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S1. Starting structure

VHH modelling. We modelled the starting VHH D9 by homology modelling. To

identify a suitable template we searched the PDB database with BLAST, E-Value Cutoff

10.0, and Sequence Identity Cutoff 80%, for similar frameworks of D9, and with loops of

the same length. Thus, we removed from the set sequences with (i) insertions in the final

part of the framework, (ii) length of the first CDR different than 7 amino acids, (ii) length

of the third CDR larger than 14 amino acids. Among the 7 remaining sequences we chose

the first three with the lowest resolution and the lowest B-factor, namely 2X10,1 3TPK,2

and 4POY.3 The sequence alignments to the experimental sequence show at maximum 14

point mutations in the framework. Nevertheless, no meaningful differences in the backbone

were observed after their structural alignment.4 Therefore, we employed all three structures

as templates for modelling the VHH D9. Mutations and insertions were performed with

DeepView - Swiss-PdbViewer 4.1.5 We thus relaxed each model, add water, and run 100 ns

MD simulations following the same protocol detailed in the Section S8 (Methods). We chose

for subsequent analysis the model with the lowest potential energy as estimated along the

last 40 ns of each simulation, namely the one obtained from 4POY (Fig. S1a). Moreover,

the backbone root mean square deviation (RMSD, Fig. S1b) shows that the chosen model

is stable over time, as its RMSD value remains smaller than 0.1 nm along the trajectory.

Likewise, the root mean square fluctuation (RMSF, Fig. S1c) is greater than 0.1 nm only in

the CDR loops.

(a) (b) (c)

Figure S1: (a) potential energy (b) Backbone RMSD, and (c) backbone RMSF calculated
over the last 40 ns of 100ns long MD simulation of D9 built from template 2X10 (green),
3TPK (blue), and 4POY (red).
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HER2 modelling. HER2 domain 533-629 was extracted from the PDB 3N856 (la-

belled 511-607 in the PDB file). The structure was energetically minimized and subse-

quently subjected to a 250ns MD simulation in water solution (see further details in Section

S8. Methods). The RMSD analysis in Fig. S2a shows that HER2 domain achieved a stable

conformation. The terminal fragment (residues 561-607) backbone alignment between the

first and last snapshot has RMSD = 0.18nm Fig. S2b.

(a) (b)

Figure S2: (a) HER2 backbone RMSD (b) First (white) and last (black/gray) Her2 confor-
mation, the domain employed for subsequent modelling is highlighted (black) as well as the
cysteins holding the system together. Residues 561-607 backbone atoms has been aligned
with RMSD = 0.18nm

D9/HER2 docking. Since VHH D9 has been experimentally shown to be displaced

by Trastuzumab, it is known that they share the same binding site. Thus, we performed the

docking between the resulting D9 and the Trastuzumab HER2 binding site7 by employing

the HADDOCK8 webserver “easy interface”. The protein structures employed are those

obtained at the end of their respective MD simulations. We defined the ”system dependent

active residues” for D9 as their CDR, while for HER2 active residues were those in contact

with Trastuzumab:7 579-583, 592-595, and 615-625.

D9/HER2 MD simulation. The D9-HER2 complex obtained from docking under-

went two minimizations, first without solvent, and a second one after placing the minimized

complex in the cubic box with a water layer of 0.7 nm and Na+ Cl- ions to neutralize

the system. Subsequently, we performed a 250 ns MD simulation at 300 K. The root mean
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square deviation of the VHH-protein interface (IRMSD) with respect to the center of the

most populated cluster in the last 100 ns configurations shows that the binding structure

must undergo important rearrangements until achieving a stable conformation at 150-200 ns

(see Fig S3). Further analysis of the binding affinity of the complex can be found in Ref.4

The final snapshot at 250 ns of the complex structure was selected for the next stage.

Figure S3: Evolution of the root mean square deviation of the D9-HER2 interface with
running averages over 1 ns (black solid line).

D9/HER2 modelling. In order to reduce the simulation box size the HER2 domain

was cleaved, by excluding the regions which were not participating in the binding, and

keeping the 583-629 residues (561-607 in the PDB file), and the complex was placed in a

triclinic box of 73x53x45 Å, where the binding orientation was placed along the x axis. Water

molecules and 5 Na atoms were added to the simulation box to achieve the neutral charge

of the system. In order to keep the orientation of the complex in the simulation box, the

position of the center of mass of D9 was fixed by restraining the position of the backbone

atom N of Trp35, while the movement of the center of mass of HER2 was restricted in the y

and z plane by restraining in this plane the displacement of the backbone atom N of Cys601

(see Fig. S4a). A harmonic force constant of 5x105 kJmol−1nm−2 was employed for each

involved coordinate. Moreover, a cutoff of 8 Åwas used for the electrostatic and Van der

Waals non-bonded interactions. The conformation of the resulting complex was ultimately
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tested by performing 100 ns MD simulation of the cleaved complex in water at 300 K. The

low IRMSD values obtained with respect to the initial configuration (in the same order as

those showed in Fig. S3 for D9-HER2 complex after achieving the stable conformation)

confirmed us the stability of the binding conformation of the D9-HER2 complex (see Fig.

S4b).

Figure S4: (a) Simulation box used for the VHH optimization. Two N atoms (highlighted
in blue with their van der Waals spheres) were restrained to keep the system orientation.
(b) Evolution of the root mean square deviation of the D9-HER2 interface with running
averages over 1 ns (black solid line).
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S2. Optimization of consensus threshold

Avoiding the structure of the molecule get trapped in a local minimum is one of the main is-

sues that every energy optimization algorithm has to deal with. In our algorithm the binding

affinity is not evaluated as a single score value, as in most of typical optimization algorithms,

but as a vector of binding scores. Moreover, the consensus criterion establishes that one mu-

tation is accepted if at least T binding scores are improved by the mutation. Thus, there are(
Ns

T

)
possible combinations to achieve this criterion. Although a higher number of scoring

functions allows a higher number of combinations to achieve the consensus criterion, this will

also require a higher number of scoring functions to be computed and optimized at the same

time. The other alternative to optimize the maximum number of combinations, which avoid

that mutations get trapped, without losing the ability of improving the binding affinity in

all scoring functions is the optimization of the consensus threshold T .

As we employed 6 different scoring functions, we performed four runs of the design

algorithm changing only the value of T = 2, 3, 4, 5. In order to compare the results obtained

in all runs, we rank all binding scores of the accepted mutations obtained in the runs, being

rik the rank of a complex i according to the scoring function k. Likewise, rik can be normalized

as

r̂ik =
rik
N

(1)

where N is the total number of accepted mutations obtained in the runs. Finally, the global

rank of a complex i is defined as

Ri =
∑

k=1,Ns

r̂ik
Ns

; i = 1, N (2)

Therefore, if the ranks of a certain configuration i are consistently low for all the scoring

functions then Ri is small. In Figure S5 we show the ranking score of the VHH/HER2

complexes obtained from four different design simulations in which consensus threshold is set
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Figure S5: Global (circle and line) and individual (star) ranking scores of the bindings
between VHH mutants and HER2 obtained along the simulations, from (a) to (d), with
T = 2, 3, 4, 5, respectively.

to T = 2, 3, 4, 5, respectively. The lowest Ri values are found in the VHH/HER2 complexes

optimized with T = 3. More important, all the individual binding scores in those mutants

have been optimized, since r̂ik values are also low for these complexes. Only when T = 3 the

variance of the ranks is small at the end of the optimization run, implying that the algorithm

finds sequences for which r̂ik is consistently small for all scoring functions. When a lower T is

used, i.e. T = 2, the acceptance of new mutations is slightly higher, but the individual ranks

of all scoring functions do not achieve low values for the same accepted mutations. Likewise,

in simulations with higher T , i.e. T = 4, 5, the number of accepted mutants is clearly lower

due to the strict criterion. Therefore, it would be necessary to perform longer simulations

to achieve the optimization in all scoring functions.

To gain a better understanding of the differences obtained by employing T = 2, 3, we

calculated the Spearman correlation coefficients between the binding score ranks of the
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Figure S6: Spearman correlation between binding scores of the VHH/HER2 complexes
obtained along the simulations with T = 2, 3, sorted by ascending order.

VHH/HER2 complexes obtained in each design simulation for two different scoring func-

tions. Taking into account that we used 6 scoring functions, for each simulation we obtained

the half-side correlation matrix of 15 elements. In the Figure S6 we compare the correlation

values obtained from simulations with T = 2, 3, sorted by ascending order. According to

these results, all correlations between scoring functions obtained from T = 3 simulations are

clearly higher than those obtained by using T = 2. The biggest differences are found in the

lowest correlation values, where for T = 2 there are correlations between scoring functions

with negative values, corresponding to Pie*Pisa/Bluues and Pie*Pisa/Haddock, while the

lowest correlation obtained with T = 3 is around 0.4. Therefore, these results confirm that

the optimal consensus threshold in our system is T = 3, since only by using T = 3 the

optimization is reached for all scoring functions.
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S3. Design of peptides as binders of HER2

We show that our computational design protocol can be extended to other binders by carrying

out the optimisation of 15-aa cyclic peptides for the recognition of aa533-629 HER2 fragment.

Initial peptide structure. We took advantage of the optimisation of the VHH D9

to model the sequence and binding conformation of the starting peptide. Thus, we followed

the following computational steps depicted in Fig. S7: (i) the main interacting residues, i.e.

13 amino acids in this case, of VHH 44 were identified and isolated; (ii) they were grafted

onto a 15-aa cyclic peptide, placing the Cys-Cys extremes of the chain in the longest gap

between two VHH residues, and the complex underwent a 20ns MD simulation to stabilize the

complex; (iii) finally, we performed the docking between the resulting peptide conformation

and the fragment 533-629 of HER2. For this step, we selected the HER2 conformation from

the MD simulation described in Section S1 (HER2 modelling) that had the lowest RMSD

value with respect to the cleavaged HER2 fragment used initially. The resulting complex

underwent one last time a 100 ns MD simulation, and the last complex pose of the trajectory

Figure S7: (a) The 44-HER2 complex was employed to identify the principal 13 interacting
VHH residues (in red). (b) They were grafted onto a 15-aa cyclic peptide, whose both
ends were Cys that close the ring with a S-S bridge (in blue). (c) The resulting peptide
conformation was docked onto the same binding site of 533-629 HER2 fragment and the
resulting complex underwent a MD simulation.
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was used as starting complex structure for the design simulation.

Peptide design results. We used then our in silico mutagenetic protocol (freely avail-

able at https://github.com/migsoler/BINDesignER) to optimise the binding affinity of

the peptide-HER2 complex by evaluating iteratively the impact of single random mutations

in the 13 residues of the peptide, i.e. extreme Cys residues are excluded to guarantee the

cycle structure. We followed the same computational protocol described for the optimisation

of VHH D9. A 100-step optimisation of the peptide-HER2 complex is shown in Fig. S8a.

By using the same threshold in the consensus algorithm, T = 3, the iterative accepted muta-

tions lead to the gradual increase of the binding affinity for all 6 scoring functions. Despite

the clear differences between peptides and VHHs as binders, in both systems a consensus

is achieved among all scoring functions allowing to identify optimum binders. Subsequently

Figure S8: (a) Global (black circles and line) and scoring-function specific (star) ranking
scores of the bindings between peptide mutants and HER2 as obtained along the optimization
with Ns = 6, T = 3. Two selected mutants are indicated by arrows; (b-d) simulation
snapshots of the three selected complexes and their respective peptide sequences. Peptide
amino acids are highlighted as follows: the same as in pept 0 (red), mutated at step 54
with respect to pept 0 (blue), mutated at step 84 with respect to 54 (cyan); (e-g) binding
scores averaged over MD simulations of the selected peptide/HER2 complexes, interval 100-
200ns, error bars are standard deviations calculated by block analysis. In this representation
the units of the different scoring functions have been rescaled in order to make the relative
variations visible.
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we selected two peptide-HER2 complexes: the first ranking complex 84, and the complex

54 randomly chosen along the optimisation path, in the middle of the ranking list. On these

we performed 200 ns MD simulations in water solvent at 330 K. A comparison of their bind-

ing conformations with the one of pept 0 reveals a meaningful conformational change of

the peptide structures, in which the mutated residues are interacting with HER2 while the

charged residues RRE, preserved from pept 0, are solvent exposed (Figure S8b-d). Their

binding score averages4 calculated over the last 100 ns further confirm to bind stronger than

the original pept 0 by almost all SFs for 54 and clearly all SFs for 84 (Figure S8e-g).

Overall, we showed that our in silico consensus-based protocol is able to optimize different

binder systems, obtaining a good performance for all SFs when a consensus threshold is set

to half of the total number of SFs.
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S4. Comparison to Metropolis algorithm

In order to compare the improvement achieved with the implementation of the consensus

acceptance criterion, we performed an equivalent design simulation, but employing in this

case our previous mutation acceptance algorithm9 based on a Metropolis criterion:

Pacc = min[1, exp[−(Enew − Eold)/TMC]] (3)

where Eold is the binding score of the old configuration, Enew is that of the attempted muta-

tion, and TMC is a parameter for tuning the Metropolis acceptance probability Pacc. We chose

the binding scores computed by the Haddock scoring function, as it showed high accuracy for

these systems in our recent work,4 and TMC = 4, which restricts the mutation acceptances

practically to those that improves the binding affinity. In Figure S9 we compare the binding

scores computed by all 6 scoring functions of the VHH/HER2 complexes obtained along

the design simulations employing the T = 3 consensus criterion and the Metropolis criterion

algorithms. The complexes obtained along the simulation with Metropolis criterion show the
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Figure S9: Binding scores of the VHH/HER2 complexes obtained along the simulations
with the T = 3 consensus criterion algorithm and with the Metropolis criterion algorithm.

12



gradual optimization of the Haddock binding score until achieving similar values as those

obtained in the consensus design at the end of the simulation. However, for other scoring

functions the trend along the simulation is just random. Only by chance, the mutation

performed at step 62 is the only one favorable for all scoring functions. Thus, the binding

score values achieved with the Metropolis criterion is certainly higher than those obtained

by using the consensus criterion for the rest of the scoring functions (with the exception of

Bach6, which have similar values too). Overall, these results show the efficiency to optimize

globally a set of scoring functions by employing the consensus acceptance criterion.
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S5. Sequences

The starting D9 sequence reads as follow:

MAEVQLQASGGGFVQPGGSLRLSCAA SGGTSTTDG MGWFRQAPGKEREFVSAIS SDASQEE

YYADSVKGRFTISRDNSKNTVYLQMNSLRAEDTATYYCA QYAFLDQEEPVIISW YWGQGTQVTVSS

Table S1: Selected VHH CDR1 sequences, and their binding affinity rankings output of the
design algorithm (Ri) and ranking averaged along the molecular dynamics screeing (RMD

i ).

VHH CDR1 sequence Ri(order) RMD
i (order)

D9 SGGTSTTD 0.90 0.95
44 HRREQNQD 0.04(1) 0.09(1)
42 QRREQNQD 0.07(2) 0.22(2)
39 QRREQNAD 0.10(3) 0.42(5)
38 QRREQNGD 0.13(4) 0.38(4)
23 QRIEQDTD 0.21(5) 0.69(9)
34 QRREQNTD 0.22(6) 0.58(6)
26 QRIEQNTD 0.23(7) 0.63(8)
22 QRTEQDTD 0.23(8) 0.58(7)
21 QRGEQDTD 0.26(9) 0.33(3)
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S6. Binding affinity screening

In order to confirm the enhanced binding affinity of the VHH mutants obtained by our

design algorithm towards the target protein we selected the best solutions obtained by the

design simulation and performed 200 ns MD simulations of VHH/HER2 complexes in water

solution at 330 K. The binding scores given by the 6 scoring functions were analyzed along

the trajectories.

As initial structures to be used in long-time MD runs, we employed the final structure

of the selected complexes obtained in the design algorithm. In Figure S10 we show the

evolution of the 6 binding scores of some representative complexes, 44, 34, and D9/HER2

complexes, along the trajectories.

The binding scores of most VHH/HER2 complexes are stable along the simulation and

clearly present lower values than those obtained for the D9/HER2 complex. Even for those

mutants located in low rank positions, such as VHH 34, their binding score curves evolve

at lower values than those obtained for VHH D9. In order to compare numerically the

binding affinities of the designed complexes, we followed the same computational protocol

Figure S10: Evolution of binding scores of selected VHH/HER2 complexes: D9(black),
44(red), 42 (blue), and 21 (green).
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developed in Ref.4 by computing the binding score averages over the last 100 ns of the

MD trajectories for each scoring function curve. In Figure S11, we show the binding score

averages of D9/HER2 and the selected VHH/HER2 complexes grouped by each scoring

function. First, the small standard deviations observed for most of binding scores confirm

the high stability of the binding estimated for all designed complexes. More important, the

binding score averages obtained in the MD trajectories follow in general the same growing

order established by the global score rank computed during the design runs. Indeed, almost

all score averages of VHH are lower than the one obtained for D9/HER2 complex for each

scoring function. The exceptions are the mutants 34 and 22 in Bach6. In order to compare

the global binding affinities of the analyzed complexes, we computed again the global order

rank as in Eq.2, but ranking in this case the binding score averages obtained from MD

trajectories, RMD
i (see Table S1). These values confirm the VHH mutant 44 as the best

binder obtained by our design algorithm. The Spearman correlation between the rank order

obtained in the simulation runs and the one obtained by using the MD trajectories of 0.69 is

certainly high. Therefore, we can consider that the approach used in our design algorithm to

estimate the binding affinity of mutants towards the protein target is a good approximation.
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dard deviations are calculated by block analysis.
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S7. Enzyme-linked immunosorbent assay (ELISA)

Figure S12: ELISA TEST. Absorbance at 450nm was read for the three investigated VHH:
44, 21, D9, adsorbed on a HER2 coated surface.
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S8. Methods

S8.1 Computational.

Molecular dynamics. All MD simulations in this work were performed in Gromacs

5.1.210 and employed the following general parameters. Previous to every production phase,

a standard 100 ps NVT + 100 ps NPT equilibration protocol was performed. A time step

of 2 fs was used with the leap-frog integrator. The AMBER99SB-ILDN11 force field and the

water model TIP3P. Particle Mesh Ewald summation was used for long-range electrostatics.

The Lincs algorithm12 was employed to constraint all covalent bonds of the system. The

velocity rescaling thermostat13 was used to keep constant the temperature in NVT and NPT

simulations while the pressure was controlled with an isotropic ParrinelloRahman barostat

at 1 bar in the NPT simulations. Other specific parameters will be described in each section.

Design algorithm. Mutations. At each optimization step a random residue of the

CDR1 (24-31) was selected and substituted by a random amino-acid (excluding Cys). The

side chain of the mutated residue was reconstructed with Scwrl4.14 HER2 structure was

also included in the reconstruction of the mutated residue side chain as static frame atoms.

Minimization and restoration of water solvent. The mutated VHH was fully relaxed by: (i)

partial minimization only for the side chain of the mutated residue, while the rest of atoms of

the complex in vacuo were kept frozen; (ii) partial minimization for the mutated amino acid

and nearest neighboring residues of VHH, while the rest of the complex in vacuo was frozen,

(iii) all water molecules returned in the box, except those closer than 2 A of the mutated

residue, and (iv) global minimization. The protocol, implemented in a bash script, is freely

available at https://github.com/migsoler/BINDesignER Molecular dynamics. After the

minimization protocol, a 100 ps NVT MD equilibration of the system is performed at 330

K. Subsequently, a 30 ns NPT MD simulation of the system is run at 330 K, the mass of

water molecules was modified to 2.0 for all atoms in order to accelerate the thermodynamics.
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Scoring Functions. Configurations of each mutant VHH/HER2 complex was sampled from

MD simulation every 100 ps while the first 10 ns of the trajectory was discarded, obtaining

a set of 100 poses. The binding affinity of each pose was then scored and the average of each

scoring function was computed over the binding scores of all poses. Each scoring function

parameters were configured according to the Ref.4 The scores of Pie and Pisa were multiplied

as recommended in Ref.15 The scoring functions of FireDock16 and HADDOCK v2.117 were

extracted from their respective docking programs. The radii scaling parameter in FireDock

was set to 0.8 as in ref.16 The protonation of all histidine residues were previously defined

in the HADDOCK input file according to the criterion of Gromacs. The binding score in

Bluues18 was computed as the difference of scores between the complex and the isolated

proteins. We used the option ”strict interface” for obtaining the binding score in Bach6.19

Molecular dynamics screening. Selected complexes from the design as well as their

respective optimized VHHs alone were placed in a cubic box with a 0.9 nm water layer and

Na+ Cl- ions to neutralize the system. We performed NVT and NPT equilibrations for 100

ps, followed by 250 ns NPT production run at 300 K. A cutoff of 9 Åwas used for the electro-

static and Van der Waals non-bonded interactions. Configurations were sampled every 10ps.

All the simulations and their analysis were run as implemented in the Gromacs package.20

The poses obtained from the last 100 ns of the MD trajectories of the VHH/HER2 complexes

were employed to evaluate the binding affinity following the methodology described above.

Yield prediction. Poses obtained from the last 100ns of the MD trajectories of the

VHH monomers were used to predict the yield of each selected binder by following the

methodology of Ref.,21 namely: (i) clustering of VHH poses; (ii) prediction of each cluster

putative aggregation hotspots; (iii) semi-flexible docking of homo-dimers testing all possible

interaction combinations between the different hotspots in the monomer. The hotspots

selection was performed by using the BEPPE prediction server22 with softness level 4, while

for the docking we employed the web interface of Haddock8 with its standard parameters.
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Further details can be found in Ref.21

S8.2 Experimental procedure

Recombinant proteins production. The computationally generated primary se-

quence was converted in nucleic acid using the The Sequence Manipulation Suite,23 with

default parameters generating a DNA sequence with E. coli codon usage. The synthetic

VHHs DNA sequences were purchased from the Twist Bioscience Corporation and further

E.coli optimized using the company algorithm (San Francisco,CA, USA). The DNA frag-

ments were cloned into pET14 Cys tag vector between NcoI and NotI recognition sites. The

pET14 Cys-VHH-D9 and pET14 Cys-VHH-44 constructs were expressed in BL21 (DE3)

SOX and purified as previously described.24 Briefly the cell pellets of 500 ml of liquid cul-

ture, were resuspended in 25 ml of lysis buffer (20 mM Tris pH 7.9, 500 mM NaCl, 2 mM

Imidazole, 5% Glycerol, 1 mg/ml lysozyme, 1 mM PMSF, 0,02 mg/ml DNAse I, 10 mM

MgCl2), and were homogenized after 60 min of incubation at 4◦C under agitation (Invensys

APV-1000, 3 cycles at 10000-12000 psi) and subsequently centrifuged (4400 x g. for time

45 min). Cleared lysates were loaded onto Ni-NTA Agarose Resin (Invitrogen), after several

washes with increasing amount of imidazole (40 Resin Volumes), the proteins were eluted

with 7-8 RV of 20 mM Tris pH 7.9, 500 mM NaCl, 400 mM Imidazole, 5% Glycerol, 2

mM DTT. The samples were further purified by size exclusion chromatography (SEC) on

Superdex 75 10/300 (GE Healthcare) in PBS supplemented with 5% Glycerol. The frac-

tion containing the VHHs were pooled and concentrated. DNA encoding for the ectodomain

residues 23-652 of the human HER2 fused with C-terminal rabbit IgG Fc tag was cloned into

pACEMam1 vector (kindly provided by I. Berger, University of Bristol, UK). The recom-

binant protein was expressed by transient transfection with PEI-MAX 40K (Polysciences,

Inc.) in HEK293ES cells in suspension (Expression Systems), incubated for 5 days at 37◦C.

Exhausted medium containing the secreted proteins was clarified by centrifugation followed

by filtration on 0,45µm vacuum filter system (Euroclone) and loaded on 1ml HiTrap MabSe-
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lect SuRe (GE Healthcare) equilibrated with 1x PBS pH 7.4 buffer. The protein was eluted

with 0.1M glycine pH 3 and immediately neutralized by adding 100µl of 1.5M Tris pH 8.8 per

1ml of protein fraction. Buffer exchange into 1x PBS, 1mM DTT and protein concentration

was performed using Amicon Ultra centrifugal filters 30k MWCO (MerckMillipore).

Enzyme-linked immunosorbent assay (ELISA) 80 ng (or 0.8 pmol) of Her2 in

sodium carbonate/bicarbonate pH 9.2 were immobilized in each well of a multiwell plate

(Greiner) at ◦C ON; the day after 3 washes of 5 min in PSB-T (PBS + 0,05% Tween 20)

were performed to remove any unbound protein. The sample is treated with a blocking

solution (PBST 5% Milk) for 60 min; followed by the addiction of 160 ng (or 10 nmol) of the

various VHH in PBST 1% Milk (per well); 3 washes fo 5 min in PSB-T to wash the well from

the exceeding VHH. An anti 6His Antibody (Sigma Aldrich) and an anti Mouse peroxidase

conjugated Antibody (Merk) were used for recognize and develope the assay according to the

manufacturer suggestions. For the peroxidase reaction 3,3,5,5-Tetramethylbenzidine (TMB,

Sigma Aldrich) was used as substrate, incubated for 30 min and stopped using H2SO4 The

assorbance at 450 nm measured using a Tecan Infinitive F200.

Surface plasmon resonance (SPR) The SPR experiments were performed at 25◦C

using a Biacore T100 (GE Healthcare); the data were fitted with a 1:1 Langmuir interaction

model. HER2 ECD-Fc (96 kDa) was diluted to 50 µg/mL in sodium acetate buffer pH 5.0

and immobilized by amine-coupling on a CM5 chip (GE Healthcare) at 1190RU on Fc4. Both

the VHHs were diluted in HBS-EP+ buffer and used as analyte, with concentration ranging

from 300 to 0,5 µM, at 30 µl/min. Concentration ranging was for D9.44 from 2000nM to

31,25nM and for D9wt from 4000 to 125 nM. The association was followed for 120 sec, and

the dissociation for 80 sec. The regeneration performed using 5mM NaOH for 6s followed by

buffer cycles (blank) between each concentration. The SPR measurements were performed

at the Infrastructural Centre for Analysis of Molecular Interactions at the Department of

Biology, University of Ljubljana (Slovenia).
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