Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Table of Contents

1. General	2
2. Materials	2
3. Preparation of starting materials	3
4. Effects of reaction parameters on the C–H amination	8
5. Experiments in the dark	10
6. Competition experiments between benzilic and 3° C–H bonds	
7. NMR studies	12
8. Intramolecular C–H amination of sulfamate esters	15
9. Intramolecular C–H amination of <i>N</i> -alkylsulfamides	25
10. Conversion of cyclic sulfamides to unprotected 1,3-diamines	
11. References	
12. NMR spectra	

1. General

New compounds were characterized by ¹H NMR, ¹³C NMR, ¹⁹F NMR, IR, MS, and HRMS. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on a JEOL JMTC-400/54/SS spectrometer (¹H NMR, 400 MHz; ¹³C NMR, 100 MHz, ¹⁹F NMR, 377 MHz). ¹H NMR chemical shifts were determined relative to Me₄Si (0.0 ppm) in CDCl₃ or the signals of residual undeuterated acetonitrile (1.94 ppm) in CD₃CN, undeuterated acetone (2.04 ppm) in acetone-d₆, or undeuterated nitromethane (4.33 ppm) in CD₃NO₂ as an internal standard. ¹³C NMR chemical shifts were determined relative to CDCl₃ (77.0 ppm), CD₃CN (118.20 ppm), acetone-*d*₆ (29.80 ppm), or CD₃OD (49.00 ppm). ¹⁹F NMR chemical shifts were determined relative to C₆F₆ (-164.9 ppm in CDCl₃ or -165.2 ppm in CD₃CN) as an external standard. Infrared spectra were recorded on a SHIMADZU IRAffinity-1 FT-IR Spectrometer. Mass spectra were obtained on a SHIMADZU GCMS-QP2010 mass spectrometer. High-resolution mass spectra were obtained on JEOL JMS-700 (magnetic sector type mass spectrometer) and JEOL JMS-T100LP mass spectrometers. Melting points were determined on a Stanford Research Systems MPA100 OptiMelt Automated Melting Point System. All reactions were carried out under nitrogen. Products were purified by chromatography on silica gel BW-300 (Fuji Silysia Chemical Ltd.) or Chromatorex NH (Fuji Silysia Chemical Ltd.). Analytical thin-layer chromatography (TLC) was performed on pre-coated silica gel glass plates (Merck silica gel 60 F₂₅₄ and Fuji Silysia Chromatorex NH, 0.25 mm thickness). Compounds were visualized with UV lamp or treatment with an ethanolic solution of phosphomolybdic acid followed by heating.

2. Materials

Sulfamate esters were prepared according to the reported procedures.^{1–9} *N*-alkylsulfamide **10a** was prepared according to the reported procedure.¹⁰ Dehydrated acetonitrile was used from a solvent purification system. Nitromethane was distilled over calcium sulfate before use. All other solvents and reagents were purchased and used as obtained.

3. Preparation of starting materialsPreparation of sulfamate esters3-(2-bromophenyl)propyl sulfamate (1f)

According to the reported procedure,⁴ the reaction using ClSO₂NCO (1.4 mL, 16 mmol), formic acid (610 μ L, 16 mmol), 3-(2-bromophenyl)propan-1-ol (1.71 g, 8.0 mmol), and Et₃N (2.8 mL, 20 mmol) was carried out. Purification by flash column chromatography on silica gel (hexane/EtOAc = 70:30) gave the product as a colorless liquid (1.51 g, 66% yield).

¹H NMR: (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.8 Hz, 1H), 7.28–7.17 (m, 2H), 7.12–7.01 (m, 1H), 5.13 (brs, 2H), 4.23 (t, *J* = 6.4 Hz, 2H), 2.85 (t, *J* = 8.4 Hz, 2H), 2.11–1.98 (m, 2H); ¹³C NMR: (100 MHz, CDCl₃) δ 139.7, 132.9, 130.5, 128.0, 127.6, 124.3, 70.5, 32.0, 28.6; IR: (ATR) 3387, 3285, 1362, 1179, 1022, 1001, 978, 932, 806, 750 cm⁻¹; HRMS: (EI) calcd for (C₉H₁₂BrNO₃S) 292.9721 (M⁺) found *m/z* 292.9725

methyl 6-(sulfamoyloxy)hexanoate (1j)

According to the reported procedure,⁷ the reaction using methyl 6-hydroxyhexanoate (1.48 g, 10 mmol), MeCN (18 mL), pyridine (1.2 mL, 15 mmol), ClSO₂NCO (1.2 mL, 15 mmol), and formic acid (570 μ L, 15 mmol) was carried out. Purification by flash column chromatography on silica gel (hexane/EtOAc = 70:30) gave the product as a colorless solid (1.18 g, 52% yield).

mp: 44.0–44.4 °C; ¹H NMR: (400 MHz, CDCl₃) δ 4.90 (brs, 2H), 4.23 (t, *J* = 6.4 Hz, 2H), 3.68 (s, 3H), 2.35 (t, *J* = 7.2 Hz, 2H), 1.81–1.74 (m, 2H), 1.71–1.64 (m, 2H), 1.50–1.42 (m, 2H); ¹³C NMR: (100 MHz, CDCl₃) δ 174.2, 70.9, 51.7, 33.7, 28.3, 24.9, 24.0; IR: (ATR) 3269, 2940, 1719, 1362, 1184, 916, 822 cm⁻¹; HRMS: (CI) calcd for (C₇H₁₆NO₅S) 226.0749 ([M+H]⁺) found *m/z* 226.0745

3-phenylbutyl sulfamate (10)

According to the reported procedure,⁴ the reaction using ClSO₂NCO (1.7 mL, 20 mmol), formic acid (760 µL, 20 mmol), 3-phenylbutan-1-ol (1.50 g, 10 mmol), and Et₃N (3.5 mL, 25 mmol) was

carried out. Purification by flash column chromatography on silica gel (hexane/EtOAc = 70:30) gave the product as a colorless liquid (1.31 g, 57% yield).

¹H NMR: (400 MHz, CDCl₃) δ 7.39–7.14 (m, 5H), 4.53 (brs, 2H), 4.19–3.99 (m, 2H), 2.99–2.84 (m, 1H), 2.13–1.93 (m, 2H), 1.31 (d, *J* = 7.2 Hz, 3H); ¹³C NMR: (100 MHz, CDCl₃) δ 145.4, 128.6, 127.0, 126.5, 69.8, 36.8, 36.1 22.2; IR: (ATR) 3370, 3283, 1358, 1177, 966, 930, 826, 764 cm⁻¹; HRMS: (EI) calcd for (C₁₀H₁₅NO₃S) 229.0773 (M⁺) found *m/z* 229.0769.

3-phenylpropyl methylsulfamate (4)

Following the reported procedure,¹¹ triethylammonium sulfamate salt was prepared using sulfur trioxide pyridine complex (SO₃•pyridine) (4.5 g, 30 mmol), acetonitrile (90 mL), MeNH₂ (2 M in THF, 15 mL, 30 mmol), and Et₃N (4.2 mL, 45 mmol). The obtained salt was used without further purification. According to the reported procedure,¹¹ a flame-dried round-bottom flask containing a magnetic stir bar was charged with triphenylphosphine oxide (9.18 g, 33 mmol) and CH₂Cl₂ (100 mL), and the flask was cooled to 0 °C. Trifluoromethanesulfonic anhydride (4.9 mL, 30 mmol) was then added to the cooled solution dropwise. The mixture was allowed to stir at 0 °C for 15 minutes. A solution of sulfamate salt in CH₂Cl₂ (20 mL) was then added, and the mixture was stirred for 15 minutes at 0 °C. A flame-dried round-bottom flask containing a magnetic stir bar was charged with Et₃N (8.4 mL, 60 mmol, 3.0 equiv) and CH₂Cl₂ (80 mL), and the mixture was cooled to -78 °C. The sulfamate salt solution was transferred dropwise to the Et₃N solution, and the resulting solution was stirred at -78 °C for 15 minutes. A solution of 3-phenylpropan-1-ol (2.7 mL, 20 mmol) in CH₂Cl₂ (20 mL) was then added to the Et₃N solution. Without removing the cooling bath, the solution was stirred for 18 h, during which time no additional ice was added and the mixture warmed to room temperature. The reaction was then diluted with 2 M HCl (50 mL) and H₂O (100 mL). The aqueous phase was extracted with CH₂Cl₂ (2 x 25 mL), and the collected organic layers were dried over Na₂SO₄. The solution was concentrated under reduced pressure to give the crude product, which was purified by flash column chromatography on silica gel (hexane/EtOAc = 70:30) to give the product as a colorless liquid (26% yield).

¹H NMR: (400 MHz, CDCl₃) δ 7.31–7.17 (m, 5H), 4.73 (br s, 1H), 4.12 (t, *J* = 6.0 Hz, 2H), 2.76 (d, *J* = 5.6 Hz, 3H), 2.73 (t, *J* = 7.8 Hz, 2H), 2.07–2.00 (m, 2H); ¹³C NMR: (100 MHz, CDCl₃) δ 140.4, 128.4, 128.3, 126.1, 69.8, 31.5, 30.3, 30.0; IR: (ATR) 3319, 3306, 2953, 1342, 1171, 932, 860, 746, 700 cm⁻¹; HRMS: (CI) calcd for (C₁₀H₁₆NO₃S) 230.0851 ([M+H]⁺) found *m/z* 230.0853

Preparation of *N*-alkylsulfamides *N*-(3-(4-methylphenyl)propyl)sulfamide (10b)

3-(4-Methylphenyl)propylamine was prepared following the reported procedure.^{12,13} According to the reported procedure,¹⁰ a round-bottom flask containing a magnetic stir bar was charged with sulfamide (3.91 g, 40.6 mmol), H₂O (25 mL), and 3-(4-methylphenyl)propylamine (3.77 g, 25.3 mmol). The mixture was refluxed for 5 h. Then, the mixture was cooled to room temperature, acidified with 2 M HCl aq. to pH 2, and cooled to 0 °C. The solid that formed was filtered and then washed with ice water to give the crude product. Purification by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 50:50) gave the product as a white solid (2.52 g, 44% yield). mp: 93.9–95.2 °C; ¹H NMR: (400 MHz, CD₃CN) δ 7.20–6.99 (m, 4H), 5.09 (brs, 2H), 5.00 (brs, 1H), 2.97 (dt, *J* = 7.2, 7.2 Hz, 2H), 2.62 (t, *J* = 7.2 Hz, 2H), 2.29 (s, 3H), 1.80 (tt, *J* = 7.2, 7.2 Hz, 2H); ¹³C NMR: (100 MHz, CD₃CN) δ 139.6, 136.1, 129.8, 129.1, 43.5, 32.9, 31.9, 20.9; IR: (ATR) 3348, 3265, 1435, 1341, 1317, 1152, 1076, 934, 808 cm⁻¹; HRMS: (EI) calcd for (C₁₀H₁₆N₂O₂S) 228.0932 (M⁺), found *m/z* 228.0934

Typical procedure for the preparation of N-alkylsulfamides 10c-g

3-Arylpropylamines were prepared following the reported procedure.¹³ According to the reported procedure,¹⁰ a round-bottom flask containing a magnetic stir bar was charged with sulfamide, H₂O, and 3-arylpropylamine. The mixture was refluxed for 5 h. Then, the mixture was cooled to room temperature, acidified with 2 M HCl aq. to pH 2, and cooled to 0 °C. The solid that formed was filtered and then washed with cold water. Further purification by flash column chromatography on silica gel gave the desired product.

N-(3-(4-fluorophenyl)propyl)sulfamide (10c)

According to the typical procedure, the reaction using sulfamide (1.17 g, 12.1 mmol), H₂O (8 mL), and 3-(4-fluorophenyl)propylamine (1.37 g, 8.95 mmol) was conducted. Purification by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 50:50) gave the product as a white solid (0.685 g, 33% yield).

mp: 56.5–57.4 °C; ¹H NMR: (400 MHz, CD₃CN) δ 7.33–7.13 (m, 2H), 7.10–6.90 (m, 2H), 5.10 (brs, 2H), 5.03 (brs, 1H), 2.98 (dt, *J* = 7.2, 7.2 Hz, 2H), 2.65 (t, *J* = 7.2 Hz, 2H), 1.80 (tt, *J* = 7.2, 7.2 Hz, 2H); ¹³C NMR: (100 MHz, CD₃CN) δ 162.0 (d, *J*_{CF} = 239.6 Hz), 138.7 (d, *J*_{CF} = 3.3 Hz), 130.9 (d, *J*_{CF} = 8.2 Hz), 115.7 (d, *J*_{CF} = 21.4 Hz), 43.3, 32.4, 31.8; ¹⁹F NMR: (377 MHz, CD₃CN) δ –120.1; IR: (ATR) 3314, 3267, 1512, 1437, 1331, 1238, 1150, 1069, 912, 812 cm⁻¹; HRMS: (EI) calcd for (C₉H₁₃FN₂O₂S) 232.0682 (M⁺), found *m*/*z* 232.0682

N-(3-(4-chlorophenyl)propyl)sulfamide (10d)

According to the typical procedure, the reaction using sulfamide (2.65 g, 27.6 mmol), H₂O (18 mL), and 3-(4-chlorophenyl)propylamine (2.96 g, 17.5 mmol) was conducted. Purification by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 50:50) gave the product as a white solid (2.00 g, 46% yield).

mp: 82.9–84.1 °C; ¹H NMR: (400 MHz, CD₃CN) δ 7.30 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 5.10 (brs, 2H), 5.03 (brs, 1H), 2.97 (dt, *J* = 7.2, 7.2 Hz, 2H), 2.65 (t, *J* = 7.2 Hz, 2H), 1.81 (tt, *J* = 7.2, 7.2 Hz, 2H); ¹³C NMR: (100 MHz, CD₃CN) δ 141.6, 131.8, 131.0, 129.1, 43.3, 32.6, 31.6; IR: (ATR) 3294, 3242, 1493, 1435, 1321, 1163, 1084, 928, 797 cm⁻¹; HRMS: (EI) calcd for (C₉H₁₃ClN₂O₂S) 248.0386 (M⁺), found *m/z* 248.0384

N-(3-(4-bromophenyl)propyl)sulfamide (10e)

According to the typical procedure, the reaction using sulfamide (1.44 g, 15.0 mmol), H₂O (10 mL), and 3-(4-bromophenyl)propylamine (2.14 g, 10.0 mmol) was conducted. Purification by flash column chromatography on silica gel (hexane/EtOAc = 80:20 to 40:60) gave the product as a white solid (1.77 g, 61% yield).

mp: 89.4–90.2 °C; ¹H NMR: (400 MHz, CD₃CN) δ 7.49–7.40 (m, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 5.10 (brs, 2H), 5.03 (brs, 1H), 2.97 (dt, *J* = 7.2, 7.2 Hz, 2H), 2.64 (t, *J* = 7.2 Hz, 2H), 1.80 (tt, *J* = 7.2, 7.2 Hz, 2H); ¹³C NMR: (100 MHz, CD₃CN) δ 142.1, 132.1, 131.4, 119.9, 43.3, 32.6, 31.5; IR: (ATR) 3302, 3248, 1487, 1435, 1319, 1163, 1084, 1072, 1011, 926, 791 cm⁻¹; HRMS: (EI) calcd for (C₉H₁₃BrN₂O₂S) 291.9881 (M⁺), found *m/z* 291.9876

N-(3-(3-bromophenyl)propyl)sulfamide (10f)

According to the typical procedure, the reaction using sulfamide (3.87 g, 40.3 mmol), H₂O (20 mL), and 3-(3-bromophenyl)propylamine (4.00 g, 18.7 mmol) was conducted. Purification by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 50:50) gave the product as a white solid (3.65 g, 67% yield).

mp: 74.2–76.4 °C; ¹H NMR: (400 MHz, CD₃CN) δ 7.42 (s, 1H), 7.39–7.31 (m, 1H), 7.30–7.12 (m, 2H), 5.11 (brs, 2H), 5.03 (brs, 1H), 2.98 (dt, *J* = 7.2, 7.2 Hz, 2H), 2.66 (t, *J* = 7.2 Hz, 2H), 1.81 (tt, *J* = 7.2, 7.2 Hz, 2H); ¹³C NMR: (100 MHz, CD₃CN) δ 145.5, 132.1, 131.1, 129.7, 128.3, 122.7, 43.3, 32.9, 31.5; IR: (ATR) 3381, 3252, 1566, 1551, 1437, 1327, 1148, 1059, 908, 891, 847, 787 cm⁻¹; HRMS: (CI) calcd for (C₉H₁₄BrN₂O₂S) 292.9959 ([M+H]⁺), found *m/z* 292.9958

N-(3-(2-bromophenyl)propyl)sulfamide (10g)

According to the typical procedure, the reaction using sulfamide (3.90 g, 40.5 mmol), H₂O (20 mL), and 3-(2-bromophenyl)propylamine (4.39 g, 20.5 mmol) was conducted. Purification by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 50:50) gave the product as a white solid (3.57 g, 59% yield).

mp: 48.5–49.8 °C; ¹H NMR: (400 MHz, CD₃CN) δ 7.57 (dd, J = 8.0, 0.8 Hz, 1H), 7.40–7.25 (m, 2H), 7.12 (ddd, J = 8.0, 6.8, 2.4 Hz, 1H), 5.12 (brs, 2H), 5.06 (brs, 1H), 3.03 (dt, J = 6.8, 6.8 Hz, 2H), 2.79 (t, J = 8.0 Hz, 2H), 1.83 (tt, J = 8.0, 6.8 Hz, 2H); ¹³C NMR: (100 MHz, CD₃CN) δ 141.8,

133.5, 131.5, 128.8, 128.6, 124.7, 43.4, 33.7, 30.2; IR: (ATR) 3335, 3291, 3254, 1439, 1323, 1163, 1070, 1024, 924, 737 cm⁻¹; HRMS: (CI) calcd for ($C_9H_{14}BrN_2O_2S$) 292.9959 ([M+H]⁺), found *m*/*z* 292.9954

4. Effects of reaction parameters on the C-H amination

Effects of the loading amount of tBuOI and solvents on the amination of 1a

A heat-gun-dried 10 mL reaction flask containing a magnetic stir bar was charged with NaI, 3-phenylpropyl sulfamate (1a) (0.2 mmol), and MeCN (1 mL). To the mixture, *t*BuOCl was added, and the mixture was stirred at room temperature for 8 h on the benchtop in the presence of a fluorescent light on the ceiling. The reaction was quenched by Na₂S₂O₃ aq. (1 M, 5 mL), and extracted with Et₂O (3 x 10 mL). Collected organic layers were dried over Na₂SO₄. The solution was concentrated under reduced pressure to give the crude product, which was analyzed by ¹H NMR spectroscopy. The results are summarized in Table S1.

Table S1

O, O			O O	
	H_2N^{\prime}	S ₀ <i>t</i> BuOI (x equiv)		HŅ ^{ŹS} Ŏ
	Ph solv 1a fluor		ent, rt, 8 h escent light	Ph 2a
entry	х	solvent	yield (%) ^a	recovery of 1a (%) ^a
1	1	MeCN	44	48
2	2	MeCN	84	5
3	2.2	MeCN	92	<5
5	2.2	acetone	68	21
6	2.2	CH_2CI_2	62	<5
8	2.2	Et ₂ O	<5	90
4	2.2	MeNO ₂	78	<5
7	2.2	<i>t</i> BuOH	61	13

Reactions were performed on a 0.2 mmol scale. ^aDetermined by ¹H NMR analysis.

Effects of solvents on the amination of 1n using tBuOI

A heat-gun-dried 10 mL reaction flask containing a magnetic stir bar was charged with NaI (0.6 mmol), isopentyl sulfamate (**1n**) (0.2 mmol), and solvent (1 mL). To the mixture, *t*BuOCl (0.6 mmol) was added, and the mixture was stirred at room temperature for 24 h on the benchtop in the presence of a fluorescent light on the ceiling. The reaction was quenched by Na₂S₂O₃ aq. (1 M, 5 mL), and extracted with Et₂O (3 x 10 mL). Collected organic layers were dried over Na₂SO₄. The solution was concentrated under reduced pressure to give the crude product, which was analyzed by

Reactions were performed on a 0.2 mmol scale. ^aDetermined by ¹H NMR analysis.

Effects of oxidants on the amination of 10a

A heat-gun-dried 10 mL reaction flask containing a magnetic stir bar was charged with N-(3-phenylpropyl)sulfamide (10a) (0.2 mmol), and MeNO₂ (1 mL). To the mixture, oxidant (0.6 mmol) was added, and the mixture was stirred at room temperature for 4 h on the benchtop in the presence of a fluorescent light on the ceiling. The reaction was quenched by Na₂S₂O₃ aq. (1 M, 5 mL), and extracted with Et₂O (3 x 10 mL). Collected organic layers were dried over Na₂SO₄. The solution was concentrated under reduced pressure to give the crude product, which was analyzed by ¹H NMR spectroscopy. The results are summarized in Table S3.

	O O		O, O
	H ₂ N ^S NH	oxidant (3 equiv)	
Р	h~	MeNO ₂ , rt, 4 h	Ph
	10a	fluorescent light	11a
entry	oxidant	yield (%) ^a	recovery of 10a (%) ^ء
1	NIS	92	<5
2	DIH (1.5 equ	iv) 83	0
3	<i>t</i> BuOI	33	36
4	IPy2BF4	0	94
5	l ₂	0	>95
6	NBS	51	29
7	NCS	0	>95

Table S3

Reactions were performed on a 0.2 mmol scale. ^aDetermined by ¹H NMR analysis.

Effects of the loading amount of NIS on the amination of 10a

A heat-gun-dried 10 mL reaction flask containing a magnetic stir bar was charged with N-(3-phenylpropyl)sulfamide (10a) (0.2 mmol), NIS, and MeNO₂ (1 mL), and the mixture was stirred at room temperature for 4 h on the benchtop in the presence of a fluorescent light on the ceiling. The reaction was quenched by Na₂S₂O₃ aq. (1 M, 5 mL), and extracted with Et₂O (3 x 10 mL). Collected organic layers were dried over Na₂SO₄. The solution was concentrated under reduced pressure to give the crude product, which was analyzed by ¹H NMR spectroscopy. The results are summarized in Table S4.

	0	0		0.0
H ₂ N´ ^S ´NH		NIS (x equiv) HN ^S NH	
	Ph10	a	MeNO ₂ , rt, 4 fluorescent lig	h Ph ^{ht} 11a
	entry	х	yield (%) ^a	recovery of 10a (%) ^a
	1	3	92	<5
	2	2.5	89	<5
	3	2	77	8
	4	1	42	52

Reactions were performed on a 0.2 mmol scale. ^aDetermined by ¹H NMR analysis.

5. Experiments in the dark

Table S4

A heat-gun-dried 10 mL reaction flask containing a magnetic stir bar was charged with 3-phenylpropyl sulfamate (1a) (0.2 mmol), solvent (1 mL), and oxidant in the dark, and the mixture was stirred at room temperature for 8 h in the dark. The reaction was quenched by $Na_2S_2O_3$ aq. (1 M, 5 mL), and extracted with Et₂O (3 x 10 mL). Collected organic layers were dried over Na_2SO_4 . The solution was concentrated under reduced pressure to give the crude product, which was analyzed by ¹H NMR spectroscopy. The results are summarized in Table S5.

Table S5

	O O	٥, o		
	H ₂ N ^S O	oxidant	۲ ا	
	Ph 1a	solvent, rt, 8 h under dark	Ph´	2a
entry	oxidant	solvent	yield (%) ^a	recovery of 1a (%) ^a
1	<i>t</i> BuOI (2.2 equiv)	MeCN	<5	84
2	NIS (3 equiv)	MeNO ₂	<5	>95

Reactions were performed on a 0.2 mmol scale. ^aDetermined by ¹H NMR analysis.

6. Competition experiments between benzilic and 3° C-H bonds

A heat-gun-dried 10 mL reaction flask containing a magnetic stir bar was charged with NIS (248.6mg, 1.10 mmol), 5-methyl-1-phenylhexan-3-yl sulfamate (**1s**) (132.7 mg, 0.49 mmol), and MeNO₂ (2.5 mL), and the mixture was stirred at room temperature for 8 h on the benchtop in the presence of a fluorescent light on the ceiling. The reaction was quenched by Na₂S₂O₃ aq. (1 M, 5 mL), and extracted with Et₂O (3 x 10 mL). Collected organic layers were dried over Na₂SO₄. The solution was concentrated under reduced pressure to give the crude product, which was purified by flash column chromatography on silica gel (hexane/EtOAc then hexane/CH₂Cl₂) to give **2s**-*cis* (colorless liquid, 37.1 mg, 28% yield) and the mixture (47.7 mg) containing **2s**-*trans*, **2s'**, and **2s'-I**. Yields of **2s**-*trans*, **2s'**, and **2s'-I** were determined by ¹H NMR analysis of the mixture. The analytical data for these products were listed in the section of **Product data**.

7. NMR studies

¹H NMR monitoring of the mixture of sulfamate ester 1a and *t*BuOI: A heat-gun-dried 10 mL reaction flask containing a magnetic stir bar was charged with NaI (60.1 mg, 0.40 mmol), 3-phenylpropyl sulfamate (1a) (43.5 mg, 0.20 mmol) and CD₃CN (1 mL). The flask was then placed in the dark, and *t*BuOCl (45 μ L, 0.40 mmol) was added to the flask. After mixing for 30 min at room temperature in the dark, the mixture was transferred into an NMR tube. The resulting ¹H NMR spectra are shown in Figure S1. Subsequently, the mixture was exposed to ambient light. The resulting ¹H NMR spectra after 1 and 3 h are shown.

Figure S1. ¹H NMR spectra in CD₃CN: i) **1a**. ii) Mixture of **1a** and 2 equiv of *t*BuOI after stirring for 30 min in the dark. iii) Spectrum obtained 1 h after exposure to ambient light. iv) Spectrum obtained 3 h after exposure to ambient light. v) **2a**.

¹H NMR monitoring of the mixture of sulfamate ester 1a and NIS: A heat-gun-dried 10 mL reaction flask containing a magnetic stir bar was charged with NIS (44.8 mg, 0.20 mmol), 3-phenylpropyl sulfamate (1a) (21.8 mg, 0.10 mmol) and CD_3NO_2 (1 mL) in the dark. After mixing for 1 h at room temperature in the dark, the mixture was transferred into an NMR tube. The resulting ¹H NMR spectra are shown in Figure S2. Subsequently, the mixture was exposed to ambient light. The resulting ¹H NMR spectrum after 2 h is shown.

Figure S2. ¹H NMR spectra in CD₃NO₂: i) **1a**. ii) Mixture of **1a** and 2 equiv of NIS after stirring for 1 h in the dark. iii) Spectrum obtained 2 h after exposure to ambient light. iv) **2a**.

¹H NMR monitoring of the mixture of *N*-alkylsulfamide 10a and NIS: A heat-gun-dried 10 mL reaction flask containing a magnetic stir bar was charged with NIS (45.1 mg, 0.20 mmol), *N*-(3-phenylpropyl)sulfamide (10a) (17.3 mg, 0.081 mmol) and CD₃NO₂ (1 mL) in the dark. After mixing for 1 h at room temperature in the dark, the mixture was transferred into an NMR tube. The resulting ¹H NMR spectra are shown in Figure S3. Subsequently, the mixture was exposed to ambient light. The resulting ¹H NMR spectrum after 1 h is shown.

Figure S3. ¹H NMR spectra in CD₃NO₂: i) **10a**. ii) Mixture of **10a** and 2.5 equiv of NIS after stirring for 1 h in the dark. iii) Spectrum obtained 1 h after exposure to ambient light. iv) **11a**.

8. Intramolecular C-H amination of sulfamate esters

Typical procedure for the reaction under condition A (using *t***BuOI in MeCN): A heat-gun-dried 10 mL reaction flask containing a magnetic stir bar was charged with NaI (1.1–1.5 mmol), sulfamate ester (0.5 mmol), and MeCN (2.5 mL). To the mixture,** *t***BuOCl (1.1–1.5 mmol) was added, and the mixture was stirred at room temperature for the indicated time on the benchtop in the presence of a fluorescent light on the ceiling. The reaction was quenched by Na₂S₂O₃ aq. (1 M, 5 mL), and extracted with Et₂O (3 x 10 mL). Collected organic layers were dried over Na₂SO₄. The solution was concentrated under reduced pressure to give the crude product. Purification by flash column chromatography on silica gel gave the product.**

Typical procedure for the reaction under condition B (using NIS in MeNO₂): A heat-gun-dried 10 mL reaction flask containing a magnetic stir bar was charged with NIS (1.5 mmol), sulfamate ester (0.5 mmol), and MeNO₂ (2.5 mL), and the mixture was stirred at room temperature for indicated time on the benchtop in the presence of a fluorescent light on the ceiling. The reaction was quenched by Na₂S₂O₃ aq. (1 M, 5 mL), and extracted with Et₂O (3 x 10 mL). Collected organic layers were dried over Na₂SO₄. The solution was concentrated under reduced pressure to give the crude product. Purification by flash column chromatography on silica gel gave the product.

Product data

```
4-phenyl-1,2,3-oxathiazinane 2,2-dioxide (2a)
```

HN

Condition A: According to the typical procedure, the reaction using NaI (165.1 mg, 1.50 mmol), MeCN (2.5 mL), 3-phenylpropyl sulfamate (107.7 mg, 0.50 mmol), and *t*BuOCl (123.1 mg, 1.50 mmol) was conducted for 8 h. Purification by flash column chromatography on silica gel (hexane/EtOAc = 70:30) gave the product as a colorless solid (94.8 mg, 89% yield).

Gram-scale synthesis (Condition A): According to the typical procedure, the reaction using NaI (2.47 g, 16.5 mmol), MeCN (37.5 mL), 3-phenylpropyl sulfamate (1.61 g, 7.5 mmol), and *t*BuOCl (1.87 mL, 16.5 mmol) was conducted for 24 h. Purification by flash column chromatography on silica gel (hexane/EtOAc = 70:30) gave the product as a colorless solid (1.33 g, 83% yield).

Condition B: According to the typical procedure, the reaction using 3-phenylpropyl sulfamate (103.2 mg, 0.48 mmol), MeNO₂ (2.5 mL), and NIS (337.6 mg, 1.50 mmol) was conducted for 8 h. Purification by flash column chromatography on silica gel (hexane/EtOAc = 70:30) gave the product as a colorless solid (85.9 mg, 84% yield).

¹H NMR: (400 MHz, CDCl₃) δ 7.47–7.33 (m, 5H), 4.93–4.83 (m, 2H), 4.67 (ddd, *J* = 11.2, 4.8, 1.2 Hz, 1H), 4.21 (brd, *J* = 8.8 Hz, 1H), 2.32–2.18 (m, 1H), 2.05 (dddd, *J* = 14.4, 2.4, 2.4, 2.4, Hz, 1H); ¹³C NMR: (100 MHz, CDCl₃) δ 137.9, 129.1, 128.9, 126.2, 71.9, 58.9, 30.1

The analytical data for this compound were in excellent agreement with the reported data.¹

4-(4-methoxyphenyl)-1,2,3-oxathiazinane 2,2-dioxide (2b)

Condition A: According to the typical procedure , the reaction using NaI (165.7 mg, 1.11 mmol), MeCN (2.5 mL), 3-(4-methoxyphenyl)propyl sulfamate (122.6 mg, 0.50 mmol), and *t*BuOCl (124.9 mg, 1.15 mmol) was conducted for 8 h. Purification by flash column chromatography on silica gel (hexane/EtOAc = 70:30) gave the product as a colorless solid (102.2 mg, 84% yield).

Condition B: According to the typical procedure B, the reaction using 3-(4-methoxyphenyl)propyl sulfamate (117.7 mg, 0.48 mmol), MeNO₂ (2.5 mL), and NIS (335.0 mg, 1.49 mmol) was conducted for 8 h. Purification by flash column chromatography on silica gel (hexane/EtOAc = 60:40) gave the product as a colorless solid (109.9 mg, 90% yield).

¹H NMR: (400 MHz, CDCl₃) δ 7.31–7.24 (m, 2H), 6.95–6.87 (m, 2H), 4.90–4.76 (m, 2H), 4.68–4.60 (m, 1H), 4.30 (brd, *J* = 9.2 Hz, 1H), 3.81 (s, 3H), 2.32–2.16 (m, 1H), 2.03–1.94 (m, 1H); ¹³C NMR: (100 MHz, CDCl₃) δ 159.9, 130.0, 127.6, 114.4, 71.8, 58.4, 55.3, 30.1

The analytical data for this compound were in excellent agreement with the reported data.²

4-(4-methylphenyl)-1,2,3-oxathiazinane 2,2-dioxide (2c)

Condition A: According to the typical procedure, the reaction using NaI (187.4 mg, 1.25 mmol), MeCN (2.5 mL), 3-(4-methylphenyl)propyl sulfamate (110.3 mg, 0.48 mmol), and *t*BuOCl (139.3 mg, 1.28 mmol) was conducted for 8 h. Purification by flash column chromatography on silica gel (hexane/EtOAc = 70:30) gave the product as a colorless solid (93.3 mg, 85% yield).

Condition B: According to the typical procedure, the reaction using 3-(4-methylphenyl)propyl sulfamate (114.0 mg, 0.50 mmol), MeNO₂ (2.5 mL), and NIS (336.0 mg, 1.49 mmol) was conducted for 8 h. Purification by flash column chromatography on silica gel (hexane/EtOAc = 70:30) gave the product as a colorless solid (98.1 mg, 87% yield).

¹H NMR: (400 MHz, CDCl₃) δ 7.29–7.18 (m, 4H), 4.92–4.79 (m, 2H), 4.65 (ddd, *J* = 11.6, 4.8, 1.2 Hz, 1H), 4.27 (brd, *J* = 9.2 Hz, 1H), 2.36 (s, 3H), 2.31–2.15 (m, 1H), 2.04–1.96 (m, 1H); ¹³C NMR: (100 MHz, CDCl₃) δ 138.9, 135.0, 129.8, 126.1, 71.8, 58.7, 30.2, 21.1

The analytical data for this compound were in excellent agreement with the reported data.³

4-(4-bromophenyl)-1,2,3-oxathiazinane 2,2-dioxide (2d)

Condition A: According to the typical procedure, the reaction using NaI (187.4 mg, 1.25 mmol), MeCN (2.5 mL), 3-(4-bromophenyl)propyl sulfamate (146.7 mg, 0.50 mmol), and *t*BuOCl (144.6 mg, 1.33 mmol) was conducted for 8 h. Purification by flash column chromatography on silica gel (hexane/EtOAc = 70:30) gave the product as a colorless solid (115.4 mg, 79% yield).

Condition B: According to the typical procedure, the reaction using 3-(4-bromophenyl)propyl sulfamate (146.9 mg, 0.50 mmol), MeNO₂ (2.5 mL), and NIS (337.4 mg, 1.50 mmol) was conducted for 12 h. Purification by flash column chromatography on silica gel (hexane/EtOAc = 70:30) gave the product as a colorless solid (80.6 mg, 55% yield).

¹H NMR: (400 MHz, acetone-*d*₆) δ 7.62–7.52 (m, 2H), 7.51–7.40 (m, 2H), 6.40 (brd, *J* = 9.2 Hz, 1H), 4.91–4.64 (m, 3H), 2.29–2.08 (m, 2H); ¹³C NMR: (100 MHz, acetone-*d*₆) δ 139.5, 132.5, 129.6, 122.4, 72.7, 59.3, 30.8

The analytical data for this compound were in excellent agreement with the reported data.⁴

4-(4-(trifluoromethyl)phenyl)-1,2,3-oxathiazinane 2,2-dioxide (2e)

Condition A: According to the typical procedure, the reaction using NaI (189.8 mg, 1.27 mmol), MeCN (2.5 mL), 3-(4-(trifluoromethyl)phenyl)propyl sulfamate (140.4 mg, 0.50 mmol), and *t*BuOCl (141 μ L, 1.25 mmol) was conducted for 8 h. Purification by flash column chromatography on silica gel (hexane/EtOAc = 70:30) gave the product as a colorless solid (91.6 mg, 66% yield).

¹H NMR: (400 MHz, CD₃CN) δ 7.72 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.4 Hz, 2H), 5.60 (brd, J = 10.0 Hz, 1H), 4.94–4.85 (m, 1H), 4.76 (ddd, J = 12.0, 12.0, 2.8 Hz, 1H), 4.66 (ddd, J = 12.0, 4.8, 2.0 Hz, 1H), 2.23–2.10 (m, 1H), 2.09–2.00 (m, 1H); ¹³C NMR: (100 MHz, CD₃CN) δ 143.9, 130.5 (q, J = 32.1 Hz), 128.2, 126.5 (q, J = 4.1 Hz), 125.1 (q, J = 270.0 Hz), 73.2, 59.3, 30.3; ¹⁹F NMR: (377 MHz, CD₃CN) δ –63.6

The analytical data for this compound were in excellent agreement with the reported data.⁴

4-(2-bromophenyl)-1,2,3-oxathiazinane 2,2-dioxide (2f)

Condition A: According to the typical procedure, the reaction using NaI (165.7 mg, 1.11 mmol), MeCN (2.5 mL), 3-(2-bromophenyl)propyl sulfamate (145.3 mg, 0.49 mmol), and *t*BuOCl (124 μ L, 1.1 mmol) was conducted for 8 h. Purification by flash column chromatography on silica gel (hexane/EtOAc = 70:30) gave the product as a colorless liquid (108.6 mg, 75% yield).

Condition B: According to the typical procedure, the reaction using 3-(2-bromophenyl)propyl sulfamate (139.8 mg, 0.48 mmol), MeNO₂ (2.5 mL), and NIS (337.1 mg, 1.50 mmol) was conducted for 12 h. Purification by flash column chromatography on silica gel (hexane/EtOAc = 70:30) gave the product as a colorless liquid (61.7 mg, 44% yield).

¹H NMR: (400 MHz, CDCl₃) δ 7.63–7.57 (m, 1H), 7.50–7.32 (m, 2H), 7.28–7.17 (m, 1H), 5.24 (ddd, J = 12.0, 8.8, 2.4 Hz, 1H), 4.96–4.79 (m, 2H), 4.63 (ddd, J = 12.0, 5.2, 1.6 Hz, 1H), 2.27–2.11 (m, 1H), 2.02 (dddd, J = 14.8, 2.4, 2.4, 2.4 Hz, 1H); ¹³C NMR: (100 MHz, CDCl₃) δ 137.0, 133.5, 130.1, 128.3, 126.9, 123.0, 72.1, 58.5, 29.6; IR: (ATR) 3265, 1420, 1358, 1184, 1065, 1013, 908, 866, 822, 775, 754 cm⁻¹; HRMS: (EI) calcd for (C₉H₁₀BrNO₃S) 290.9565 (M⁺) found *m/z* 290.9570

4-(2-methoxyphenyl)-1,2,3-oxathiazinane 2,2-dioxide (2g)

Condition A: According to the typical procedure, the reaction using NaI (165.1 mg, 1.10 mmol), MeCN (2.5 mL), 3-(2-methoxyphenyl)propyl sulfamate (122.7 mg, 0.50 mmol), and *t*BuOCl (121.5 mg, 1.12 mmol) was conducted for 8 h. Purification by flash column chromatography on silica gel (hexane/EtOAc =70:30) gave the product as a colorless solid (98.2 mg, 81% yield).

¹H NMR: (400 MHz, CDCl₃) δ 7.41–7.31 (m, 1H), 7.25–7.14 (m, 1H), 7.06–6.92 (m, 2H), 5.45 (brd, J = 10.8 Hz, 1H), 4.94–4.80 (m, 2H), 4.64–4.56 (m, 1H), 3.91 (s, 3H), 2.58–2.44 (m, 1H), 1.81–1.72 (m, 1H); ¹³C NMR: (100 MHz, CDCl₃) δ 157.0, 130.0, 128.9, 125.6, 121.3, 111.3, 72.0, 59.1, 55.4, 28.9

The analytical data for this compound were in excellent agreement with the reported data.¹⁴

4-(3-methoxyphenyl)-1,2,3-oxathiazinane 2,2-dioxide (2h)

Condition A: According to the typical procedure, the reaction using NaI (167.1 mg, 1.11 mmol), MeCN (2.5 mL), 3-(3-methoxyphenyl)propyl sulfamate (125.1 mg, 0.51 mmol), and *t*BuOCl (124 μ L, 1.10 mmol) was conducted for 8 h. Purification by flash column chromatography on silica gel (hexane/EtOAc = 70:30) gave the product as a colorless solid (91.0 mg, 75% yield).

¹H NMR: (400 MHz, CDCl₃) δ 7.36–7.27 (m, 1H), 6.95–6.83 (m, 3H), 4.91–4.78 (m, 2H), 4.65 (ddd, J = 11.6, 4.8, 1.6 Hz, 1H), 4.35 (brd, J = 9.2 Hz, 1H), 3.82 (s, 3H), 2.31–2.14 (m, 1H), 2.02 (dddd, J = 14.4, 2.4, 2.4, 2.4 Hz, 1H); ¹³C NMR: (100 MHz, CDCl₃) δ 160.1, 139.4, 130.2, 118.2, 114.3, 112.1, 71.8, 58.8, 55.3, 30.1

The analytical data for this compound were in excellent agreement with the reported data.⁵

4-propyl-1,2,3-oxathiazinane 2,2-dioxide (2i)

Condition A: According to the typical procedure, the reaction using NaI (226.1 mg, 1.51 mmol), MeCN (2.5 mL), hexyl sulfamate (90.4 mg, 0.50 mmol), and *t*BuOCl (165 μ L, 1.58 mmol) was conducted for 24 h. Purification by flash column chromatography on silica gel (hexane/EtOAc = 85:15) gave the product as a colorless liquid (54.1 mg, 60% yield).

¹H NMR: (400 MHz, CDCl₃) δ 4.81–4.62 (m, 1H), 4.61–4.41 (m, 1H), 3.91 (brs, 1H), 3.81–3.64 (m, 1H), 1.80–1.65 (m, 2H), 1.60–1.32 (m, 4H), 0.94 (t, J = 7.2 Hz, 3H); ¹³C NMR: (100 MHz, CDCl₃) δ 72.0, 55.7, 37.2, 29.9, 18.3, 13.6

The analytical data for this compound were in excellent agreement with the reported data.⁴

methyl 3-(2,2-dioxido-1,2,3-oxathiazinan-4-yl)propanoate (2j)

Condition A: According to the typical procedure, the reaction using NaI (224.6 mg, 1.50 mmol), MeCN (2.5 mL), methyl 6-(sulfamoyloxy)hexanoate (112.7 mg, 0.50 mmol), and *t*BuOCl (165 μ L, 1.58 mmol) was conducted for 48 h. Purification by flash column chromatography on silica gel (CH₂Cl₂/Et₂O = 95:5) gave the product as a colorless solid (54.8 mg, 49% yield).

mp: 103.7–105.1 °C; ¹H NMR: (400 MHz, CDCl₃) δ 4.80–4.67 (m, 1H), 4.59–4.51 (m, 1H), 4.00 (brd, *J* = 10.8 Hz, 1H), 3.82–3.62 (m, 1H), 3.70 (s, 3H) 2.50 (t, *J* = 6.8 Hz, 2H), 2.01–1.90 (m, 1H),

1.88–1.72 (m, 3H); ¹³C NMR: (100 MHz, CDCl₃) δ 173.5, 71.7, 55.7, 52.0, 30.1, 29.6, 29.5; IR: (ATR) 1732, 1354, 1171, 1009, 872 cm⁻¹; HRMS: (CI) calcd for (C₇H₁₄NO₅S) 224.0593 ([M+H]⁺) found *m*/*z* 224.0593

4-(2,2-dioxido-1,2,3-oxathiazinan-4-yl)butyl 4-methylbenzenesulfonate (2k)

Condition A: According to the typical procedure, the reaction using NaI (225.0 mg, 1.50 mmol), MeCN (2.5 mL), 7-(tosyloxy)heptyl sulfamate (180.8 mg, 0.49 mmol), and *t*BuOCl (165 μ L, 1.58 mmol) was conducted for 48 h. Purification by flash column chromatography on silica gel (hexane/EtOAc = 1:1 then CH₂Cl₂/Et₂O = 85:15) gave the product as a colorless liquid (92.6 mg, 52% yield).

¹H NMR: (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 4.75–4.62 (m, 1H), 4.53 (ddd, *J* = 11.6, 3.2, 3.2 Hz, 1H), 4.25 (brd, *J* = 10.8 Hz, 1H), 4.03 (t, *J* = 5.6 Hz, 2H), 3.71–3.52 (m, 1H), 2.46 (s, 3H), 1.77–1.56 (m, 4H), 1.56–1.29 (m, 4H); ¹³C NMR: (100 MHz, CDCl₃) δ 145.0, 132.7, 129.9, 127.8, 71.9, 70.1, 55.8, 34.1, 29.8, 28.1, 21.6, 21.1

The analytical data for this compound were in excellent agreement with the reported data.¹⁰

4,6-dimethyl-1,2,3-oxathiazinane 2,2-dioxide (2l)

Condition A: According to the typical procedure, the reaction using NaI (225.4 mg, 1.50 mmol), MeCN (2.5 mL), pentan-2-yl sulfamate (87.1 mg, 0.52 mmol), and *t*BuOCl (165 μ L, 1.58 mmol) was conducted for 24 h. The diastereomeric ratio of the product was determined by ¹H NMR analysis of the crude product (*cis/trans* = 58:42). Purification by flash column chromatography on silica gel (hexane/EtOAc = 70:30) gave the product as a colorless liquid (53.8 mg, 65% combined yield of isomers).

cis-isomer: ¹H NMR: (400 MHz, CDCl₃) δ 4.92–4.80 (m, 1H), 3.87–3.64 (m, 2H), 1.82 (ddd, J = 14.8, 2.4, 2.4 Hz, 1H), 1.44–1.30 (m, 1H), 1.42 (d, J = 6.4 Hz, 3H), 1.27 (d, J = 6.0 Hz, 3H); ¹³C NMR: (100 MHz, CDCl₃) δ 80.6, 51.1, 39.1, 21.1, 20.9

The analytical data for this compound were in excellent agreement with the reported data.⁶

trans-isomer: ¹H NMR: (400 MHz, CDCl₃) δ 5.10–5.02 (m, 1H), 4.26 (brd, J = 6.0 Hz, 1H), 3.89–3.78 (m, 1H), 1.84 (ddd, J = 14.0, 8.8, 5.2 Hz, 1H), 1.69 (ddd, J = 14.0, 5.2, 3.2 Hz, 1H), 1.51 (d, J = 6.4 Hz, 3H), 1.47 (d, J = 7.2 Hz, 3H); ¹³C NMR: (100 MHz, CDCl₃) δ 78.6, 49.3, 35.9, 20.7, 19.6; HRMS: (EI) calcd for (C₅H₁₁NO₃S) 165.0460 (M⁺) found *m*/*z* 165.0457

trans-5-methyl-4-phenyl-1,2,3-oxathiazinane 2,2-dioxide (2m)

Condition B: According to the typical procedure, the reaction using 2-methyl-3-phenylpropyl sulfamate (117.5 mg, 0.51 mmol), MeNO₂ (2.5 mL), and NIS (337.4 mg, 1.50 mmol) was conducted for 8 h. The diastereomeric ratio of the product was determined by ¹H NMR analysis of the crude product (*cis/trans* = 1:>20). Purification by flash column chromatography on silica gel (hexane/EtOAc = 75:25) gave the product as a colorless solid (97.2 mg, 83% yield).

¹H NMR: (400 MHz, CDCl₃) δ 7.45–7.18 (m, 5H), 4.62 (brd, J = 8.8 Hz, 1H), 4.54–4.43 (m, 2H), 4.35 (dd, J = 10.8, 8.8 Hz, 1H), 2.44–2.28 (m, 1H), 0.70 (d, J = 6.4 Hz, 3H); ¹³C NMR: (100 MHz, CDCl₃) δ 137.0, 129.2, 129.1, 127.2, 76.6, 65.4, 33.9, 11.9

The analytical data for this compound were in excellent agreement with the reported data.⁴

4,4-dimethyl-1,2,3-oxathiazinane 2,2-dioxide (2n)

Condition B: According to the typical procedure, the reaction using isopentyl sulfamate (89.4 mg, 0.53 mmol), MeNO₂ (2.5 mL), and NIS (338.1 mg, 1.50 mmol) was conducted for 24 h. Purification by flash column chromatography on silica gel (hexane/EtOAc = 75:25 then CH₂Cl₂/Et₂O = 95:5) gave the product as a colorless solid (49.8 mg, 42% yield).

¹H NMR: (400 MHz, CDCl₃) δ 4.70–4.66 (m, 2H), 4.16 (brs, 1H), 1.79–1.75 (m, 2H), 1.42 (s, 6H); ¹³C NMR: (100 MHz, CDCl₃) δ 69.2, 56.4, 35.4, 28.1

The analytical data for this compound were in excellent agreement with the reported data.³

4-methyl-4-phenyl-1,2,3-oxathiazinane 2,2-dioxide (20)

Condition A: According to the typical procedure, the reaction using NaI (165.3 mg, 1.10 mmol), MeCN (2.5 mL), 3-phenylbutyl sulfamate (112.4 mg, 0.49 mmol), and *t*BuOCl (123.1 mg, 1.13 mmol) was conducted for 8 h. Purification by flash column chromatography on silica gel (hexane/EtOAc = 70:30) gave the product as a colorless solid (78.8 mg, 71% yield).

Condition B: According to the typical procedure, the reaction using 3-phenylbutyl sulfamate (113.7 mg, 0.50 mmol), MeNO₂ (2.5 mL), and NIS (337.9 mg, 1.50 mmol) was conducted for 8 h.

Purification by flash column chromatography on silica gel (hexane/EtOAc = 70:30 then CH₂Cl₂) gave the product as a colorless solid (84.8 mg, 75% yield).

¹H NMR: (400 MHz, CDCl₃) δ 7.49–7.42 (m, 2H), 7.42–7.34 (m, 2H), 7.34–7.28 (m, 1H), 4.79–4.58 (m, 3H), 2.51 (ddd, *J* = 14.8, 7.6, 3.2 Hz, 1H), 2.17 (ddd, *J* = 14.8, 7.6, 3.2 Hz, 1H), 1.64 (s, 3H); ¹³C NMR: (100 MHz, CDCl₃) δ 143.3, 128.7, 127.8, 124.8, 69.2, 61.6, 33.4, 30.9; IR: (ATR) 3292, 3053, 3036, 2990, 2982, 1418, 1341, 1182, 1096, 974 cm⁻¹; HRMS: (EI) calcd for (C₁₀H₁₃NO₃S) 227.0616 (M⁺) found *m/z* 227.0613

4,4-dimethyl-3,4-dihydrobenzo[*e*][1,2,3]oxathiazine 2,2-dioxide (2p)

Condition B: According to the typical procedure, the reaction using 2-isopropylphenyl sulfamate (104.0 mg, 0.48 mmol), MeNO₂ (2.5 mL), and NIS (250.1 mg, 1.11 mmol) was conducted for 48 h. Purification by flash column chromatography on silica gel (hexane/EtOAc = 80:20) gave the product as a colorless solid (66.9 mg, 65% yield).

¹H NMR: (400 MHz, CDCl₃) δ 7.30–7.15 (m, 3H), 6.96 (dd, *J* = 8.0, 1.2 Hz, 1H), 4.92 (brs, 1H), 1.73 (s, 6H); ¹³C NMR: (100 MHz, CDCl₃) δ 149.3, 129.2, 127.9, 126.4, 125.6, 119.1, 60.2, 30.7 The analytical data for this compound were in excellent agreement with the reported data.⁴

3,3a,8,8a-tetrahydroindeno[1,2-*d*][1,2,3]oxathiazole 2,2-dioxide (2q)

Condition A: According to the typical procedure, the reaction using NaI (187.6 mg, 1.25 mmol), MeCN (2.5 mL), 2,3-dihydro-1*H*-inden-2-yl sulfamate (105.7 mg, 0.50 mmol), and *t*BuOCl (141 μ L, 1.50 mmol) was conducted for 8 h. Purification by flash column chromatography on silica gel (hexane/EtOAc = 60:40 then CH₂Cl₂/Et₂O = 95:5) gave the product as a colorless solid (53.1 mg, 50% yield).

¹H NMR: (400 MHz, CDCl₃) δ 7.44–7.17 (m, 4H), 5.52 (ddd, J = 6.4, 6.4, 2.4 Hz, 1H), 5.31 (dd, J = 6.4, 6.4 Hz, 1H), 4.58–4.48 (m, 1H), 3.54–3.40 (m, 2H); ¹³C NMR: (100 MHz, CD₃OD) δ 141.1, 140.0, 130.4, 128.7, 126.7, 126.2, 87.7, 65.6, 38.5

The analytical data for this compound were in excellent agreement with the reported data.⁷

6-pentyl-4-phenyl-1,2,3-oxathiazinane 2,2-dioxide (2r)

Condition A: According to the typical procedure, the reaction using NaI (166.2 mg, 1.11 mmol), MeCN (2.5 mL), 1-phenyloctan-3-yl sulfamate (142.5 mg, 0.50 mmol), and *t*BuOCl (124 μ L, 1.50 mmol) was conducted for 8 h. The diastereomeric ratio of the product was determined by ¹H NMR analysis of the crude product (*cis/trans* = 59:41). Purification by flash column chromatography on silica gel (hexane/EtOAc = 85:15) gave the *cis*-isomer as a colorless solid (67.1 mg, 47% yield) and the *trans*-isomer as a colorless solid (42.8 mg, 30% yield).

Condition B: According to the typical procedure, the reaction using 1-phenyloctan-3-yl sulfamate (138.8 mg, 0.49 mmol), MeNO₂ (2.5 mL), and NIS (339.9 mg, 1.51 mmol) was conducted for 8 h. The diastereomeric ratio of the product was determined by ¹H NMR analysis of the crude product (*cis/trans* = 73:27). Purification by flash column chromatography on silica gel (hexane/EtOAc = 85:15) gave the *cis*-isomer as a colorless solid (96.6 mg, 68% yield) and the *trans*-isomer as a colorless solid (26.3 mg, 19% yield).

cis-isomer: ¹H NMR: (400 MHz, CDCl₃) δ 7.44–7.23 (m, 5H), 4.90–4.83 (m, 1H), 4.79 (ddd, *J* = 12.0, 9.6, 2.8 Hz, 1H), 4.33 (brd, *J* = 9.6 Hz, 1H), 2.06 (ddd, *J* = 14.8, 3.2, 3.2 Hz, 1H), 1.91 (ddd, *J* = 18.4, 12.0, 12.0 Hz, 1H), 1.87–1.73 (m, 1H), 1.73–1.60 (m, 1H), 1.56–1.17 (m, 6H), 0.90 (t, *J* = 6.3 Hz, 3H); ¹³C NMR: (100 MHz, CDCl₃) δ 138.1, 129.0, 128.7, 126.3, 84.4, 58.2, 36.2, 35.1, 31.2, 24.1, 22.4, 13.9

The analytical data for this compound were in excellent agreement with the reported data.⁸

trans-isomer: ¹H NMR: (400 MHz, CDCl₃) δ 7.42–7.30 (m, 5H), 4.94–4.77 (m, 2H), 4.62 (brd, J = 8.4 Hz, 1H), 2.38 (ddd, J = 14.4, 8.8, 4.8 Hz, 1H), 2.25–2.13 (m, 1H), 2.09 (ddd, J = 14.4, 5.6, 4.4 Hz, 1H), 1.77–1.63 (m, 1H), 1.62–1.49 (m, 1H), 1.48–1.15 (m, 5H), 0.90 (t, J = 6.8 Hz, 3H); ¹³C NMR: (100 MHz, CDCl₃) δ 138.1, 128.9, 128.4, 126.3, 84.0, 55.2, 33.7, 33.5, 31.2, 25.1, 22.4, 13.9; IR: (ATR) 3250, 2928, 2857, 1348, 1182, 847, 752 cm⁻¹; HRMS: (CI) calcd for (C₁₄H₂₂NO₃S) 284.1320 ([M+H]⁺) found *m/z* 284.1318

3-methyl-4-phenyl-1,2,3-oxathiazinane 2,2-dioxide (5)

Condition A: According to the typical procedure, the reaction using NaI (65.9 mg, 0.44 mmol), MeCN (1.0 mL), 3-phenylpropyl methylsulfamate (47.0 mg, 0.20 mmol), and *t*BuOCl (50 μ L, 0.44 mmol) was conducted for 8 h. The crude product was analyzed by ¹H NMR spectroscopy using 1,1,2,2-tetrachloroethane as an internal standard (54% yield, 31% rsm). Purification by flash column chromatography on silica gel (hexane/EtOAc = 70:30) gave the product as a colorless liquid (21.7 mg, 48% yield).

Condition B: According to the typical procedure, the reaction using 3-phenylpropyl methylsulfamate (47.5 mg, 0.21 mmol), MeNO₂ (1.0 mL), and NIS (137.4 mg, 0.61 mmol) was conducted for 8 h. The crude product was analyzed by ¹H NMR spectroscopy using 1,1,2,2-tetrachloroethane as an internal standard (43% yield, 55% rsm).

¹H NMR: (400 MHz, CDCl₃) δ 7.46–7.30 (m, 5H), 4.83 (ddd, J = 13.6, 11.2, 2.4 Hz, 1H), 4.78 (dd, J = 12.4, 2.4 Hz, 1H), 4.57 (ddd, J = 11.2, 5.2, 2.4 Hz, 1H), 2.58–2.41 (m, 1H), 2.50 (s, 3H), 1.90 (dddd, J = 14.4, 2.4, 2.4, 2.4, 2.4 Hz, 1H); ¹³C NMR: (100 MHz, CDCl₃) δ 137.3, 129.1, 128.8, 127.4, 71.6, 64.1, 32.4, 27.8; IR: (ATR) 2928, 1379, 1354, 1192, 1167, 1013, 995, 872, 820, 783, 762 cm⁻¹; HRMS: (CI) calcd for (C₁₀H₁₄NO₃S) 228.0694 ([M+H]⁺) found *m/z* 228.0695

6-isobutyl-4-phenyl-1,2,3-oxathiazinane 2,2-dioxide (2s)

cis-isomer: ¹H NMR: (400 MHz, CDCl₃) δ 7.46–7.29 (m, 5H), 5.00–4.91 (m, 1H), 4.81 (ddd, J = 12.0, 9.2, 2.8 Hz, 1H), 4.20 (brd, J = 9.2 Hz, 1H), 2.05 (ddd, J = 14.4, 2.8, 2.8 Hz, 1H) 1.96–1.72 (m, 3H), 1.44 (ddd, J = 14.0, 8.4, 4.0 Hz, 1H), 0.98 (d, J = 6.4 Hz, 3H), 0.96 (d, J = 6.8 Hz, 3H); ¹³C NMR: (100 MHz, CDCl₃) δ 138.0, 129.1, 128.9, 126.3, 82.8, 58.2, 44.1, 36.6, 23.7, 22.9, 21.8 The analytical data for this compound were in excellent agreement with the reported data.⁸ *trans*-isomer: ¹H NMR: (400 MHz, CDCl₃) δ 7.50–7.15 (m, 5H), 4.99–4.82 (m, 2H), 4.60 (brd, J = 8.4 Hz, 1H), 2.39 (ddd, J = 14.0, 8.8, 4.8 Hz, 1H), 2.21 (ddd, J = 14.0, 9.6, 5.2 Hz, 1H), 2.06 (ddd, J = 14.8, 5.6, 5.6 Hz, 1H), 1.93–1.87 (m, 1H), 1.47–1.39 (m, 1H), 0.97 (d, J = 6.8 Hz, 3H) , 0.96 (d, J = 7.6 Hz, 3H); ¹³C NMR: (100 MHz, CDCl₃) δ 138.1, 129.0, 128.4, 126.3, 82.2, 55.2, 42.4, 33.9, 24.3, 22.9, 21.6; HRMS: (CI) calcd for (C₁₃H₂₀NO₃S) 270.1164 ([M+H]⁺) found *m/z* 270.1166

4-(iodomethyl)-4-methyl-6-phenethyl-1,2,3-oxathiazinane 2,2-dioxide (2s'-I)

major isomer: mp: 107.8–108.2 °C; ¹H NMR: (400 MHz, CDCl₃) δ 7.33–7.28 (m, 2H), 7.28–7.14 (m, 3H), 4.83 (dddd, J = 12.0, 8.8, 4.0, 2.0 Hz, 1H), 4.34 (brs, 1H), 3.38 (d, J = 10.4 Hz, 1H), 3.30 (d, J = 10.4 Hz, 1H), 2.92–2.82 (m, 1H), 2.81–2.71 (m, 1H), 2.18–2.06 (m, 1H), 1.98–1.86 (m, 2H), 1.63 (s, 3H), 1.53 (dd, J = 14.0, 2.0 Hz, 1H); ¹³C NMR: (100 MHz, CDCl₃) δ 140.2, 128.7, 128.5, 126.4, 80.0, 56.1, 39.1, 36.9, 30.7, 23.2, 20.3; IR: (ATR) 3246, 2922, 1356, 1163, 887, 762 cm⁻¹; HRMS: (EI) calcd for (C₁₃H₁₈INO₃S) 395.0052 (M⁺) found *m/z* 395.0053

9. Intramolecular C-H amination of N-alkylsulfamides

Typical procedure: A heat-gun-dried reaction flask containing a magnetic stir bar was charged with NIS (1.25 mmol), *N*-alkylsulfamide (0.50 mmol), and MeNO₂ (2.5 mL). The mixture was stirred at room temperature for 4 h on the benchtop in the presence of a fluorescent light on the ceiling. The reaction was quenched by Na₂S₂O₃ aq. (1 M, 15 mL), and the mixture was extracted with Et₂O (3 x 15 mL). Collected organic layers were dried over Na₂SO₄. The solution was concentrated under reduced pressure to give the crude product. Purification by flash column chromatography on silica gel gave the product.

3-phenyl-1,2,6-thiadiazinane 1,1-dioxide (11a)

According to the typical procedure, the reaction using NIS (282.8 mg, 1.26 mmol), N-(3-phenylpropyl)sulfamide (106.1 mg, 0.50 mmol), and MeNO₂ (2.5 mL) was conducted. Purification by flash column chromatography on silica gel (CH₂Cl₂/EtOAc = 100:0 to 80:20) gave the product as a colorless solid (91.5 mg, 87% yield).

mp: 131.0–133.2 °C; ¹H NMR: (400 MHz, CD₃CN) δ 7.44–7.25 (m, 5H), 5.00 (brd, J = 8.0 Hz, 1H), 4.89–4.69 (m, 1H), 4.63 (ddd, J = 11.2, 8.0, 3.2 Hz, 1H), 3.61–3.38 (m, 2H), 1.84–1.64 (m, 2H); ¹³C NMR: (100 MHz, CD₃CN) δ 141.4, 129.5, 128.8, 127.4, 60.5, 44.9, 31.3; IR: (ATR) 3264, 1456, 1433, 1412, 1329, 1169, 1063, 808, 718 cm⁻¹; MS: (EI) *m/z* 212 (M⁺, 10), 119 (58), 105 (61), 104 (100), 78 (23), 77 (27); HRMS: (EI) calcd for (C₉H₁₂N₂O₂S) 212.0619 (M⁺), found *m/z* 212.0621

3-(4-methylphenyl)-1,2,6-thiadiazinane 1,1-dioxide (11b)

According to the typical procedure, the reaction using NIS (282.3 mg, 1.25 mmol), N-(3-(4-methylphenyl)propyl)sulfamide (114.0 mg, 0.50 mmol), and MeNO₂ (2.5 mL) was conducted. Purification by flash column chromatography on silica gel (CH₂Cl₂/EtOAc = 100:0 to 80:20) gave the product as a colorless solid (93.9 mg, 83% yield).

mp: 184.6–185.8 °C; ¹H NMR: (400 MHz, CD₃CN) δ 7.25 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 4.93 (brd, *J* = 7.6 Hz, 1H), 4.84–4.70 (m, 1H), 4.58 (ddd, *J* = 11.2, 8.0, 3.2 Hz, 1H), 3.61–3.39 (m, 2H), 2.32 (s, 3H), 1.83–1.64 (m, 2H); ¹³C NMR: (100 MHz, CD₃CN) δ 138.7, 138.5, 130.1, 127.3, 60.3, 45.0, 31.4, 20.9; IR: (ATR) 3233, 3156, 1450, 1404, 1339, 1161, 1043, 928, 754 cm⁻¹; MS: (EI) *m*/*z* 226 (M⁺, 9), 133 (39), 119 (98), 118 (100), 91 (31); HRMS: (EI) calcd for

3-(4-fluorophenyl)-1,2,6-thiadiazinane 1,1-dioxide (11c)

According to the typical procedure, the reaction using NIS (282.4 mg, 1.26 mmol), N-(3-(4-fluorophenyl)propyl)sulfamide (114.2 mg, 0.49 mmol), and MeNO₂ (2.5 mL) was conducted. Purification by flash column chromatography on silica gel (CH₂Cl₂/EtOAc = 100:0 to 80:20) gave the product as a colorless solid (95.6 mg, 84% yield).

mp: 133.3–135.5 °C; ¹H NMR: (400 MHz, CD₃CN) δ 7.47–7.28 (m, 2H), 7.20–7.00 (m, 2H), 5.00 (brd, J = 8.0 Hz, 1H), 4.90–4.71 (m, 1H), 4.63 (ddd, J = 11.2, 8.0, 3.2 Hz, 1H), 3.61–3.35 (m, 2H), 1.86–1.64 (m, 2H); ¹³C NMR: (100 MHz, CD₃CN) δ 163.0 (d, $J_{CF} = 242.9$ Hz), 137.5 (d, $J_{CF} = 3.3$ Hz), 129.5 (d, $J_{CF} = 8.2$ Hz), 116.1 (d, $J_{CF} = 21.4$ Hz), 59.8, 44.9, 31.2; ¹⁹F NMR: (377 MHz, CD₃CN) δ –116.8; IR: (ATR) 3237, 3154, 1510, 1450, 1404, 1337, 1227, 1159, 1067, 1042, 928, 831, 756 cm⁻¹; MS: (EI) *m/z* 230 (M⁺, 6), 138 (21), 137 (46), 123 (64), 122 (100); HRMS: (EI) calcd for (C₉H₁₁FN₂O₂S) 230.0525 (M⁺), found *m/z* 230.0524

3-(4-chlorophenyl)-1,2,6-thiadiazinane 1,1-dioxide (11d)

According to the typical procedure, the reaction using NIS (284.3 mg, 1.26 mmol), N-(3-(4-chlorophenyl)propyl)sulfamide (123.3 mg, 0.50 mmol), and MeNO₂ (2.5 mL) was conducted. Purification by flash column chromatography on silica gel (CH₂Cl₂/EtOAc = 100:0 to 80:20) gave a solid, which was washed with cold mixed solvent of Et₂O/hexane (9:1) (3 x 2 mL) gave the product as a colorless solid (98.4 mg, 80% yield).

mp: 165.8–167.7 °C; ¹H NMR: (400 MHz, CD₃CN) δ 7.49–7.29 (m, 4H), 5.02 (brd, J = 8.0 Hz, 1H), 4.89–4.74 (m, 1H), 4.63 (ddd, J = 11.2, 8.0, 3.2 Hz, 1H), 3.60–3.39 (m, 2H), 1.84–1.61 (m, 2H); ¹³C NMR: (100 MHz, CD₃CN) δ 140.2, 134.0, 129.5, 129.2, 59.8, 44.8, 31.1; IR: (ATR) 3235, 3156, 1491, 1402, 1337, 1161, 1069, 1043, 1013, 926, 833, 760 cm⁻¹; MS: (EI) *m/z* 248 ([M+2]⁺, 4), 246 (M⁺, 10), 154 (21), 153 (46), 141 (31), 140 (45), 139 (98), 138 (100), 103 (21), 77 (26); HRMS: (EI) calcd for (C₉H₁₁ClN₂O₂S) 246.0230 (M⁺), found *m/z* 246.0225

3-(4-bromophenyl)-1,2,6-thiadiazinane 1,1-dioxide (11e)

According to the typical procedure, the reaction using NIS (282.0 mg, 1.25 mmol), N-(3-(4-bromophenyl)propyl)sulfamide (145.9 mg, 0.50 mmol), and MeNO₂ (2.5 mL) was conducted. Purification by flash column chromatography on silica gel (CH₂Cl₂/EtOAc = 100:0 to 80:20) gave a solid, which was washed with cold mixed solvent of Et₂O/hexane (9:1) (3 x 2 mL) gave the product as a colorless solid (116.6 mg, 80% yield).

mp: 179.2–180.8 °C; ¹H NMR: (400 MHz, CD₃CN) δ 7.60–7.48 (m, 2H), 7.37–7.25 (m, 2H), 5.02 (brd, J = 8.0 Hz, 1H), 4.90–4.75 (m, 1H), 4.61 (ddd, J = 11.2, 8.0, 3.2, 1H), 3.60–3.40 (m, 2H), 1.86–1.62 (m, 2H); ¹³C NMR: (100 MHz, CD₃CN) δ 140.7, 132.5, 129.5, 122.1, 59.9, 44.8, 31.1; IR: (ATR) 3237, 3146, 1489, 1450, 1398, 1337, 1161, 1072, 1043, 1009, 947, 926, 829, 760 cm⁻¹; MS: (EI) *m*/*z* 292 ([M+2]⁺, 14), 290 (M⁺, 15), 199 (50), 198 (25), 197 (46), 185 (93), 184 (92), 183 (100), 182 (79), 119 (52), 104 (21), 103 (53), 102 (24), 77 (79), 76 (32), 75 (26), 70 (37), 51 (30), 50 (23); HRMS: (CI) calcd for (C₉H₁₂BrN₂O₂S) 290.9803 ([M+H]⁺), found *m*/*z* 290.9810

3-(3-bromophenyl)-1,2,6-thiadiazinane 1,1-dioxide (11f)

According to the typical procedure, the reaction using NIS (281.8 mg, 1.25 mmol), N-(3-(3-bromophenyl)propyl)sulfamide (145.8 mg, 0.50 mmol), and MeNO₂ (2.5 mL) was conducted. Purification by flash column chromatography on silica gel (CH₂Cl₂/EtOAc = 100:0 to 90:10) gave a solid, which was washed with cold mixed solvent of Et₂O/hexane (9:1) (3 x 2 mL) gave the product as a colorless solid (94.4 mg, 65% yield).

mp: 159.5–161.2 °C; ¹H NMR: (400 MHz, CD₃CN) δ 7.56 (dd, J = 1.6, 1.6 Hz, 1H), 7.50 (ddd, J = 7.6, 1.6, 1.6 Hz, 1H), 7.37 (ddd, J = 7.6, 1.6, 1.6 Hz, 1H), 7.31 (dd, J = 7.6, 7.6 Hz, 1H), 5.04 (brd, J = 8.4 Hz, 1H), 4.88–4.77 (m, 1H), 4.63 (ddd, J = 11.6, 8.4, 3.2 Hz, 1H), 3.60–3.41 (m, 2H), 1.85–1.63 (m, 2H); ¹³C NMR: (100 MHz, CD₃CN) δ 143.9, 131.8, 131.5, 130.4, 126.4, 122.9, 59.9, 44.8, 31.2; IR: (ATR) 3244, 3138, 1408, 1337, 1161, 928, 766 cm⁻¹; MS: (EI) *m*/*z* 292 ([M+2]⁺, 25), 290 (M⁺, 26), 199 (40), 197 (39), 185 (89), 184 (81), 183 (100), 182 (62), 118 (21), 104 (25), 103 (43), 77 (70), 76 (28), 75 (21), 71 (25), 70 (23), 51 (25); HRMS: (EI) calcd for (C₉H₁₁BrN₂O₂S) 289.9725 (M⁺), found *m*/*z* 289.9726

3-(2-bromophenyl)-1,2,6-thiadiazinane 1,1-dioxide (11g)

According to the typical procedure, the reaction using NIS (281.1 mg, 1.25 mmol), N-(3-(2-bromophenyl)propyl)sulfamide (146.2 mg, 0.50 mmol), and MeNO₂ (2.5 mL) was conducted. Purification by flash column chromatography on silica gel (CH₂Cl₂/EtOAc = 100:0 to 90:10) gave a solid, which was washed with cold mixed solvent of Et₂O/hexane (9:1) (3 x 2 mL) gave the product as a colorless solid (89.9 mg, 62% yield).

mp: 165.5–166.4 °C; ¹H NMR: (400 MHz, CD₃CN) δ 7.64 (dd, J = 8.0, 1.2 Hz, 1H), 7.56–7.34 (m, 2H), 7.33–7.19 (m, 1H), 5.14–4.95 (m, 2H), 4.94–4.78 (m, 1H), 3.65–3.39 (m, 2H), 1.86–1.60 (m, 2H); ¹³C NMR: (100 MHz, CD₃CN) δ 139.9, 133.9, 130.7, 129.1, 128.7, 123.7, 59.8, 44.9, 30.4; IR: (ATR) 3246, 3213, 1445, 1408, 1337, 1161, 1036, 1026, 932, 816, 743 cm⁻¹; MS: (EI) *m/z* 292 ([M+2]⁺, 9), 290 (M⁺, 8), 264 (27), 262 (26), 211 (100), 199 (31), 198 (20), 197 (32), 185 (85), 184 (74), 183 (94), 182 (61), 119 (24), 118 (26), 104 (76), 103 (53), 102 (37), 91 (20), 77 (83), 76 (28), 75 (22), 71 (48), 51 (32); HRMS: (EI) calcd for (C₉H₁₁BrN₂O₂S) 289.9725 (M⁺), found *m/z* 289.9727

10. Conversion of cyclic sulfamides to unprotected 1,3-diamines 1-phenylpropane-1,3-diamine (12a)

According to the reported procedure,¹⁵ a heat-gun-dried reaction flask containing a magnetic stir bar was charged with 3-phenyl-1,2,6-thiadiazinane 1,1-dioxide (106.0 mg, 0.50 mmol) and propane-1,3-diamine (1.5 mL) under nitrogen. The mixture was refluxed for 5 h. After cooling to room temperature, the mixture was diluted with 5 mL of CHCl₃ and 10 mL of water. The mixture was extracted with CHCl₃ (3 x 10 mL), and the combined organic layers were dried over Na₂SO₄. The solution was concentrated under reduced pressure to give the product as a yellow liquid (63.2 mg, 84% yield).

¹H NMR: (400 MHz, CDCl₃) δ 7.43–7.19 (m, 5H), 4.01 (dd, *J* = 6.8, 6.8 Hz, 1H), 2.79–2.66 (m, 2H), 1.88–1.72 (m, 2H), 1.45 (brs, 4H); ¹³C NMR: (100 MHz, CDCl₃) δ 146.5, 128.5, 127.0, 126.1, 54.4, 43.0, 39.6; IR: (ATR) 3354, 3287, 2928, 2864, 1601, 1493, 1454, 910, 764 cm⁻¹; HRMS: (DART) calcd for (C₉H₁₅N₂) 151.1235 ([M+H]⁺), found *m*/*z* 151.1229

1-(4-bromophenyl)propane-1,3-diamine (12e)

According to the reported procedure,¹⁵ a heat-gun-dried reaction flask containing a magnetic stir bar was charged with 3-(4-bromophenyl)-1,2,6-thiadiazinane 1,1-dioxide (145.8 mg, 0.50 mmol) and propane-1,3-diamine (1.5 mL) under nitrogen. The mixture was refluxed for 5 h. After cooling to room temperature, the mixture was diluted with 5 mL of CHCl₃ and 10 mL of water. The mixture was extracted with CHCl₃ (3 x 10 mL), and the combined organic layers were dried over Na₂SO₄. The solution was concentrated under reduced pressure to give the desired product as a yellow liquid (110.9 mg, 97% yield).

¹H NMR: (400 MHz, CDCl₃) δ 7.49–7.41 (m, 2H), 7.26–7.17 (m, 2H), 4.01 (dd, *J* = 6.8, 6.8 Hz, 1H), 2.78–2.65 (m, 2H), 1.84–1.69 (m, 2H), 1.38 (brs, 4H); ¹³C NMR: (100 MHz, CDCl₃) δ 145.4, 131.6, 128.0, 120.6, 53.8, 42.7, 39.4; IR: (ATR) 3364, 3281, 2922, 2851, 1589, 1485, 1406, 1070, 1009, 822 cm⁻¹; HRMS: (DART) calcd for (C₉H₁₄BrN₂) 229.0340 ([M+H]⁺), found *m/z* 229.0334

11. References

- (1) S. M. Paradine, M. C. White, J. Am. Chem. Soc. 2012, 134, 2036.
- (2) D. N. Zalatan, J. Du Bois, J. Am. Chem. Soc. 2008, 130, 9220.
- (3) W. Liu, D. Zhong, C.-L. Yu, Y. Zhang, D. Wu, Y.-L. Feng, H. Cong, X. Lu, W.-B. Liu, *Org. Lett.* **2019**, *21*, 2673.

(4) S. M. Paradine, J. R. Griffin, J. Zhao, A. L. Petronico, S. M. Miller, M. C. White, *Nat. Chem.* **2015**, *7*, 987.

- (5) J.-L. Liang, S.-X. Yuan, J.-S. Huang, C.-M. Che, J. Org. Chem. 2004, 69, 3610.
- (6) Y. Cui, C. He, Angew. Chem. Int. Ed. 2004, 43, 4210.
- (7) C. G. Espino, P. M. Wehn, J. Chow, J. Du Bois, J. Am. Chem. Soc. 2001, 123, 6935.
- (8) K. W. Fiori, C. G. Espino, B. H. Brodsky, J. Du Bois, Tetrahedron 2009, 65, 3042.
- (9) J. F. King, T. M.-L. Lee, Can. J. Chem. 1981, 59, 362.
- (10) C.-H. Lee, H. Kohn, J. Org. Chem. 1990, 55, 6098.
- (11) J. M. Blackburn, M. A. Short, T. Castanheiro, S. K. Ayer, T. D. Muellers, J. L. Roizen, *Org. Lett.* **2017**, *19*, 6012.
- (12) S. Chercheja, J. Klívar, A. Jančařík, J. Rybáček, S. Salzl, J. Tarábek, L. Pospíšil, J, V. Chocholoušová, J. Vacek, R. Pohl, I. Císařová, I. Starý, I, G. Stará, *Chem. Eur. J.* **2014**, *20*, 8477.
- (13) J. P. Wolfe, R. A. Rennels, S. L. Buchwald, Tetrahedron 1996, 52, 7525.
- (14) E. Milczek, N. Boudet, S. Blakey, Angew. Chem. Int. Ed. 2008, 47, 6825.
- (15) H. Lu, H. Jiang, L. Wojtas, X. P. Zhang, Angew. Chem. Int. Ed. 2010, 49, 10192.

12. NMR spectra

0

Br

1f

¹H NMR: (400 MHz, CDCl₃)

H₂N

¹H NMR: (400 MHz, CDCl₃)

¹H NMR: (400 MHz, CDCl₃)

¹H NMR: (400 MHz, CDCl₃)

¹H NMR: (400 MHz, CDCl₃)

¹H NMR: (400 MHz, acetone- d_6)

¹H NMR: (400 MHz, CD₃CN)

¹⁹F NMR: (377 MHz, CD₃CN)

- -63.570

¹H NMR: (400 MHz, CDCl₃)

0.0

¹H NMR: (400 MHz, CDCl₃)

¹H NMR: (400 MHz, CDCl₃)

 PPM

 100.0
 180.0
 170.0
 160.0
 140.0
 130.0
 100.0
 90.0
 80.0
 70.0
 60.0
 50.0
 40.0
 30.0
 20.0

 PPM

 200.0
 190.0
 180.0
 170.0
 160.0
 140.0
 130.0
 100.0
 90.0
 80.0
 70.0
 60.0
 30.0
 20.0
 0.0
 0.0
 10.0 0.0

¹H NMR: (400 MHz, CDCl₃)

¹H NMR: (400 MHz, CDCl₃)

¹H NMR: (400 MHz, CDCl₃)

¹H NMR: (400 MHz, CDCl₃)

¹H NMR: (400 MHz, CDCl₃)

¹H NMR: (400 MHz, CDCl₃)

¹H NMR: (400 MHz, CD₃CN)

¹⁹F NMR: (377 MHz, CD₃CN)

-120.136

¹H NMR: (400 MHz, CD₃CN)

¹H NMR: (400 MHz, CD₃CN)

¹H NMR: (400 MHz, CD₃CN)

¹⁹F NMR: (377 MHz, CD₃CN)

¹H NMR: (400 MHz, CD₃CN)

¹H NMR: (400 MHz, CD₃CN)

¹H NMR: (400 MHz, CD₃CN)

¹H NMR: (400 MHz, CDCl₃)

