Supporting Information

Photoredox-Catalysed Formal [3+2] Cycloaddition of *N*-Aryl α-Amino Acids with Isoquinoline *N*-Oxides

Xiangyuan Liu,^{a,b} Yanli Yin,^{*,a} Zhiyong Jiang^{*,b,c}

^aCollege of Bioengineering, Henan University of Technology, Zhengzhou, Henan, P. R. of China

450001

^bHenan University, Kaifeng, Henan, P. R. China 475004

^cHenan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China 453007

E-mail: yinzihust@163.com (Y.Y.); jiangzhiyong@htu.edu.cn (Z.J.)

Table of Contents

1.	General information	62 GA
2.	General experimental procedures for the synthesis of 3	33-84
3.	Optimization of reaction conditions	S 5
		S 6
4.	Emission quenching experiments	S7
5.	Cyclic voltammetry measurement	
6.	Single crystal X-ray diffraction to confirm the structure of products	S8
7	Characterization of adducts	S9-S15
1.		S16-S19
8.	Copies of NMR spectra	520 524
		520-534

1. General information

General procedures and methods

Experiments involving moisture and/or air sensitive components were performed under a positive pressure of argon in oven-dried glassware equipped with a rubber septum inlet. Dried solvents and liquid reagents were transferred by oven-dried syringes or hypodermic syringe cooled to ambient temperature in a desiccator. Reactions mixtures were stirred in 10 mL sample vial with Teflon-coated magnetic stirring bars unless otherwise stated. Moisture in non-volatile reagents/compounds was removed in high *vacuo* by means of an oil pump and subsequent purging with nitrogen. Solvents were removed *in vacuo* under ~30 mmHg and heated with a water bath at 30-35 °C using rotary evaporator with aspirator. The condenser was cooled with running water at 0 °C.

All experiments were monitored by analytical thin layer chromatography (TLC). TLC was performed on pre-coated plates, 60 F_{254} . After elution, plate was visualized under UV illumination at 254 nm for UV active material. Further visualization was achieved by staining Ce(SO₄)₂ and phosphomolybdic acid solution. For those using the aqueous stains, the TLC plates were heated on a hot plate.

Columns for flash chromatography (FC) contained *silica gel* 200–300 mesh. Columns were packed as slurry of *silica gel* in petroleum ether and equilibrated solution using the appropriate solvent system. The elution was assisted by applying pressure of about 2 atm with an air pump.

Instrumentations

Proton nuclear magnetic resonance (¹H NMR) and carbon NMR (¹³C NMR) were recorded in CDCl₃ otherwise stated. Chemical shifts are reported in parts per million (ppm), using the residual solvent signal as an internal standard: CDCl₃ (¹H NMR: δ 7.26, singlet; ¹³C NMR: δ 77.0, triplet). Multiplicities were given as: *s* (singlet), *d* (doublet), *t* (triplet), *q* (quartet), *quintet*, *m* (multiplets), *dd* (doublet of doublets), *dt* (doublet of triplets), and *br* (broad). Coupling constants (*J*) were recorded in Hertz (Hz). The number of proton atoms (*n*) for a given resonance was indicated by *n*H. The number of carbon atoms (*n*) for a given resonance (*m*/z). Mass samples were dissolved in CH₃CN (HPLC Grade) unless otherwise stated.

Optical rotations were recorded on a polarimeter with a sodium lamp of wavelength 589 nm and reported as follows; $[\alpha]_{\lambda}^{T^{\circ C}}$ (c = g/100 mL, solvent). Melting points were determined on a melting point apparatus.

Materials

All commercial reagents were purchased with the highest purity grade. They were used without further purification unless specified. All solvents used, mainly petroleum ether (PE) and ethyl acetate (EtOAc) were distilled. Anhydrous dichloromethane (DCM), CH₃CN and DMF were freshly distilled from CaH₂ and stored under N₂ atmosphere. THF, Et₂O, MTBE, 1,2-dimethoxyethane (DME), 1,4-dioxane, CPME and toluene were freshly distilled from sodium/benzophenone before used. All compounds synthesized were stored in 2~8 °C and light-sensitive compounds were protected with aluminium foil.

2. General experimental procedures for the synthesis of 3

35.5 μ L (0.0005 mmol, 0.005 equiv) of DPZ solution (1.0 mg of DPZ in 200 μ L of toluene) was added into a 10 mL Schlenk tube, and then solvent was removed in *vacuo*. Subsequently, **1** (0.10 mmol, 1.0 equiv), **2** (0.15 mmol, 1.5 equiv), TMG (0.02 mmol, 0.2 equiv) and CH₃CN (1.5 mL) were sequentially added, degassed three times by freeze-pump-thaw method. The reaction mixture was stirred under an argon atmosphere at 20 °C (the temperature was maintained in an incubator) and irradiated by 2 x 3 W blue LED (λ = 450–455 nm) for 8 h. The reaction was monitored by TLC. After completion of the reaction, the reaction mixture was removing the solvent and purification by a short *silica gel* column, followed by gradient elution with petroleum ether/ethyl acetate (30/1–5/1 ratio). Removing the solvent in *vacuo*, afforded products **3a–3o**.

Photography of the reaction setup:

3. Optimization of reaction conditions

DPZ (0.5 mol%) соон 20 mol% additive, solvent όн 2 x 3 W blue LED 3a 1a 2a under argon, 8 h Yield Conv. Additive (20 mol%) $T(^{\circ}C)$ Entry Solvent (mL) $(\%)^{b}$ $(\%)^{c}$ 1 80 50 DCM (0.5) 20 --2 THF (0.5) 20 50 35 --3 DME (0.5) 20 50 40 4 20 80 MeCN (0.5) 65 --5 Toluene (0.5)20 40 10 --6 Et₂O (0.5) 20 45 25 ---7 1,4-Dioxane (0.5) 20 60 45 --8 20 43 MTBE (0.5) 50 ---9 CPME (0.5) 20 50 48 --10 DMF (0.5) 20 70 60 --11 НСООН MeCN (0.5) 20 70 45 12 CH₃COOH MeCN (0.5) 20 65 30 13 Diphenyl phosphate 20 70 55 MeCN (0.5) 14 TMG MeCN (0.5) 20 95 80 15 LiPF₆ 20 63 MeCN (0.5) 80 16 Na₂CO₃ MeCN (0.5) 20 75 58 17 85 K₂CO₃ MeCN (0.5) 20 67 18 NaOAc MeCN (0.5) 20 90 70 19 TMG MeCN (0.5) 30 100 75 20 TMG MeCN (0.5) 10 90 78 21 TMG 0 80 71 MeCN (0.5) 22 TMG -1065 MeCN (0.5) 65 23 TMG MeCN (0.75) 20 90 85 24 TMG MeCN (1.0) 20 90 83 25 TMG MeCN (1.25) 20 90 78 26 TMG 20 90 80 MeCN (1.5)

Table S1. Optimization of reaction conditions^a

^{*a*}Reaction conditions: **1a** (0.075 mmol), **2a** (0.05 mmol). ^{*b*}Determined by TLC anaylsis. ^{*c*}Isolated by flash column chromatography on *silica gel*.

4. Emission quenching experiments

Emission intensities were recorded on a spectrofluorometer. DPZ solution was excited at 448 nm and the emission intensity at 544 nm was observed. A solution of DPZ $(5.0 \times 10^{-5} \text{ M})$ in CH₃CN was added to the appropriate amount of quencher in 5.0 mL volumetric flask under N₂. The solution was transferred to a 1.5 mL quartz cell and the emission spectrum of the sample was collected.

Fig. S1. Stern–Volmer quenching experiment of DPZ and PhNHCH₂COOH.

Fig. S2. Stern–Volmer quenching experiment of DPZ and 2a. No quenching observed.

5. Cyclic voltammetry measurement

Electrochemical potentials were obtained with a standard set of conditions to main internal consistency. Cyclic voltammograms were collected with a potentiostat. Samples were prepared with 0.01 mmol of **2a**, PhNHCH₂CO₂Na in 10 mL of 0.1 M tetrabutylammonium hexafluorophosphate in anhydrous acetonitrile. Measurements employed a radium glassy carbon working electrode, platinum wire counter electrode, saturated KCl silver-silver chloride reference electrode. The obtained value was referenced to Ag/AgCl.

Fig. S3. Cyclic voltammogram of 2a in MeCN.

Fig. S4. Cyclic voltammogram of PhNHCH₂CO₂Na in MeCN.

6. Single crystal X-ray diffraction to confirm the structure of products

The structure of these adducts was assigned based on the structure of the derivative of **3m**, which was prepared by **3m** reacting with di-*tert*-butyl dicarbonate, as solved by single crystal X-ray diffraction.

Fig. S5. Structure of 3m derivative (CCDC 1946502)

Displacement ellipsoids are drawn at the 30% probability level.

(Solvent: ethyl acetate)

Table S2 Crystal data and structure refinement

Identification code	LVY2694HTAB
Empirical formula	$C_{21}H_{23}BrN_2O_3$
Formula weight	431.32
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	15.1042(3)
b/Å	6.24720(17)
c/Å	22.4658(7)
α/°	90
β/°	91.320(3)

$\gamma/^{\circ}$	90
Volume/Å ³	2119.30(10)
Z	4
$\rho_{calc}g/cm^3$	1.352
μ/mm^{-1}	2.824
F(000)	888.0
Crystal size/mm ³	$0.19 \times 0.15 \times 0.1$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/	^o 7.128 to 134.144
Index ranges	$\text{-}18 \le h \le 13, \text{-}4 \le k \le 7, \text{-}26 \le l \le 24$
Reflections collected	7829
Independent reflections	3786 [$R_{int} = 0.0252$, $R_{sigma} = 0.0347$]
Data/restraints/parameters	3786/1/251
Goodness-of-fit on F ²	1.053
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0507, wR_2 = 0.1388$
Final R indexes [all data]	$R_1 = 0.0628, wR_2 = 0.1531$
Largest diff. peak/hole / e Å ⁻³	0.63/-0.42

Table S3 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for LVY2694HTAB. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
Br1	-1889.9(5)	11407(3)	3570.4(9)	118.0(5)
Br1A	-1853(3)	10871(12)	3325(4)	118.0(5)
C1	-275(2)	9109(6)	3704.4(15)	74.0(8)
C2	-743(2)	10880(7)	3886.3(16)	81.3(10)
C3	-411(2)	12302(6)	4298.4(16)	76.9(9)
C4	429(2)	11934(5)	4536.0(13)	65.2(7)
C5	920.4(18)	10178(4)	4357.3(10)	54.6(6)
C6	572.6(18)	8755(4)	3938.1(12)	57.9(6)
C7	1111(2)	6855(4)	3743.1(13)	63.3(7)
C8	2059.9(19)	7033(4)	3983.4(12)	56.4(6)
С9	1850.6(18)	9840(4)	4598.0(11)	54.5(5)
C10	2534.9(18)	10612(4)	4154.2(11)	53.7(5)
C11	3147.0(17)	8652(4)	3292.9(10)	51.7(5)
C12	3791(2)	10203(5)	3212.3(11)	60.3(6)
C13	4432(2)	9937(6)	2783.7(14)	77.3(8)
C14	4423(3)	8139(7)	2423.5(14)	85.6(10)
C15	3764(3)	6647(6)	2487.3(14)	79.4(9)
C16	3131(2)	6869(5)	2911.3(12)	65.3(7)
C17	2952.8(19)	5525(4)	5233.1(12)	58.0(6)

C18	4106(2)	4004(5)	5890.2(15)	74.2(8)
C19	3557(4)	4021(10)	6440(2)	117.1(16)
C20	5024(3)	4818(8)	6028(2)	113.4(16)
C21	4114(4)	1863(7)	5604(3)	123(2)
N1	1985.2(15)	7495(3)	4620.3(10)	57.7(5)
N2	2524.9(15)	8863(3)	3726.2(9)	53.2(5)
01	2879.4(13)	7278(3)	4880.9(9)	67.7(5)
02	2398.1(18)	4219(4)	5301.8(12)	88.5(8)
O3	3756.7(15)	5643(3)	5471.0(10)	74.8(6)

Table S4 Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for LVY2694HTAB. The Anisotropic displacement factor exponent takes the form:

$-2\pi^{2}$	[h²a*²U	11+2hka*b*	[*] U ₁₂ +].	
-------------	---------	------------	----------------------------------	--

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Br1	64.0(3)	173.8(8)	115.6(10)	10.8(7)	-11.2(4)	23.4(3)
Br1A	64.0(3)	173.8(8)	115.6(10)	10.8(7)	-11.2(4)	23.4(3)
C1	65.4(16)	88(2)	68.8(16)	18.7(15)	-4.6(13)	-15.2(15)
C2	55.9(15)	106(3)	83(2)	36.6(19)	7.4(14)	3.2(16)
C3	70.4(17)	79.4(19)	81.8(19)	24.8(17)	22.0(15)	11.8(15)
C4	74.3(17)	60.7(15)	61.4(14)	12.1(12)	15.1(13)	0.6(13)
C5	63.9(14)	52.3(12)	47.8(11)	14.0(10)	4.3(10)	-4.0(11)
C6	59.9(14)	57.5(13)	56.2(13)	18.0(11)	-0.5(11)	-7.8(11)
C7	74.9(16)	50.9(13)	63.6(14)	6.4(11)	-12.2(12)	-16.9(12)
C8	69.1(15)	36.7(10)	62.8(14)	4.2(10)	-6.1(11)	-0.6(10)
C9	67.1(14)	50.5(12)	45.7(11)	2.7(9)	-3.0(10)	-3.7(11)
C10	64.4(14)	41.6(11)	55.0(12)	-1.8(9)	0.0(11)	-3.5(10)
C11	60.5(13)	49.0(12)	45.0(11)	1.7(9)	-12.1(9)	7.2(10)
C12	69.8(15)	59.9(14)	51.1(12)	2.0(11)	0.0(11)	1.6(12)
C13	77.3(19)	90(2)	64.6(16)	14.9(15)	9.0(14)	0.1(16)
C14	98(2)	105(3)	54.1(15)	3.6(16)	14.5(15)	32(2)
C15	98(2)	83(2)	56.8(15)	-14.8(14)	-3.9(15)	22.1(19)
C16	76.5(17)	59.8(15)	59.1(14)	-11.9(11)	-13.4(12)	10.6(13)
C17	68.9(15)	46.3(12)	58.0(13)	5.0(10)	-17.0(11)	-0.7(12)
C18	81.2(19)	67.7(17)	72.2(17)	11.8(14)	-29.5(15)	5.2(14)
C19	115(3)	153(4)	82(2)	30(3)	-22(2)	26(3)
C20	88(3)	115(3)	134(4)	32(3)	-53(3)	-3(2)
C21	150(4)	74(2)	143(4)	-7(2)	-70(4)	31(3)
N1	62.9(12)	52.1(11)	57.2(11)	14.7(9)	-14.1(9)	-4.2(9)
N2	64.6(12)	39.5(9)	55.3(10)	-1.0(8)	-2.5(9)	-3.2(8)
01	63.9(11)	66.1(11)	72.3(11)	24.2(9)	-16.8(9)	-6.9(9)
02	92.1(16)	60.8(12)	110.3(18)	27.4(12)	-44.2(14)	-15.5(12)

03	71.8(12)	67.1(11)	84.1(13)	18.8(10)	-26.4(10)	-5.8(10)			
Tabl	Table S5 Bond Lengths for LVY2694HTAB.								
Aton	n Atom	Length/Å Ato	om Atom	Length/Å					
Br1	C2	1.886(3) C1	1 C12	1.388(4)					
Br1A	C2	2.076(6) C1	1 C16	1.406(4)					
C1	C2	1.379(5) C1	1 N2	1.375(4)					
C1	C6	1.390(4) C12	2 C13	1.392(4)					
C2	C3	1.370(6) C1.	3 C14	1.384(6)					
C3	C4	1.383(5) Cl4	4 C15	1.374(6)					
C4	C5	1.389(4) C1:	5 C16	1.372(5)					
C5	C6	1.389(4) C1	7 O1	1.354(3)					
C5	C9	1.509(4) C1	7 O2	1.182(4)					
C6	C7	1.510(4) C1	7 O3	1.317(3)					
C7	C8	1.523(4) C18	8 C19	1.503(6)					
C8	N1	1.466(3) C13	8 C20	1.502(5)					
C8	N2	1.468(3) C18	8 C21	1.484(5)					
C9	C10	1.531(4) C18	8 O3	1.480(3)					
С9	N1	1.480(3) N1	O1	1.466(3)					
C10	N2	1.455(3)							

Table S6 Bond Angles for LVY2694HTAB.

Aton	n Ator	n Atom	Angle/°	Aton	1 Aton	n Atom	Angle/°
C2	C1	C6	119.3(3)	N2	C11	C16	120.4(3)
C1	C2	Br1	120.1(3)	C11	C12	C13	120.5(3)
C1	C2	Br1A	103.3(4)	C14	C13	C12	120.2(3)
C3	C2	Br1	117.4(3)	C15	C14	C13	119.2(3)
C3	C2	Br1A	133.7(4)	C16	C15	C14	121.5(3)
C3	C2	C1	122.5(3)	C15	C16	C11	120.1(3)
C2	C3	C4	118.1(3)	O2	C17	01	125.8(2)
C3	C4	C5	120.7(3)	02	C17	03	129.4(2)
C4	C5	C6	120.3(3)	03	C17	01	104.7(2)
C4	C5	C9	120.4(3)	C20	C18	C19	110.6(4)
C6	C5	C9	119.2(2)	C21	C18	C19	111.9(4)
C1	C6	C7	120.9(3)	C21	C18	C20	112.2(4)
C5	C6	C1	119.0(3)	O3	C18	C19	108.8(3)
C5	C6	C7	120.1(2)	O3	C18	C20	102.1(3)
C6	C7	C8	110.4(2)	O3	C18	C21	110.8(3)
N1	C8	C7	105.5(2)	C8	N1	C9	100.11(18)
N1	C8	N2	106.20(19)	01	N1	C8	106.3(2)
N2	C8	C7	111.8(2)	01	N1	C9	103.26(19)

C5	C9	C10	111.1(2)	C10	N2	C8	108.8(2)
N1	C9	C5	106.1(2)	C11	N2	C8	123.0(2)
N1	C9	C10	103.9(2)	C11	N2	C10	122.9(2)
N2	C10	C9	101.36(19)	C17	01	N1	111.73(19)
C12	C11	C16	118.4(3)	C17	03	C18	122.1(2)
N2	C11	C12	121.2(2)				

Table S7 Hydrogen Bonds for LVY2694HTAB.

DHA	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°	
$C9 H9 O2^1$	0.98	2.52	3.257(4)	132.1	

¹+X,1+Y,+Z

Table S8 Torsion Angles for LVY2694HTAB.

А	B C	D	Angle/°	A	B	С	D	Angle/°
Br1	C2 C3	C4	179.8(2)	C9	C5	C6	C7	2.0(3)
Br1A	C2 C3	C4	-170.6(3)	C9	C10	N2	C8	-13.6(3)
C1	C2 C3	C4	0.3(4)	C9	C10	N2	C11	-168.6(2)
C1	C6 C7	C8	170.6(2)	C9	N1	01	C17	145.5(2)
C2	C1 C6	C5	1.1(4)	C10)C9	N1	C8	-44.3(2)
C2	C1 C6	C7	-179.0(3)	C10)C9	N1	01	65.3(2)
C2	C3 C4	C5	0.4(4)	C11	C12	C13	3C14	1.4(5)
C3	C4 C5	C6	-0.4(4)	C12	2C11	C16	5C15	2.6(4)
C3	C4 C5	C9	177.3(2)	C12	2C11	N2	C8	-156.2(2)
C4	C5 C6	C1	-0.4(4)	C12	2C11	N2	C10	-4.7(4)
C4	C5 C6	C7	179.7(2)	C12	2 C 1 3	C14	+C15	1.2(5)
C4	C5 C9	C10	-99.4(3)	C13	8 C14	C15	5C16	-2.0(5)
C4	C5 C9	N1	148.4(2)	C14	+C15	C16	5C11	0.0(5)
C5	C6 C7	C8	-9.5(3)	C16	5C11	C12	2 C13	-3.3(4)
C5	C9 C10	0 N2	-77.5(2)	C16	5C11	N2	C8	25.2(4)
C5	C9 N1	C8	72.9(2)	C16	5C11	N2	C10	176.7(2)
C5	C9 N1	01	-177.58(18)	C19	PC18	03	C17	-63.5(4)
C6	C1 C2	Br1	179.5(2)	C20)C18	03	C17	179.5(3)
C6	C1 C2	Br1A	172.2(3)	C21	C18	03	C17	59.9(5)
C6	C1 C2	C3	-1.1(4)	N1	C8	N2	C10	-13.8(3)
C6	C5 C9	C10	78.3(3)	N1	C8	N2	C11	141.1(2)
C6	C5 C9	N1	-33.9(3)	N1	C9	C10)N2	36.1(2)
C6	C7 C8	N1	49.6(3)	N2	C8	N1	C9	35.8(2)
C6	C7 C8	N2	-65.4(3)	N2	C8	N1	01	-71.4(2)
C7	C8 N1	C9	-83.1(2)	N2	C11	C12	2C13	178.1(3)

C7	C8 N1	01	169.75(18)	N2	C11C16	5C15	-178.8(3)
C7	C8 N2	C10	100.8(3)	01	C17O3	C18	-179.9(3)
C7	C8 N2	C11	-104.3(3)	02	C17O1	N1	4.7(4)
C8	N101	C17	-109.7(2)	02	C17O3	C18	0.4(5)
C9	C5 C6	C1	-178.1(2)	03	C17O1	N1	-174.9(2)

Table S9 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for LVY2694HTAB.

Atom	x	У	Z	U(eq)
H1	-524	8163	3428	89
Н3	-740	13481	4415	92
H4	666	12872	4819	78
H7A	1112	6790	3312	76
H7B	846	5547	3888	76
H8	2386	5699	3920	68
Н9	1940	10502	4990	65
H10A	2357	11953	3969	64
H10B	3115	10782	4343	64
H12	3794	11430	3447	72
H13	4869	10971	2739	93
H14	4857	7943	2142	103
H15	3746	5461	2237	95
H16	2691	5838	2946	78
H19A	3529	5452	6594	176
H19B	3822	3094	6734	176
H19C	2970	3529	6341	176
H20A	5388	4605	5689	170
H20B	5271	4053	6363	170
H20C	4998	6317	6120	170
H21A	3517	1377	5539	185
H21B	4427	871	5858	185
H21C	4404	1958	5229	185

Table S10 Atomic Occupancy for LVY2694HTAB.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
Br1	0.823(5) Br1A	0.177(5)	

Experimental

The crystal was kept at 293(2) K during data collection. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation.

Crystal structure determination

Crystal Data for C₂₁H₂₃BrN₂O₃ (*M* =431.32 g/mol): monoclinic, space group P2₁/n (no. 14), a = 15.1042(3) Å, b = 6.24720(17) Å, c = 22.4658(7) Å, $\beta = 91.320(3)^{\circ}$, V = 2119.30(10) Å³, Z = 4, T = 293(2) K, μ (CuK α) = 2.824 mm⁻¹, *Dcalc* = 1.352 g/cm³, 7829 reflections measured (7.128° $\leq 2\Theta \leq 134.144^{\circ}$), 3786 unique ($R_{int} = 0.0252$, $R_{sigma} = 0.0347$) which were used in all calculations. The final R_1 was 0.0507 (I > 2 σ (I)) and wR_2 was 0.1531 (all data).

Refinement model description

Number of restraints - 1, number of constraints - unknown.

Details:

1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2. Restrained distances Br1-C2 1.9 with sigma of 0.023. Uiso/Uaniso restraints and constraints Uanis(Br1) = Uanis(Br1A)4. Others Sof(Br1A)=1-FVAR(1)Sof(Br1) = FVAR(1)5.a Ternary CH refined with riding coordinates: C8(H8), C9(H9) 5.b Secondary CH2 refined with riding coordinates: C7(H7A,H7B), C10(H10A,H10B) 5.c Aromatic/amide H refined with riding coordinates: C1(H1), C3(H3), C4(H4), C12(H12), C13(H13), C14(H14), C15(H15), C16(H16) 5.d Idealised Me refined as rotating group: C19(H19A,H19B,H19C), C20(H20A,H20B,H20C), C21(H21A,H21B,H21C)

7. Characterization data of products

Yellow solid; Mp 69.7–71.3 °C; 21.5 mg, 85.0% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.24 – 7.13 (m, 4H), 7.12 – 7.04 (m, 2H), 6.69 (t, J = 7.3 Hz, 1H), **3a** 6.53 (d, J = 8.0 Hz, 2H), 5.06 (s, 1H), 4.51 (s, 1H), 4.00 – 3.90 (m, 1H), 3.40 – 3.13 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 145.6, 138.2, 131.4, 129.3, 128.8, 127.9, 126.1, 125.8, 116.1, 111.4, 80.4, 68.2, 52.8, 35.8. HRMS (ESI) m/z 275.1154 (M+Na⁺), calc. for C₁₆H₁₆N₂NaO 275.1155.

White solid; Mp 84.3–85.9 °C; 25.0 mg, 93.0% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.20 – 7.04 (m, 4H), 6.91 (d, J = 8.7 Hz, 2H), 6.49 – 6.38 (m, 2H), 5.00 (s, 1H), 4.50 (d, J = 4.4 Hz, 1H), 3.94 – 3.85 (m, 1H), 3.24 (dt, J = 37.2,

16.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 156.7, 153.6, 142.4, 138.1, 131.3, 128.8, 127.9, 126.1, 125.8, 115.9, 115.6, 111.8, 111.7, 81.1, 68.4, 53.2, 36.1. HRMS (ESI) m/z 271.1246 (M+H⁺), calc. for C₁₆H₁₆FN₂O 271.1241.

Yellow solid; Mp 88.6–90.3 °C; 27.2 mg, 95.0% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.21 – 7.05 (m, 6H), 6.45 (d, J = 8.8 Hz, 2H), 5.04 (s, 1H), 4.52 (s, 1H), 3.95 – 3.88 (m, 1H), 3.25 (dt, J = 37.8, 16.3 Hz, 3H).¹³C NMR (75

MHz, CDCl₃) δ 144.3, 138.0, 131.1, 129.1, 128.8, 128.0, 126.2, 125.8, 120.9, 112.4, 80.7, 68.2, 53.0, 35.7. HRMS (ESI) m/z 309.0765 (M+Na⁺), calc. for C₁₆H₁₅ClN₂NaO 309.0765.

Yellow solid; Mp 99.8–101.3 °C; 30.4 mg, 92.0% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.29 (s, 2H), 7.22 – 7.13 (m, 2H), 7.12 – 7.03 (m, 2H), 6.39 (d, J = 8.7 Hz, 2H), 4.97 (s, 1H), 4.50 (d, J = 3.9 Hz, 1H), 3.92 – 3.83 (m, 1H),

3.23 (dt, J = 38.6, 16.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 144.7, 137.9, 131.9, 131.1, 128.8, 128.0, 126.2, 125.8, 113.0, 108.0, 80.7, 68.2, 52.9, 35.7. HRMS (ESI) m/z 353.0259 (M+Na⁺), calc. for C₁₆H₁₅BrN₂NaO 353.0260.

Yellow solid; Mp 97.3–98.8 °C; 21.0 mg, 73.0% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.16 – 6.93 (m, 5H), 6.56 (d, J = 7.9 Hz, 1H), 6.43 (s, 1H), 6.33 (d, J = 8.3 Hz, 1H), 4.97 (s, 1H), 4.45 (d, J = 4.2 Hz, 1H), 3.91 – 3.82 (m, 1H), 3.19 (dt, J = 35.1, 16.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 146.7, 138.0, 135.1, 131.1, 130.3, 128.8, 128.0, 126.2, 125.8, 116.0, 111.4, 109.7, 80.6, 68.2, 52.9, 35.7. HRMS (ESI)

m/z 309.0762 (M+Na⁺), calc. for C₁₆H₁₅ClN₂NaO 309.0765.

Yellow oil; 25.6 mg, 87.0% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.18 – 7.03 (m, 5H), 6.57 (d, J = 7.5 Hz, 1H), 6.38 (d, J = 7.3 Hz, 2H), 5.12 (s, 1H), 4.52 (s, 1H), 3.97 (dd, J = 7.5, 4.7 Hz, 1H), 3.29 (dt, J = 29.6, 15.9 Hz, 3H),

2.83 (dt, J = 13.8, 6.9 Hz, 1H), 1.23 (d, J = 6.9 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 150.2, 145.6, 138.2, 131.4, 129.2, 128.9, 127.8, 126.0, 125.8, 114.3, 109.6, 109.0, 80.4, 68.2, 52.8, 35.9, 34.5, 24.0. HRMS (ESI) m/z 317.1621 (M+Na⁺), calc. for C₁₉H₂₂N₂NaO 317.1624.

Ó⊢

ÓН

3g

3f

Yellow solid; Mp 125.9–127.2 °C; 23.0 mg, 87.4% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.19 – 7.00 (m, 6H), 6.46 (d, J = 8.4 Hz, 2H), 5.02 (s, 1H), 4.49 (d, J = 3.8 Hz, 1H), 3.97 – 3.87 (m, 1H), 3.25 (dt, J = 32.1, 16.4 Hz,

3H), 2.24 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 143.6, 138.3, 131.5, 129.8, 128.8, 127.8, 126.0, 125.8, 125.1, 111.3, 80.7, 68.2, 52.9, 36.0, 20.2. HRMS (ESI) m/z 267.1490 (M+H⁺), calc. for C₁₇H₁₉N₂O 267.1492.

Yellow solid; Mp 80.6–82.5 °C; 29.3 mg, 95.2% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.25 (d, J = 7.2 Hz, 2H), 7.10 (m, 4H), 6.51 (d, J = 8.7 Hz, 2H), 3h 5.11 (s, 1H), 4.51 (s, 1H), 3.95 (dd, J = 7.5, 4.7 Hz, 1H), 3.27 (dt, J = 28.9, 16.3 Hz, 3H), 1.27 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 143.3, 138.6, 138.2, 131.5, 128.8, 127.7, 126.1, 125.9, 125.7, 110.9, 80.4, 68.2, 52.8, 35.9, 33.7, 31.5. HRMS (ESI) m/z 309.1962 (M+H⁺), calc. for C₂₀H₂₅N₂O 309.1961.

Yellow solid; Mp 126.8–128.3 °C; 26.9 mg, 95.3% yield; 1H NMR (300 MHz, CDCl₃) δ 7.16 (t, J = 8.2 Hz, 2H), 7.11 – 7.02 (m, 2H), 6.83 (d, J = 3i3i 8.6 Hz, 2H), 6.48 (d, J = 8.9 Hz, 2H), 4.96 (s, 1H), 4.48 (s, 1H), 3.95 – 3.86 (m, 1H), 3.75 (s, 3H), 3.24 (dt, J = 36.4, 16.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 151.0 140.6 138.2 131.5 128.8 127.8 126.0 125.8 115.1 112.0 81.1 68.3 55.9 53.2

151.0, 140.6, 138.2, 131.5, 128.8, 127.8, 126.0, 125.8, 115.1, 112.0, 81.1, 68.3, 55.9, 53.2, 36.2. HRMS (ESI) m/z 283.1445 (M+H⁺), calc. for C₁₇H₁₉N₂O₂ 283.1441.

Yellow solid; Mp 128.4–130.1 °C; 28.2 mg, 85.0% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.42 (dd, J = 7.1, 1.9 Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 7.05 (q, J = 7.4 Hz, 2H), 6.71 (t, J = 7.3 Hz, 1H), 6.58 (d, J = 8.1 Hz, 2H), 5.18 (s, 1H), 4.53 (d, J = 4.4 Hz, 1H), 3.98 (dd, J = 7.6, 4.9 Hz, 1H), 3.30 (d, J = 7.9 Hz, 1H), 3.20 (s, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 145.4, 140.2, 131.8, 131.8, 129.4, 127.7, 125.2, 125.0, 116.5, 111.4, 80.2, 68.0, 52.7, 38.1. HRMS (ESI) m/z 331.0448 (M+H⁺), calc. for C₁₆H₁₆BrN₂O 331.0441.

White solid; Mp 124.9–125.5 °C; 26.8 mg, 93.4% yield; ¹H NMR (300 $CI \rightarrow N_{OH}$ 3I = 8.3 Hz, 2Cl]₃) δ 7.22 (t, J = 8.0 Hz, 2H), 7.13 (d, J = 8.3 Hz, 1H), 7.05 (d, J = 8.3 Hz, 2H), 6.69 (t, J = 7.3 Hz, 1H), 6.54 (d, J = 8.0 Hz, 2H), 5.12 (s, 1H), 4.52 (d, J = 4.1 Hz, 1H), 3.95 (dd, J = 7.8, 4.7 Hz, 1H), 3.37 – 3.11 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 145.4, 136.7, 133.5, 133.4, 129.4, 128.9, 127.1, 126.2, 116.4, 111.4, 80.0, 67.6, 52.7, 35.7. HRMS (ESI) m/z 309.0766 (M+Na⁺), calc. for C₁₆H₁₅ClN₂NaO 309.0765.

White solid; Mp 132.5–133.7 °C; 25.5 mg, 77% yield; ¹H NMR (300 MHz, $Br \rightarrow h$ CD_2Cl_2) δ 7.24 (dt, J = 15.8, 8.5 Hz, 4H), 6.98 (d, J = 8.1 Hz, 1H), 6.69 (t, J = 7.3 Hz, 1H), 6.53 (d, J = 8.0 Hz, 2H), 5.11 (s, 1H), 4.49 (d, J = 4.4 Hz, 1H), 3.94 (dd, J = 7.7, 4.7 Hz, 1H), 3.39 – 3.09 (m, 3H). ¹³C NMR (75 MHz, CD_2Cl_2) δ 145.30, 137.19, 133.71, 131.2, 128.8, 128.6, 127.0, 120.7, 115.8, 110.9, 79.9, 67.3, 35.4. HRMS (ESI) m/z 353.0256 (M+Na⁺), calc. for C₁₆H₁₅BrN₂NaO 353.0260.

Yellow solid; Mp 75.5–76.8 °C; 20.0mg, 71% yield; ¹H NMR (300 MHz, MeO $\stackrel{\text{N}}{\stackrel{\text{OH}}}$ CDCl₃) δ 7.21 (t, J = 7.7 Hz, 2H), 7.01 (d, J = 8.4 Hz, 1H), 6.69 (dd, J = 13.7, 6.8 Hz, 2H), 6.59 (s, 1H), 6.51 (d, J = 8.0 Hz, 2H), 4.93 (s, 1H), 4.50 (s, 1H), 3.91 (t, J = 6.1 Hz, 1H), 3.74 (s, 3H), 3.19 (dd, J = 31.2, 12.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.2, 145.7, 132.7, 130.7, 129.3, 126.8, 116.1, 113.7, 112.0, 111.4, 80.2, 67.6, 55.2, 52.8, 36.0. HRMS (ESI) m/z 283.1445 (M+H⁺), calc. for C₁₇H₁₉N₂O₂ 283.1441.

Yellow solid; Mp 86.5–87.6 °C; 16.0 mg, 60.0% yield; ¹H NMR (300 MHz, Me N $_{OH}^{N}$ CDCl₃) δ 7.31 – 7.12 (m, 6H), 7.04 (d, J = 7.3 Hz, 1H), 6.74 (dd, J = 23.9, 7.8 Hz, 3H), 5.02 (s, 1H), 4.49 – 4.33 (m, 2H), 3.45 (dd, J = 16.4, 3.4 Hz, 1H), 3.16 (d, J = 16.3 Hz, 1H), 0.91 (d, J = 6.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 147.8, 135.2, 131.84, 129.2, 128.7, 127.9, 127.6, 125.5, 117.4, 112.9, 85.6, 73.3, 55.9, 38.6, 15.0. HRMS (ESI) m/z 267.1497 (M+H⁺), calc. for $C_{17}H_{19}N_2O$ 267.1492.

8. ¹H and ¹³C NMR spectra

S21

S23

S31

