Supporting information

Ruthenium-Catalyzed Synthesis of *N*-substituted Lactams by Acceptorless Dehydrogenative Coupling of Diols with Primary Amines

Yanling Zheng, Xufeng Nie, Yang Long, Li Ji, Haiyan Fu*, Xueli Zheng, Hua Chen, Ruixiang Li*a

^aKey Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China E-mail: <u>scufhy@scu.edu.cn</u> (H. F.), <u>liruixiang@scu.edu.cn</u> (R. L.)

Table of Contents

I. General remarks
II. General procedures
1. Synthesis of Ligand L1
2. Details of the optimization of reaction conditions4
3. Typical procedures for the preparation of <i>N</i> -substituted lactams from diols and amines5
4. Procedures for the preparation of <i>N</i> -[4-fluoro-3-(4-methylpiperazin-1-yl)phenyl]pyrrolidin-2-one (4)6
5. Gram scale reaction
6. Detailed results of the reaction using benzylamine as substrate
III. Mechanistic studies
1. Synthesis of intermediates7
2. Control experiments
3. Profile of monitoring on reaction process10
4. Detection of H ₂ 11
IV. Characterization data of compounds11
V. Reference
VI. Copies of ¹ H and ¹³ C{ ¹ H} spectra23

I. General remarks

Unless otherwise noted, all operations were performed in the nitrogen. All solvents were purified with standard methods. Reagents were purchased from commercial suppliers and used as received, and moisture sensitive compounds were stored in glovebox. ¹H and ¹³C{¹H} NMR spectra were recorded on the Bruker AVENCE III HD-400 MHz in CDCl₃, DMSO-d₆. GC analysis was performed with Agilent 7890B (KB-1, 30 m × 0.32 mm × 0.25 µm) and AT (C-2000, 3 m × 3 mm). GC-MS analysis was performed with SHIMADZU GCMS-QP2020 (SH-Rtx-35MS, 30 m × 0.25 mm × 0.25 µm). HRMS was measured on SHIMADZU LCMS-IT-TOF mass spectrometer.

II. General procedures

1. Synthesis of Ligand L1

Ligand L1 was synthesized according to the reported method.¹ 2-Chloroethylamine hydrochloride (0.05 mol, 5.8 g), dried acetonitrile (60 mL) and 1-methylimidazole (0.1 mol, 8.2 g) were added successively into a dried two-neck flask, and then the mixture was stirred overnight at reflex condition to form colourless oil layer. At the end of reaction, solvent was removed and oil layer was washed with dried acetonitrile (10 mL× 2). The washed oil layer was recrystallized in EtOH/EtOAc to give a white solid. The solid was solved in minimal water and pH of the aqueous solution was adjusted to 8-9 with solid KOH. All water in the resulting aqueous solution was removed by rotary evaporation, and then THF/EtOH (1:4, 50 mL) was added to remove KCl. The mixture solution was filtered and filtrate was evaporated to dryness under vacuum to give pale yellow liquid (14), and then 14 (5 mmol, 0.81 g), [Ph₂P(CH₂OH)₂]Cl (10 mmol, 2.82 g), MeOH (30 mL), and Et₃N (3 mL) were added into a two-neck flask at N₂ atmosphere successively. This mixture solution was stirred at room temperature for 5 h, and then the solution was evaporated to dryness under vacuum. H₂O (10 mL) was added into the residue and the resulting aqueous solution was extract with CH₂Cl₂ (30

mL). The isolated CH_2Cl_2 solution was dried over MgSO₄, filtered, and evaporated to about 10 mL, and then Et₂O (30 mL) was added into it to give colourless crystal (1.98 g, 71% yield).

2. Details of the optimization of reaction conditions.

Reaction procedure: Unless other conditions are specified, catalyst, ligand, base and amines were added into a dried Schlenk tube equipped with a balloon, and it was subject to three cycles of vacuum and refilled with nitrogen. Then diols and solvent were sequentially injected into it. The mixture was stirred at corresponding temperature for 24 h. At the end of the reaction, the mixture was slowly cooled to room temperature and diluted with 3 mL of dichloromethane and filtered with *Celite*. The filtrate was evaporated to dry, and the residue was purified by flash column chromatography on silica gel to afford the product **3**.

standard conditions						
	NH2 + HO_OH	Ru ₃ (CO) ₁₂] (<u>L1 (2 mc</u> Cs ₂ CO ₃ (2 S3 (1 m	2 mol%) <u>I%) _</u> equiv) nL)	$ \begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $		
	1a 2a (2 equiv)	140 °C, 2	24 h	3a		
Entry	Changes	Yield ^b	Entry	Changes	Yield ^b	
1	None	81%	16	Cs ₂ CO ₃ (3 equiv)	80%	
2	Replace S3 with Toluene	31%	17	Cs ₂ CO ₃ (4 equiv)	77%	
3	Replace S3 with Toluene, 110 °C	18%	18	Replace Cs ₂ CO ₃ with NaH	44%	
4	Replace S3 with Toluene, 120 °C	20%	19	Replace Cs ₂ CO ₃ with KO ^t Bu	trace	
5	Replace S3 with Toluene, 130 °C	25%	20	Replace Cs ₂ CO ₃ with K ₂ CO ₃	0	
6	Replace S3 with Toluene, 150 °C	30%	21	Replace Cs ₂ CO ₃ with Na ₂ CO ₃	0	
7	Replace S3 with Toluene (closed vessel) ^c	trace	22	Replace Cs ₂ CO ₃ with KOH	trace	
8	Replace S3 with xylene	16%	23	Replace Cs ₂ CO ₃ with K ₃ PO ₄	0	
9	Replace S3 with mesitylene	trace	24	n(2a) = 0.25 mmol (1 equiv)	55%	
10	Replace S3 with anisole	trace	25	n(2a) = 0.375 mmol (1.5 equiv)	61%	
11	Replace S3 with DMF	trace	26	n(2a) = 0.625 mmol (2.5 equiv)	82%	
12	Replace S3 with DMSO	trace	27	n(2a) = 0.75 mmol (3 equiv)	76%	
13	Cs ₂ CO ₃ (10 mol%)	12%	28	n(2a) = 1 mmol (4 equiv)	71%	
14	Cs ₂ CO ₃ (50 mol%)	22%	29	n(2a) = 1.25 mmol (5 equiv)	63%	
15	Cs ₂ CO ₃ (1 equiv)	40%				

Table S1 Complementary Experiments on optimization of the reaction conditions.^a

^aUnless otherwise noted, the reaction was carried out under open condition to nitrogen on a 0.25 mmol scale. ^bIsolated yields. ^cthe reaction was carried out under nitrogen protection in a sealed 25 mL Schlenk tube without the balloon.

3. Typical procedures for the preparation of *N*-substituted lactams from diols and amines.

Unless other conditions are specified, $Ru_3(CO)_{12}$ (2 mol%, 3.2 mg), ligand L1 (2 mol%, 2.8 mg) and Cs_2CO_3 (0.5 mmol, 162 mg) and amines (0.25 mmol) were added into a dried Schlenk tube equipped with a balloon, and it was subject to three cycles of vacuum and refilled with nitrogen. Then diols (0.5 mmol) and S3 (1 mL) were sequentially injected into it. The mixture was stirred at 140 °C for 24 h. At the end of the reaction, the mixture was slowly cooled to room temperature and diluted with 3 mL of dichloromethane and filtered with *Celite*. The filtrate was evaporated to dry, and the residue was purified by flash column chromatography on silica gel to afford the product **3**.

4. Procedures for the preparation of *N*-[4-fluoro-3-(4-methylpiperazin-1-yl)phenyl]pyrrolidin-2-one (4)

To a solution of 1-methylpiperazine (0.24 mmol, 24 mg), $Pd(dba)_2$ (0.01 mmol, 5.8 mg), xantphos (0.02 mmol, 11.6 mg) and NaO'Bu (0.4 mmol, 38.4 mg) in toluene (1 mL) was added *N*-(3-bromo-4-fluorophenyl)pyrrolidin-2-one (**3h**) (0.2 mmol, 51.2 mg) dropwise. The mixture was stirred at 110 °C for 16 h. At the end of the reaction, the mixture was slowly cooled to room temperature and diluted with 3 mL of dichloromethane and filtered with *Celite*. The filtrate was evaporated to dry, and the desired product was separated by flash column chromatography to give a white solid **4** (49.8 mg, 90%).

5. Gram scale reaction

Ru₃(CO)₁₂ (2 mol%, 128 mg), ligand L1 (2 mol%, 112 mg) and Cs₂CO₃ (20 mmol) and amines (10 mmol) were added into a dried Schlenk tube with a balloon, and it was subject to three cycles of vacuum and refilled with nitrogen. Then diols (20 mmol) and S3 (50 mL) were sequentially injected into it. The mixture was stirred at 140 °C for 5 d. At the end of the reaction, the mixture was slowly cooled to room temperature and diluted with 30 mL of dichloromethane and filtered with *Celite*. The filtrate was evaporated to dry, and the residue was purified by flash column chromatography on silica gel to afford the product **3aa** (1.14 g, 65%).

6. Detailed results of the reaction using benzylamine as substrate

 $Ru_3(CO)_{12}$ (2 mol%, 3.2 mg), ligand L1 (2 mol%, 2.8 mg) and Cs_2CO_3 (1.0 mmol, 325 mg) were added into a dried Schlenk tube equipped with a balloon, and it was subject to three cycles of vacuum and refilled with nitrogen. Then benzylamine (0.25 mmol, 26.8 mg), diols (0.5 mmol, 45 mg) and S3 (1 mL) were sequentially injected into it. The mixture was stirred at 140 °C for 24 h. At the end of the reaction, the mixture was slowly cooled to room temperature and diluted with 3 mL of dichloromethane and filtered with *Celite*, and the filtrate was analyzed by GC-MS. Detailed results were shown below. The lower yield of desired product **5** might due to the generation of amine oxidation byproducts.²

III. Mechanistic studies

1. Synthesis of the intermediates

To a solution of *p*-toluidine (214 mg, 2 mmol) in THF (20 mL) was added *n*-BuLi (2.5 M in hexanes, 10 mL, 4 mmol) at 0 °C. The resulting reaction mixture was stirred at 0 °C and then cooled down to -78 °C. γ -Butyrolactone **10** (156 mg, 1.8 mmol) was added drop-wise. The reaction mixture was stirred for 1 h at the same temperature. The reaction was quenched with saturated NH₄Cl and extracted with ethyl acetate. The combined organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography through silica gel (CH₂Cl₂/MeOH) to give **11** as a white solid (4.9 g, 90% yield).³

Hydroxyamide **11** (193 mg, 1 mmol) and LiAlH₄ (113 mg, 3 mmol) was added in a Schlenk tube and it was subject to three cycles of vacuum and refilled with nitrogen. After that, under the protection of nitrogen, THF (15 mL) was added at 0 °C, and the reaction mixture was slowly warmed to room temperature and stirred for 10 h. The reaction mixture was evaporated and purified by flash column chromatography to afford the compound **8** as a yellow oil (163 mg, 91%).⁴

2. Control experiments

Ru₃(CO)₁₂ (2 mol%, 3.2 mg), ligand L1 (2 mol%, 2.8 mg) and Cs₂CO₃ (0.5 mmol, 162 mg) and amino alcohol **8** (0.25 mmol) were added into a dried Schlenk tube equipped with a balloon, and it was subject to three cycles of vacuum and refilled with nitrogen. Then S3 (1 mL) was sequentially injected into it. The mixture was stirred at 140 °C for 24 h. At the end of the reaction, the mixture was slowly cooled to room temperature and diluted with 3 mL of dichloromethane and filtered with *Celite*. The filtrate was evaporated to dry, and the desired product was separated by flash column chromatography to give a white solid **3aa** (39.8 mg, 91%).

Ru₃(CO)₁₂ (2 mol%, 3.2 mg), ligand L1 (2 mol%, 2.8 mg) and Cs₂CO₃ (0.5 mmol, 162 mg) and pyrrolidine **9** (26.8 mg, 0.25 mmol) were added into a dried Schlenk tube equipped with a balloon, and it was subject to three cycles of vacuum and refilled with nitrogen. Then **S3** (1 mL) was sequentially injected into it. The mixture was stirred at 140 °C for 24 h. The component of the completed reaction was analyzed by GC-MS, and no desired product was observed.

Ru₃(CO)₁₂ (2 mol%, 3.2 mg), ligand L1 (2 mol%, 2.8 mg) and Cs₂CO₃ (0.5 mmol, 162 mg) and *p*-toluidine (26.8 mg, 0.25 mmol) were added into a dried Schlenk tube equipped with a balloon, and it was subject to three cycles of vacuum and refilled with nitrogen. Then 10 (0.5 mmol, 43 mg), S3 (1 mL) were sequentially injected into it. The mixture was stirred at 140 °C for 24 h. The component of the completed reaction was analyzed by GC-MS, and no desired product was observed. Nevertheless, a trace amount of 10 was detected of model reaction under standard conditions.

Ru₃(CO)₁₂ (2 mol%, 3.2 mg), ligand L1 (2 mol%, 2.8 mg) and Cs₂CO₃ (0.5 mmol, 162 mg) and hydroxylamide 11 (0.25 mmol) were added into a dried Schlenk tube equipped with a balloon, and it was subject to three cycles of vacuum and refilled with nitrogen. Then S3 (1 mL) was sequentially injected into it. The mixture was stirred at 140 °C for 24 h. The component of the completed reaction was analyzed by GC-MS, and no desired product was observed.

Ru₃(CO)₁₂ (2 mol%, 3.2 mg), ligand L1 (2 mol%, 2.8 mg) and Cs₂CO₃ (10 mol%, 16.2 mg) and amino alcohol **8** (0.25 mmol) were added into a dried Schlenk tube equipped with a balloon, and it was subject to three cycles of vacuum and refilled with nitrogen. Then S3 (1 mL) was sequentially injected into it. The mixture was stirred at 140 °C for 24 h. At the end of the reaction, the mixture was slowly cooled to room temperature and diluted with 3 mL of dichloromethane and filtered with *Celite*. The filtrate was evaporated to dry, and the desired product was separated by flash column chromatography to give a white solid **3aa** (39.8 mg, 90%).

 $Ru_3(CO)_{12}$ (2 mol%, 3.2 mg), ligand L1 (2 mol%, 2.8 mg) and Cs_2CO_3 (10 mol%, 16.2 mg) and amines (0.25 mmol) were added into a dried Schlenk tube equipped with a balloon, and it was subject to three cycles of vacuum and refilled with nitrogen. Then diols (0.5 mmol) and S3 (1 mL) were sequentially injected into it. The mixture was stirred at 140 °C for 24 h. At the end of the reaction, the mixture was slowly cooled to room temperature and diluted with 3 mL of dichloromethane and filtered with *Celite*. The filtrate was evaporated to dry, and the residue was purified by flash column chromatography on silica gel to afford the product **3aa** (12%), without

amino alcohol 8 being detected.

Ru₃(CO)₁₂ (2 mol%, 3.2 mg), ligand L1 (2 mol%, 2.8 mg) and Cs₂CO₃ (0.5 mmol, 162 mg) and amines (0.25 mmol) were added into a dried Schlenk tube equipped with a balloon, and it was subject to three cycles of vacuum and refilled with nitrogen. Then *n*-butyl alcohol (0.5 mmol) and S3 (1 mL) were sequentially injected into it. The mixture was stirred at 140 °C for 24 h. At the end of the reaction, the mixture was analyzed by GC-MS, and no *N*-methyl-*N*-(*p*-tolyl)butyramide was observed.

3. Profile of monitoring on reaction process

Ru₃(CO)₁₂ (2 mol%, 12.8 mg), ligand L1 (2 mol%, 11.2 mg) and Cs₂CO₃ (2.0 mmol, 650 mg) and amines (1.0 mmol) were added into a dried Schlenk tube equipped with a balloon, and it was subject to three cycles of vacuum and refilled with nitrogen. Then diols (2.0 mmol) and S3 (5 mL) were sequentially injected into it. The mixture's ingredient was determined by GC-MS, based on amine consumption and lactam production, and the profile of the *in situ* relative composition of *p*-toluidine (1a), imine 7, amino alcohol 8 and the desired product 3aa was shown in Fig. S1.

Fig. S1 Reaction profile of the preparation of *N*-substituted γ -lactam.

4. Detection of H₂

 $Ru_3(CO)_{12}$ (2 mol%, 3.2 mg), ligand L1 (2 mol%, 2.8 mg) and Cs_2CO_3 (0.5 mmol, 162 mg) and amines (0.25 mmol) were added into a dried Schlenk tube equipped with a balloon, and it was subject to three cycles of vacuum and refilled with nitrogen. Then diols (0.5 mmol) and S3 (1 mL) were sequentially injected into it. The mixture was stirred at 140 °C for 24 h. At the end of the reaction, the mixture was slowly cooled to room temperature. Then the gas was vented off carefully and an aliquot of the gas was collected and analyzed by GC, showing formation of H₂ (Fig. S2)

Fig. S2 GC chromatograph of the gas collected from the reaction.

IV. Characterization data of compounds

N-(4-methylphenyl)-2-pyrrolidinone (3aa)

¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.5 Hz, 2H), 7.16 (d, *J* = 8.6 Hz, 2H), 3.83 (t, *J* = 7.0 Hz, 2H), 2.59 (t, *J* = 8.1 Hz, 2H), 2.32 (s, 3H), 2.14 (p, *J* = 7.5 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ

174.02, 136.86, 134.15, 129.31, 120.04, 48.89, 32.64, 20.83, 18.01. HRMS (ESI⁺): calcd for $C_{11}H_{14}NO$ [M+H]⁺ 176.1075, found: 176.1069.

N-Phenylbutyrolactam (3ab)

¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.8 Hz, 2H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.14 (t, *J* = 7.4 Hz, 1H), 3.85 (t, *J* = 7.0 Hz, 2H), 2.61 (t, *J* = 8.1 Hz, 2H), 2.15 (p, *J* = 7.6 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.26, 139.39, 128.82, 124.51, 119.97, 48.82, 32.79, 18.05. HRMS (ESI⁺): calcd for C₁₀H₁₂NO [M+H]⁺ 162.0919, found: 162.0924.

N-(4-Ethylphenyl)-2-pyrrolidinone (3ac)

¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.6 Hz, 2H), 7.19 (d, *J* = 8.6 Hz, 2H), 3.84 (t, *J* = 7.0 Hz, 2H), 2.61 (dt, *J* = 16.4, 7.9 Hz, 4H), 2.14 (p, *J* = 7.5 Hz, 2H), 1.25 – 1.16 (m, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.11, 140.65, 137.04, 128.19, 120.20, 48.96, 32.69, 28.33, 18.08, 15.69. HRMS (ESI⁺): calcd for C₁₂H₁₆NO [M+H]⁺ 190.1232, found: 190.1240.

N-(4-propan-2-ylphenyl)pyrrolidin-2-one (3ad)

¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.6 Hz, 2H), 7.22 (d, *J* = 8.6 Hz, 2H), 3.84 (t, *J* = 7.0 Hz, 2H), 2.94 – 2.84 (m, 1H), 2.59 (dd, *J* = 8.5, 7.7 Hz, 2H), 2.14 (td, *J* = 7.7, 1.2 Hz, 2H), 1.23 (d, *J* = 7.0 Hz, 6H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 174.11, 145.28, 137.08, 126.76, 120.22, 48.97, 33.62, 32.68, 24.02, 18.11. HRMS (ESI⁺): calcd for C₁₃H₁₈NO [M+H]⁺ 204.1388, found: 204.1391

N-(4-butyphenyl)pyrrolidin-2-one (3ae)

¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.6 Hz, 2H), 7.17 (d, *J* = 8.6 Hz, 2H), 3.84 (t, *J* = 7.0 Hz, 2H), 2.63 – 2.54 (m, 4H), 2.14 (p, *J* = 7.5 Hz, 2H), 1.57 (q, *J* = 7.5 Hz, 2H), 1.34 (dq, *J* = 14.6, 7.3 Hz, 2H), 0.91 (t, *J* = 7.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.10, 139.29, 137.01, 128.74, 120.07, 48.95, 35.06, 33.66, 32.70, 22.29, 18.09, 13.96. HRMS (ESI⁺): calcd for C₁₄H₂₀NO [M+H]⁺ 218.1545, found: 218.1547.

N-[4-(*tert*-buty)phenyl]pyrrolidin-2-one (3af)

¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 8.7 Hz, 2H), 7.39 (d, *J* = 8.7 Hz, 2H), 3.85 (t, *J* = 7.0 Hz, 2H), 2.61 (t, *J* = 8.1 Hz, 2H), 2.15 (p, *J* = 7.6 Hz, 2H), 1.31 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.14, 147.50, 136.76, 125.69, 119.86, 48.90, 34.39, 32.68, 31.35, 18.12.HRMS (ESI⁺): calcd for C₁₄H₂₀NO [M+H]⁺ 218.1545, found: 218.1543.

N-Biphenyl-4-yl-2-pyrrolidinone (3ag)

¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.7 Hz, 2H), 7.65 – 7.55 (m, 4H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.38 – 7.30 (m, 1H), 3.90 (t, *J* = 7.0 Hz, 2H), 2.64 (t, *J* = 8.1 Hz, 2H), 2.24 – 2.13 (m, 2H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 174.32, 140.48, 138.66, 137.25, 128.81, 127.44, 127.17, 126.90, 120.17, 48.80, 32.79, 18.05. HRMS (ESI⁺): calcd for C₁₆H₁₆NO [M+H]⁺ 238.1232, found: 238.1232

N-(4-Fluorophenyl)-2-pyrrolidinone (3ah)

¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.49 (m, 2H), 7.03 (t, *J* = 8.7 Hz, 2H), 3.81 (t, *J* = 7.0 Hz, 2H), 2.58 (t, *J* = 8.1 Hz, 2H), 2.14 (m, *J* = 7.5 Hz, 2H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 174.15, 159.44(d, *J* = 245.43 Hz), 135.50 (d, *J* = 3.03 Hz), 121.68 (d, *J* = 7.07 Hz), 115.45(d, *J* = 22.22 Hz), 49.00, 32.51, 17.95. HRMS (ESI⁺): calcd for C₁₀H₁₁FNO [M+H]⁺ 180.0825, found: 180.0830.

N-(4-Chlorophenyl)-2-pyrrolidinone (3ai)

¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 9.0 Hz, 2H), 7.32 (d, *J* = 9.0 Hz, 2H), 3.84 (t, *J* = 7.0 Hz, 2H), 2.61 (t, *J* = 8.1 Hz, 2H), 2.17 (p, *J* = 7.5 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.28, 137.97, 129.52, 128.82, 120.95, 48.67, 32.66, 17.90. HRMS (ESI⁺): calcd for C₁₀H₁₁ClNO [M+H]⁺ 196.0529, found: 196.0536.

N-(4-(Methoxyphenyl)pyrrolidin-2-one (3aj)

¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 9.1 Hz, 2H), 6.88 (d, J = 9.1 Hz, 2H), 3.78 (d, J = 9.4 Hz, 5H), 2.56 (t, J = 8.1 Hz, 2H), 2.12 (p, J = 7.5 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 173.97, 156.55, 132.60, 121.85, 114.02, 55.47, 49.21, 32.48, 18.02. HRMS (ESI⁺): calcd for C₁₁H₁₄NO₂ [M+H]⁺ 192.1025, found: 192.1032.

N-(4-Ethoxyphenyl)-2-pyrrolidinone (3ak)

¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 9.1 Hz, 2H), 6.87 (d, *J* = 9.1 Hz, 2H), 3.99 (q, *J* = 7.0 Hz, 2H), 3.79 (t, *J* = 7.0 Hz, 2H), 2.56 (t, *J* = 8.1 Hz, 2H), 2.11 (p, *J* = 7.5 Hz, 2H), 1.38 (t, *J* = 7.0 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 173.91, 155.90, 132.49, 121.78, 114.62, 63.65, 49.19, 32.49, 18.02, 14.84. HRMS (ESI⁺): calcd for C₁₂H₁₆NO₂ [M+H]⁺ 206.1181, found: 206.1186.

N-(4-phenoxyphenyl)-2-pyrrolidinone (3al)

¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 9.0 Hz, 2H), 7.31 (dd, *J* = 8.6, 7.4 Hz, 2H), 7.15 – 6.92 (m, 5H), 3.83 (t, *J* = 7.0 Hz, 2H), 2.60 (t, *J* = 8.1 Hz, 2H), 2.15 (p, *J* = 7.5 Hz, 2H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 174.10, 157.46, 153.64, 134.97, 129.75, 123.15, 121.66, 119.39, 118.51, 49.05, 32.57, 18.02. HRMS (ESI⁺): calcd for C₁₆H₁₆NO₂ [M+H]⁺ 254.1181, found: 254.1178.

N-(3-Benzyloxyphenyl)pyrrolidin-2-one (3am)

¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.28 (m, 7H), 7.05 – 6.88 (m, 2H), 5.04 (s, 2H), 3.79 (t, *J* = 7.0 Hz, 2H), 2.57 (t, *J* = 8.1 Hz, 2H), 2.16 – 2.07 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.01, 155.72, 136.97, 132.84, 128.62, 128.00, 127.48, 121.78, 115.08, 70.24, 49.17, 32.53, 18.02. HRMS (ESI⁺): calcd for C₁₇H₁₈NO₂ [M+H]⁺ 268.1338, found: 268.1347.

N-[4-(Trifluoromethyl)phenyl]-2-pyrrolidinone (3an)

¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.6 Hz, 2H), 7.61 (d, *J* = 8.9 Hz, 2H), 3.89 (t, *J* = 7.0 Hz, 2H), 2.64 (t, *J* = 8.1 Hz, 2H), 2.29 – 2.09 (m, 2H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 174.65, 142.34, 125.99 (q, *J* = 3.7 Hz), 122.78, 119.18, 48.47, 32.78, 17.89. HRMS (ESI⁺): calcd for C₁₁H₁₁F₃NO [M+H]⁺ 230.0793, found: 230.0783.

N-[4-(Methylthio)phenyl]pyrrolidin-2-one (3ao)

¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.9 Hz, 2H), 7.27 (d, J = 8.9 Hz, 2H), 3.96 – 3.71 (m, 2H), 2.60 (t, J = 6.6 Hz, 2H), 2.46 (s, 3H), 2.23 – 2.05 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.19, 137.00, 133.88, 127.65, 120.44, 48.75, 32.69, 17.96, 16.57. HRMS (ESI⁺): calcd for C₁₁H₁₄NOS [M+H]⁺ 208.0796, found: 208.0801.

N-[4-(4-morpholinyl)phenyl]-2-pyrrolidinone (3ap)

¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.8 Hz, 2H), 7.61 (d, *J* = 8.9 Hz, 2H), 3.91 – 3.72 (m, 6H), 3.15 – 3.03 (m, 4H), 2.57 (t, *J* = 8.1 Hz, 2H), 2.18 – 2.06 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 173.97, 148.34, 132.17, 121.43, 116.07, 66.87, 49.63, 49.09, 32.53, 18.03. HRMS (ESI⁺): calcd for C₁₄H₁₉N₂O₂ [M+H]⁺ 247.1447, found: 247.1458.

N-(m-Tolyl)pyrrolidin-2-one (3ba)

¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.29 (d, *J* = 7.7 Hz, 1H), 7.00 (d, *J* = 7.5 Hz, 1H), 3.88 (t, *J* = 7.0 Hz, 2H), 2.63 (t, *J* = 8.1 Hz, 2H), 2.40 (s, 3H), 2.17 (p, *J* = 7.5 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.20, 139.34, 138.66, 128.63, 125.38, 120.83, 117.17, 48.97, 32.80, 21.64, 18.08. HRMS (ESI⁺): calcd for C₁₁H₁₄NO [M+H]⁺ 176.1075, found: 176.1074.

N-(3-Ethylphenyl)-2-pyrrolidinone (3bb)

¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H), 7.41 (d, *J* = 9.4 Hz, 1H), 7.30 (t, *J* = 7.8 Hz, 1H), 7.02 (d, *J* = 7.5 Hz, 1H), 3.88 (t, *J* = 7.0 Hz, 2H), 2.78 – 2.48 (m, 4H), 2.17 (p, *J* = 7.5 Hz, 2H), 1.26 (t, *J* = 7.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.21, 145.06, 139.39, 128.72, 124.18, 119.73, 117.46, 49.00, 32.81, 29.01, 18.11, 15.62. HRMS (ESI⁺): calcd for C₁₂H₁₆NO [M+H]⁺ 190.1232, found: 190.1251.

N-[3-(1-methylethyl)phenyl]-2-pyrrolidinone (3bc)

¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H), 7.38 (d, *J* = 8.8 Hz, 1H), 7.31 – 7.25 (m, 1H), 7.02 (d, *J* = 7.6 Hz, 1H), 3.86 (t, *J* = 7.0 Hz, 2H), 2.91 (p, *J* = 6.9 Hz, 1H), 2.60 (t, *J* = 8.1 Hz, 2H), 2.14 (p, *J* = 7.6 Hz, 2H), 1.25 (d, *J* = 6.9 Hz, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.21, 149.70, 139.37, 128.71, 122.64, 118.43, 117.66, 49.01, 34.28, 32.80, 23.99, 18.10. HRMS (ESI⁺): calcd for C₁₃H₁₈NO [M+H]⁺ 204.1388, found: 204.1403.

N-Biphenyl -3-yl-2-pyrrolidinon (3bd)

¹H NMR (400 MHz, CDCl₃) δ 7.86 (t, *J* = 1.8 Hz, 1H), 7.69 – 7.56 (m, 3H), 7.49 – 7.40 (m, 3H), 7.41 – 7.31 (m, 2H), 3.86 (t, *J* = 7.0 Hz, 2H), 2.60 (t, *J* = 8.1 Hz, 2H), 2.24 – 2.06 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.41, 141.92, 140.90, 139.93, 129.23, 128.83, 127.55, 127.29, 123.32, 118.90, 118.79, 48.91, 32.83, 18.04. HRMS (ESI⁺): calcd for C₁₆H₁₆NO [M+H]⁺ 238.1232, found: 238.1227.

N-(3-Methoxyphenyl)pyrrolidin-2-one (3be)

¹H NMR (400 MHz, CDCl₃) δ 7.34 (t, *J* = 2.3 Hz, 1H), 7.29 – 7.21 (m, 1H), 7.11 (ddd, *J* = 8.2, 2.1, 0.9 Hz, 1H), 6.78 – 6.61 (m, 1H), 3.82 (d, *J* = 9.8 Hz, 5H), 2.60 (t, J = 8.1 Hz, 2H), 2.14 (p, *J* = 7.5 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.33, 159.91, 140.62, 129.46, 112.00, 110.05, 106.03, 55.33, 48.92, 32.91, 17.96. HRMS (ESI⁺): calcd for C₁₁H₁₄NO₂ [M+H]⁺ 192.1025, found: 192.1032.

N-(3-Fluorophenyl)pyrrolidin-2-one (3bf)

¹H NMR (400 MHz,CDCl₃) δ 7.52 (d, *J* = 11.4 Hz, 1H), 7.40 – 7.27 (m, 2H), 6.96 – 6.76 (m, 1H), 3.84 (t, *J* = 7.1 Hz, 2H), 2.62 (t, J = 8.1 Hz, 2H), 2.16 (p, *J* = 7.9 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.39, 162.85 (d, *J* = 244.5 Hz), 140.84 (s), 129.89 (d, *J* = 9.3 Hz), 114.75 (d, *J* = 3.0 Hz), 111.06 (d, *J* = 21.3 Hz), 107.13 (d, *J* = 26.2 Hz). 48.66, 32.83, 17.86. HRMS (ESI⁺): calcd for C₁₀H₁₁FNO [M+H]⁺ 180.0825, found: 180.0830.

N-(3-Chlorophenyl)pyrrolidin-2-one (3bg)

¹H NMR (400 MHz, CDCl₃) δ 7.69 (t, *J* = 2.0 Hz, 1H), 7.52 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.28 (t, *J* = 8.1 Hz, 1H), 7.11 (dd, *J* = 7.7, 1.5 Hz, 1H), 3.83 (t, *J* = 7.0 Hz, 2H), 2.61 (t, *J* = 8.1 Hz, 2H), 2.16 (p, *J* = 7.6 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.39, 140.54, 134.45, 129.79, 124.32, 119.71, 117.62, 48.60, 32.74, 17.87. HRMS (ESI+): calcd for C₁₀H₁₁ClNO [M+H]⁺ 196.0529, found: 196.0538.

N-[3-(methylthio)phenyl]pyrrolidi-2-none (3bh)

¹H NMR (400 MHz, CDCl₃) δ 7.59 (s, 1H), 7.34 – 7.26 (m, 2H), 7.03 (d, *J* = 7.3 Hz, 1H), 3.84 (dd, *J* = 6.7, 3.6 Hz, 2H), 2.60 – 2.58 (m, 2H), 2.49 (s, 3H), 2.27 – 2.11 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.37, 139.92, 139.30, 129.08, 122.48, 117.85, 116.49, 48.79, 32.81, 18.00, 15.80. HRMS (ESI⁺): calcd for C₁₁H₁₄NOS [M+H]⁺ 208.0796, found: 208.0801.

N-(o-tolyl)pyrrolidin-2-one (3c)

¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.12 (m, 4H), 3.72 – 3.69 (m, 2H), 2.58 – 2.54 (m, 2H), 2.24 – 2.17 (m, 5H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.54, 137.45, 135.57, 131.17, 127.93, 126.87, 126.65, 50.78, 31.26, 19.10, 17.93. HRMS (ESI⁺): calcd for C₁₁H₁₄NO [M+H]⁺ 176.1075, found: 176.1079.

N-(1,3-Benzodioxol-5-yl)pyrrolidin-2-one (3d)

¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 2.1 Hz, 1H), 6.84 (dd, *J* = 8.4, 2.2 Hz, 1H), 6.76 (d, *J* = 8.4 Hz, 1H), 5.93 (s, 2H), 3.78 (t, *J* = 7.0 Hz, 2H), 2.56 (t, *J* = 8.1 Hz, 2H), 2.12 (p, *J* = 7.5 Hz, 2H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 174.01, 147.77, 144.50, 133.78, 113.28, 107.88, 103.00, 101.29, 49.53, 32.54, 17.99. HRMS (ESI⁺): calcd for C₁₁H₁₂NO₃ [M+H]⁺ 206.0817, found: 206.0822.

N-(3,4-dimethylphenyl)pyrrolidin-2-one (3e)

¹H NMR (400 MHz, CDCl₃) δ 7.20 (br, 2H), 6.80 (s, 1H), 3.83 (t, *J* = 7.0 Hz, 2H), 2.59 (t, *J* = 8.1 Hz, 2H), 2.32 (br, 6H), 2.23 – 2.05 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.27, 139.22, 138.48, 126.49, 118.16, 49.21, 32.78, 21.51, 18.13. HRMS (ESI⁺): calcd for C₁₂H₁₆NO [M+H]⁺ 190.1232, found: 190.1237.

N-(3,4-Dichlorophenyl)pyrrolidin-2-one (3f)

¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 2.6 Hz, 1H), 7.51 (dd, *J* = 8.9, 2.6 Hz, 1H), 7.38 (d, *J* = 8.9 Hz, 1H), 3.80 (t, *J* = 7.1 Hz, 2H), 2.60 (t, *J* = 8.1 Hz, 2H), 2.24 – 2.08 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.42, 138.88, 132.58, 130.28, 127.51, 121.14 , 118.74, 48.50, 32.65, 17.75. HRMS (ESI⁺): calcd for C₁₀H₉Cl₂NaNO [M+Na]⁺ 251.9959, found: 251.9950.

N-(2-Naphthyl)pyrrolidin-2-one (3g)

¹H NMR (400 MHz, CDCl₃) δ 7.97 (dd, J = 8.9, 2.3 Hz, 1H), 7.88 – 7.73 (m, 4H), 7.51 – 7.36 (m, 2H), 3.92 (t, J = 7.0 Hz, 2H), 2.63 (t, J = 8.1 Hz, 2H), 2.15 (p, J = 7.6 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.48, 137.19, 133.51, 130.67, 128.55, 127.71, 127.55, 126.40, 125.24, 119.87, 116.76, 49.04, 32.87, 18.03. HRMS (ESI⁺): calcd for C₁₄H₁₃KNO [M+K]⁺ 250.0634, found: 250.0637.

N-(3-bromo-4-fluorophenyl)pyrrolidin-2-one (3h)

¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, J = 6.0, 2.7 Hz, 1H), 7.62 – 7.50 (m, 1H), 7.10 (t, J = 8.5 Hz, 1H), 3.82 (t, J = 7.0 Hz, 2H), 2.61 (t, J = 8.1 Hz, 2H), 2.24 – 2.08 (m, 2H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 174.23, 157.03, 154.59, 136.36, 124.64, 120.29 (d, J = 6.9 Hz), 116.25 (d, J = 23.2 Hz), 48.82, 32.39, 17.98. HRMS (ESI⁺): calcd for C₁₀H₁₀BrFNO [M+H]⁺ 257.9930, found: 257.9937.

N-[4-fluoro-3-(4-methylpiperazin-1-yl)phenyl]pyrrolidin-2-one (4)

¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.6 Hz, 1H), 6.96 – 6.92 (m, 2H), 3.79 (t, J = 7.0 Hz, 2H), 3.11 (br, 4H), 2.57 – 2.53 (m, 6H), 2.32 (s, 3H), 2.21 – 1.97 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.14 , 152.41 (d, J = 244.2 Hz), 140.03 (d, J = 9.3 Hz), 135.89 (d, J = 2.8 Hz), 115.88 (d, J = 22.1Hz), 113.51 (d, J = 7.8 Hz), 111.70 (d, J = 3.0 Hz), 55.05, 50.23 (d, J = 3.6 Hz), 49.16, 46.06 , 32.61, 17.93. HRMS (ESI⁺): calcd for C₁₅H₂₁FN₃O [M+H]⁺ 278.1669, found: 278.1659.

N-benzylpyrrolidin-2-one (5)

¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.23 (m, 5H), 4.45 (s, 2H), 3.27 – 3.24 (m, 2H), 2.44 (t, *J* = 8.1 Hz, 2H), 2.02 – 1.94 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.97, 136.57, 128.67, 128.11, 127.54, 46.61, 46.58, 30.95, 17.73. HRMS (ESI⁺): calcd for C₁₁H₁₄NO [M+H]⁺ 176.1075, found: 176.1078.

N-(*p*-tolyl)piperidin-2-one (6a)

¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, *J* = 8.1 Hz, 2H), 7.12 (d, *J* = 8.1 Hz, 2H), 3.61 (dd, *J* = 7.8, 3.9 Hz, 2H), 2.54 (t, *J* = 5.7 Hz, 2H), 2.34 (s, 3H), 1.94 – 1.92 (m, 4H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 170.15, 140.84, 136.55, 129.85, 126.09, 51.83, 32.86, 23.59, 21.51, 21.07. HRMS (ESI+): calcd for C₁₂H₁₆NO [M+H]⁺ 190.1232, found: 190.1238.

N-(*p*-tolyl)azepan-2-one (6b)

¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, *J* = 8.1 Hz, 2H), 7.08 (d, *J* = 8.1 Hz, 2H), 3.73 – 3.72 (m, 2H), 2.70 – 2.69 (m, 2H), 2.33 (s, 3H), 1.81 (br, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 175.74, 142.05, 136.26, 129.77, 126.07, 53.16, 37.65, 29.92, 28.87, 23.58, 21.03. HRMS (ESI⁺): calcd for C₁₃H₁₈NO [M+H]⁺ 204.1388, found: 204.1398.

N-(*p*-tolyl)isoindolin-2-one (6c)

¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 7.2 Hz, 1H), 7.66 (d, *J* = 8.5 Hz, 2H), 7.53 – 7.45 (m, 1H), 7.42 (t, *J* = 7.2 Hz, 2H), 7.13 (d, *J* = 8.3 Hz, 2H), 4.64 (s, 2H), 2.28 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.33, 140.20, 136.95, 134.00, 133.27, 131.88, 129.60, 128.22, 123.87, 122.61, 119.35, 50.72, 20.84. HRMS (ESI⁺): calcd for C₁₅H₁₄NO [M+H]⁺ 224.1075, found: 224.1077.

V. References

- 1 X.-J. Yu, H.-Y. He, L. Yang, H.-Y. Fu, X.-L. Zheng, H. Chen, R.-X. Li, *Catal. Commun.*, 2017, **95**, 54.
- 2 a) J. W. Kim, K. Yamaguchi, and N. Mizuno, Angew. Chem. Int. Ed., 2008, 47, 9249; b) R.
 Ray, S. Chandra, V. Yadav, P. Mondal, D. Maiti, and G. K. Lahiri, Chem. Commun., 2017, 53, 4006.
- 3 A. A. F.-Amador, X.-Y. Qian, H.-C. Xu, and T. Wirth, Chem. Eur. J., 2018, 24, 487.
- 4 W. Guo, J. E. Gómez, L. M.-Rodríguez, N. A. G. Bandeira, C. Bo, and A. W. Kleij, *ChemSusChem.*, 2017, 9, 1969.

VI. Copies of ¹H and ¹³C{¹H} spectra

 $\begin{array}{c} -3.92\\ -3.90\\ 3.89\\ -3.89\\ -3.89\\ -3.89\\ -2.66\\ -2.62\\ -2.20\\ -2.17\\ -2.18\\ -2.17\\ -2.18\\ -2.17\\ -2.18\\ -2.17\\ -2.18\\ -2.17\\ -2.18\\ -2.17\\ -2.18\\ -2.17\\ -2.18\\ -2.17\\ -2.18\\ -2.17\\ -2.18\\ -2.17\\ -2.18\\ -2.17\\ -2.18\\ -2.17\\ -2.18\\ -2.17\\ -2.18\\ -2.12\\ -2.$

 $\begin{array}{c} 7.55\\ 7.55\\ 7.55\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.52\\$

 $\begin{array}{c} 7.5.4\\ 7.5.4\\ 7.5.4\\ 7.5.5\\ 7.5.4\\ 7.5.5\\ 7.$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

