Electronic Supplementary Information

Metalated carbon nitrides as base catalysts for efficient catalytic hydrolysis of carbonyl sulfide

Fangsong Guo, Shanrong Li, Yidong Hou*, Junkang Xu, Sen Lin and Xinchen Wang*

Experimental materials

All the regents used are analysis grades without further purification. Melamine ($C_3H_6N_6$, 99%) were purchased from Sigma-Aldrich. Activated carbon, LiCl (99%), NaCl(99%), KCl(99%), RbCl(99%) and CsCl (99%) were purchased from China Sinopharm Chemical reagent Co. Ltd.. All the regents were used without further purification.

Experimental Section

Synthesis of PCN: PCN was prepared by direct thermal polymerization of melamine in the air. In a typical synthesis, Melamine (10g) was thermal heated to 600 $^{\circ}$ C for 2 h at a rate of 5 $^{\circ}$ C min⁻¹ in a muffle furnace. The final products were collected after the temperature cooled down to the room temperature.

Synthesis of X-MPCN: The metalation of PCN was achieved by a simple method of treatment of PCN materials with alkali chloride (LiCl, NaCl, KCl, RbCl and CsCl) at 600°C with N₂ atmosphere.Typically, 2 g PCN (synthesized-above) was ground with 10 g alkali chloride (*e. g.*, KCl) in a mortar. Then, the resultant mixture was heated to 600 °C for 2 h at a rate of 5 °C min⁻¹ in a tube furnace with N₂ flow rate of 200 mL/min. After it was cooled to

room temperature, the product was washed with deionized water several times to remove the overmuch alkali chloride (eg, KCl). This sample is denoted as X-MPCN (eg, K⁺-MPCN).

Synthesis of K⁺/*PCN*: For comparison, the PCN material loaded with a certain amount of K⁺ was also prepared by impregnation method. Typically, 286.5 mg KCl and 2 g PCN powders were mixed together in 10 mL of water. Then, after stirred for 10 min, the mixture was evaporated with a water vapor. The obtained solid is denoted as K⁺/PCN.

Synthesis of K⁺/*AC*: the AC material loaded with a certain amount of K⁺ was also prepared by impregnation method. Typically, 286.5 mg KCl and 2 g AC powders were mixed together in 10 mL of water. Then, after stirred for 10 min, the mixture was evaporated with a water vapor. The obtained solids is denoted as K⁺/AC.

Characterization: Transmission electron microscopy (TEM) was obtained by Zeis 912 microscope. The CO₂ adsorption capacity of the samples were measured by CO₂ adsorption collected at 273 K using an ASAP 2020 instrument (Micromeritics, USA). The nitrogen adsorption–desorption isotherms were collected at 77 K using Micromeritics ASAP 2020 Surface Area and Porosity Analyzer. Powder X-ray diffraction (XRD) measurements were performed on Bruker D8 Advance diffractometer with Cu K*a1* radiation ($\lambda = 1.5406$ Å). Fourier transformed infrared (FTIR) spectra were recorded on BioRad FTS 6000 spectrometer. X-ray photoelectron spectroscopy (XPS) data were obtained on Thermo ESCALAB250 instrument with a monochromatized Al K α line source (200 W).

Carbon dioxide temperature programmed desorption (CO₂-TPD): CO₂-TPD was carried out on an AutoChem II 2920 Micromeritics Chemisorption Analyzer (USA). Before measurements, the samples were first activated at 300 °C for 1 h under a N_2 atmosphere. After the temperature was reduced to 50 °C, the samples were swept by CO_2 for 1 h. Thereafter, N₂ with flow rate of 30 mLmin⁻¹ was switched again to the sample, and after reaching a stable baseline. Subsequently, the temperature was gradually increased to 350 °C with a ramping rate of 10 °C/min to obtain the CO₂-TPD curves.

Raman measurements: The Raman measurements were performed on a Renishaw in Via Raman System 1000 with a 312 nm Nd: YAG excitation source at room temperature.

In situ FTIR measurements : In situ FTIR spectroscopic studies were performed on a Thermofisher Nicolet IS50 equipped with a liquid nitrogen cooled MCT-A detector. Before the measurement, the K⁺-MPCN sample was treated at 300 °C for 1h under N₂ atmosphere to remove the adsorbed contaminants. Then the FTIR spectrum of the K⁺-MPCN sample at 25°C was first collected as the background prior to any CO₂ introduction. After CO₂ introduction, the FTIR spectra were obtained by subtracting the background. The measurements were performed at room temperature of around 25°C.

DFT Calculations: DFT calculations were carried out using the Vienna ab initio simulation package (VASP5.3).¹ The Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional was used within the spin-polarized generalized gradient approximation (GGA).² A plane-wave basis set was employed within the framework of the projector augmented-wave (PAW) method.³ In order to get accurate results, the cutoff was set to 450 eV. A Gaussian smearing was used with a smearing width of 0.1 eV. Geometry relaxations were carried out until the residual forces on each ion were smaller than 0.02 eV/Å. We first relaxed a single unit cell of PCN. Then, a single Li, Na, K , Rb, or Cs atom was introduced into PCN. The van der Waals (vdW) correction was included by using the DFT-D2 approach.⁴

Evaluation of catalytic activity: The hydrolysis of COS over catalyst was performed in a fixed-bed reactor at atmospheric pressure. 0.2 g catalyst was used. At steady state, a mixture gas of N_2 containing COS (100 ppm) and H_2O (250 ppm)was introduced into the reactor at a total flow rate of 50 mL/min. The concentration of COS in the reactor effluent was monitored on-line by a gas chromatograph (Fuli GC-9790II) equipped with a flame photometric detector. The conversion of COS was determined by analyzing the initial and the current temperature-peak areas of COS in the GC. In this study, the COS conversion was calculated as follows:

COS conversion (%) = $(C_0 - C_T) / C_0 \times 100$

where C_0 and C_T are the peak area of COS at temperatures of 20° C and 80°C, respectively.

Fig. S1 Powder XRD patterns of K⁺-MPCN and PCN

Fig. S2 The molecular models of X-MPCN samples.

structure.

	Li ⁺ -MPCN	Na ⁺ -MPCN	K ⁺ -MPCN	Rb+-MPCN	Cs ⁺ -MPCN
Adsorption energy (eV)	-3.22	-3.17	-2.01	-1.04	-5.00
Bader charge (e)	0.996	0.995	0.754	0.757	0.887

Fig. S3 High-resolution transmission electron microscopy (HRTEM) image of K⁺-MPCN sample.

Fig. S4 Energy dispersive X-ray (EDX) analysis of K⁺-MPCN sample.

Fig. S5 Cl 2p high-resolution XPS spectrum of K⁺-MPCN sample.

Fig. S6 N₂-sorption isotherms collected at 77 K of X-MPCN and PCN samples.

Sample	Surface area cm ² g ⁻¹	Pore volume cm^3g^{-1}	CO_2 adsorption cm ³ g ⁻¹	
Li ⁺ -MPCN	26	0.12	34	
Na ⁺ -MPCN	31	0.14	37	
K ⁺ -MPCN	38	0.16	61	
Rb ⁺ -MPCN	29	0.12	45	
Cs ⁺ -MPCN	16	0.08	42	
PCN	8	0.03	7	

Table S2 Physicochemical properties of X-MPCN and PCN samples from Nitrogen adsorption-desorption and CO₂ adsorption analysis. _____

Table S3 Content of alkali metal on X-MPCN, K ⁺ /AC and K ⁺ /PCN analysis by ICP.								
Sample	Li (wt.%)	Na (wt.%)	K (wt.%)	Rb (wt.%)	Cs (wt.%)			
Li ⁺ -MPCN	1.6							
Na ⁺ -MPCN		4.9						
K ⁺ -MPCN			8.0					
K ⁺ -MPCN _{recycle 1}			7.8					
K ⁺ -MPCN recycle 2			7.7					
Rb ⁺ -MPCN				17.3				
Cs ⁺ -MPCN					25.7			
K ⁺ /PCN			8.1					
K ⁺ /AC			8.0					

V MOONL K+/AC Table \$2 C t of alleal; 1 U + D O M1 malaria har ICD

Fig. S7 In situ FTIR spectra for the adsorption of CO₂ on K⁺-MPCN.

Fig. S8 Powder XRD patterns of K⁺-MPCN sample before and after the COS hydrolysis reaction.

Fig. S9 FT-IR spectra of K⁺-MPCN sample before and after the COS hydrolysis reaction.

Fig. S10 Survey and XPS analysis of of K⁺-MPCN sample after the COS hydrolysis reaction.

References

- 1. G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169-11186.
- 2. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- 3. G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.
- 4. S. Grimme, J. Comput. Chem., 2006, 27, 1787-1799.