m), 1.26 (m), 0.99 (3H, d, J = 6.0), 0.94 (m), 0.87 (3H, d, J = 6.6), 0.84 (1H, m); ¹³C NMR (150 MHz, CDCl₃) δ ppm: 177.1, 172.4, 170.7, 169.8, 169.3, 168.7, 168.6, 168.4, 168.3, 168.1, 168.0, 167.9, 166.6, 155.8, 155.33, 155.26, 137.5, 136.5, 136.0, 135.8, 135.4, 131.1, 131.0, 130.1, 129.7, 129.0, 128.8, 128.7, 128.5, 128.4, 128.33, 128.26, 128.2, 128.10, 128.08, 127.8, 127.3, 79.9, 77.9, 77.5, 76.1, 69.3, 68.9, 68.8, 67.0, 66.0, 65.6, 53.9, 53.3, 52.4, 51.9, 51.8, 50.8, 50.0, 49.5, 49.3, 47.7, 47.6, 46.9, 43.0, 40.5, 40.3, 40.2, 37.1, 36.4, 36.3, 35.0, 31.9, 29.7, 29.6, 29.0, 28.7, 28.4, 26.0, 25.7, 25.2, 24.9, 22.7, 20.4, 20.3, 19.2, 18.5, 18.2, 16.6, 16.1, 14.1, ; HR-ESI-MS calcd for C₄₄H₅₃N₇NaO₁₂ [M+Na]⁺: 894.3650, found: 894.3597.

Depsipeptide core 2: The solution of 0.01 M HCl in dry MeOH was prepared by addition of AcCl (7.2 μ L) to dry MeOH (10.0 mL) at 0 °C and stirred for 10 min.

To a stirred solution of compound **39** (14.7 mg, 16.8 µmol) in 0.01M HCl in MeOH (1.6 mL) was added Pd/C (10%, Degussa type, 20.8 mg) and the mixture was stirred at room temperature under H₂ atmosphere for 24 h. The mixture was filtered through Celite and the filtrate was concentrated under reduced pressure to afford 8.5 mg (92%) of depsipeptide **2** as a white soid; $[\alpha]_D^{20}$ -75.4 (*c* 0.24, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 2922, 2849, 1716, 1698, 1684, 1670, 1653, 1647, 1636, 1033; ¹H NMR (600 MHz, CD₃OD) δ ppm: 5.37 (1H, d, *J* = 15.0), 5.26 (1H, s), 5.12 (1H, d, *J* = 4.8), 5.08 (1H, d, *J* = 8.4), 5.01 (1H, d, *J* = 17.4), 4.45 (1H, d, *J* = 17.4), 4.00 (1H, d, *J* = 17.4), 3.89 (1H, dd, *J* = 18.6, 18.0), 3.81 (1H, d, *J* = 15.6), 3.76 (1H, d, *J* = 18.0), 3.34 (3H, s), 3.15 (3H, s), 3.10 (1H, m), 2.87 (3H, s), 2.73 (1H, dd, *J* = 11.4, 11.4), 2.18 (1H, d, *J* = 13.2), 2.00 (1H, m), 1.84 (1H, br-s), 1.62 (1H, d, *J* = 12.0), 1.55 (1H, m) 1.27 (1H, s), 1.16 (3H, d, *J* = 6.0), 0.91 (3H, d, *J* = 5.4); ¹³C NMR (150 MHz, CD₃OD) δ ppm: 173.6, 172.4, 171.9, 169.9, 169.3, 169.1, 147.4, 78.4, 53.4, 52.7, 52.6, 52.3, 51.4, 50.6, 49.9, 47.6, 42.8, 37.4, 34.9,

30.7, 30.4, 24.2, 21.8, 19.3, 19.2; HR-ESI-MS calcd for $C_{21}H_{35}N_7NaO_8$ [M+Na]⁺: 536.2445, found: 536.2448.

verucopeptin (**1**): To a stirred solution of depsipeptide core **2** (5.5 mg, 10.7 μ mol) in dry CH₂Cl₂ (0.3 mL) was added NEt₃ (3.0 μ L, 21.5 μ mol) at -78 °C under N₂ atmosphere. In another flask, carboxylic acid **3** (3.0 mg, 5.8 μ mol) was activated with PyBop (6.0 mg, 11.6 μ mol) and NEt₃ (1.9 μ L, 13.9 μ mol) in dry CH₂Cl₂ (0.3 mL) and resultant mixture was transferred to the above reaction mixture. After stirring for 3 h at room temperature, the reaction was quenched with H₂O and the layers were separated. The aqueous layer was extracted two times with ethyl acetate and the combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was subjected to the next reaction without further purification.

To a stirred solution of the above crude product in THF (0.30 mL) was added 1N HCl aq. (0.30 mL) at 0 °C. After stirring for 8 h at room temperature, the reaction mixture was evaporated and the residue was purified by silica gel flash column chromatography (Methanol/CHCl₃ = 10:90) to afford 1.2 mg (23%, 2 steps) of verucopeptin (1) as a white solid; $[\alpha]_D^{20}$ -89.5 (*c* 0.13, CHCl₃); IR (ATR) ν_{max} cm⁻¹: 3354, 2954, 1632, 1405, 1242, 753; ¹H NMR (600 MHz, CDCl₃) δ ppm: 9.14 (1H, br-s), 7.35 (1H, d, *J* = 9.0), 7.25 (1H, d, overlapped), 6.09 (1H, d, *J* = 9.6), 5.92 (1H, br-s), 5.31 (1H, d, *J* = 7.2), 5.26 (1H, d, *J* = 15.6), 5.17 (1H, d, *J* = 9.6), 5.04 (1H, dd, *J* = 16.8, 6.6), 4.88 (1H, d, *J* = 13.2), 4.78 (1H, d, *J* = 10.2), 4.64 (1H, d, *J* = 16.8), 4.11 (1H, m), 4.10 (1H, m), 3.88 (1H, d, *J* = 15.0), 3.65 (1H, d, *J* = 17.4), 3.60 (1H, d, *J* = 16.8), 3.49 (1H, s), 3.44 (1H, m), 3.28 (3H, s), 3.11 (3H, s), 3.08 (overlapped), 3.04 (1H, m), 2.91 (3H, s), 2.65 (1H, m), 2.55 (1H, m), 2.17 (1H, m), 2.03 (1H, m), 1.83 (m), 1.73 (m), 1.65 (3H, s), 1.59 (m), 1.50 (m), 1.46 (m),

1.40 (3H, s), 1.37 (m), 1.28 (m), 1.20 (m), 1.12 (m), 1.06 (3H, d, J = 6.0), 1.02 (m), 0.97 (3H, d, J = 6.0), 0.89-0.83 (12H, overlapped), 0.82-0.75 (9H, overlapped); ¹³C NMR (150 MHz, CDCl₃) δ ppm: 176.2, 171.9, 171.3, 170.9, 170.2, 167.1, 166.9, 137.0, 130.0, 98.4, 80.0, 79.9, 77.6, 75.7, 56.8, 52.4, 51.7, 51.3, 48.5, 46.9, 46.5, 46.2, 45.0, 42.4, 36.7, 34.7, 31.7, 30.4, 29.7, 27.8, 27.2, 24.1, 23.9, 21.3, 20.6, 19.5, 19.2, 19.0, 18.3, 14.1, 11.4; HR-ESI-MS calcd for C₄₃H₇₃N₇NaO₁₃ [M+Na]⁺: 918.5164, found: 918.5153.

Compound (R)-44

Compound (S)-44

PMBO HO

PMBO MeO OMe

PMBO CHO MeO OMe

OBnO Fmoc^{−N}↓ O*t*Bu

OBnO Fmoc^{-N}___O*t*Bu

verucopeptin (1)

