Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2019

Unexpected α,α'-difluoroethers from Ag(I)F and N-bromosuccinimide reactions of dibenzo[a,e]cyclooctatetraene

Zeguo Fang, Roscoe Z. Gillatt, Alexandra M. Z. Slawin, David B. Cordes, Cameron Carpenter-Warren, David O'Hagan*

School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY15 5EA.

Contents

General information	.1
Synthetic procedures and analytical data	.3
NMR spectra	.7
¹⁸ O labelled N-Bromosuccinimide	.20
NMR and MS results for ¹⁸ O labelled 10 and 11	.22
IR of commercially applied AgF	.26
X-Ray Diffraction	.27
Table 1 Crystallographic Data	.28
Thermal ellipsoids for structures 10-15	.30

General information

All chemicals were purchased from Sigma-Aldrich or Fluorochem except the starting material dibenzo[a,e]cyclooctatetraene, which was purchased from Tokyo Chemical Industry UK Ltd. All the reactions were carried out in oven-dried PTFE flask under the atmosphere of argon. DCM, Et₂O, THF and toluene were dried and deoxygenated using a MBraun SPS-800 solvent system. Acetonitrile HPLC grade was bought from Fisher Scientific.

The progress of reactions was followed by thin-layer chromatography (TLC) using aluminium plates coated with silica gel (60F₂₄₅ Merck). TLC plates were examined under UV light at 254 and 266 nm. Column chromatography was performed on Merck Geduran silica gel (250-400 mesh) under a positive pressure of compressed air eluting with solvents as supplied.

Proton (¹H) and proton-decoupled nuclear magnetic resonance spectra (¹⁹F{¹H}, ¹³C{¹H}) were recorded on a Bruker AV 300, Bruker AV 400, Bruker AVII 400, Bruker AVIII-HD 500 or Bruker AVIII 500 instrument. Chemical shifts are reported in parts per million (ppm). Tetramethylsilane ($\delta = 0$ ppm) functioned as an internal standard for ¹H and ¹³C NMR experiments. CFCl₃ was used as an external standard for ¹⁹F NMR experiments. Coupling constants (*J*) are reported in Hz. When necessary, two-dimensional spectra (HSQC, HMBC) were used for the assignments of otherwise challenging signals.

High resolution mass spectra were recorded on a Waters Micromass GCT time of flight mass spectrometer or on a Thermo Scientific Exactive orbitrap mass spectrometer by the University of St Andrews or a Waters Xevo G2-S ASAP by the EPSRC UK National Mass Spectrometry Facility at Swansea University, UK. X-ray crystal structures were obtained on a Rigaku XtaLAB P200 diffractometer, using multi-layer mirror monochromated Mo-Kα radiation, at the University of St Andrews by Prof. Alexandra Slawin and Dr David Cordes. Data was analysed by using CrystalMaker.

Synthetic procedure and analytical data

General procedure^{1,2}

NBS (2 equiv.) was added to a solution of starting material (1 equiv.) and dry solvent (DCM, Et₂O, THF, Toluene, Acetonitrile) in an oven-dried PTFE flask. The flask was then sealed, evacuated and backfilled with argon, followed by addition of HF·Py (70 %) *via* syringe. The mixture was stirred for 2 hours at RT, then AgF (2 equiv.) was added and reaction left to stir for overnight. After completion, the reaction mixture was quenched with sodium hydrogen carbonate. The resulting mixture was extracted with dichloromethane and the combined organic phases were washed with water, followed by drying over Na₂SO₄. After filtration, solvent was removed in *vacuo*. Purification by flash column chromatography afforded the compound.

- 1. G. A. Olah, J. T. Welch, Y. D. Vankar, M. Nojima, I. Kerekes and J. A. Olah, *J. Org. Chem.*, **1979**, *44*, 3872-3881.
- 2. M. Schüler, D. O'Hagan, A. M. Z. Slawin. Chem. Commun., 2005, 34, 4324-4326.

(9R,10R,11S,13S)-11,13-difluoro-9,10-dihydro-9,10-(methanooxymethano)anthracene 10

The product was prepared by following the general procedure, using DCM as the solvent. The product was purified by column chromatography (PE : Ether = 10 : 1) and obtained as a white solid (Rf = 0.3, 34 %). **M.p.** = $159-160 \,^{\circ}$ C. ¹H NMR (400

MHz, CDCl₃) $\delta_{\rm H}$ 7.41-7.36 (m, 4H), 7.31-7.28 (m, 4H), 5.85-5.68 (m, 2H), 4.34-4.28 (m, 2H); ¹⁹F {¹H}NMR (376 MHz, CDCl₃) $\delta_{\rm F}$ -123.2 (m, CHF); ¹³C NMR (126 MHz, CDCl₃) $\delta_{\rm F}$ -123.2 (m, CHF); ¹³C NMR (126 MHz, CDCl₃) $\delta_{\rm C}$ 136.6 (x2), 136.3 (x2), 128.4 (x2), 127.8 (x2), 127.7 (x2), 126.5 (x2), 104.7(d, ¹J_{CF} = 223.6 Hz), 104.3 (d, ¹J_{CF} = 223.9 Hz), 52.3 (d, ²J_{CF} = 26.2 Hz, (x2)). HRMS (ESI⁺) m/z calcd for C₁₆H₁₂F₂ONa [M+Na]⁺ 281.0748, found 281.0741.

Product **10** can also be efficiently prepared by adding NBS (2 equiv.) and AgF (2 equiv.) to a solution of starting material (1 equiv.) and dry DCM in the flask at RT. The reaction mixture was stirred at RT for overnight and the progress of the reaction was monitored by ¹H NMR. Upon completion of the reaction, the mixture was extracted with DCM, dried and concentrated under reduced pressure followed by silica gel column chromatography purification.

(9R,10R,11S,13R)-11,13-difluoro-9,10-dihydro-9,10-(methanooxymethano)anthracene 11

The product was prepared by following the general procedure, using DCM as the solvent. The product was purified by column chromatography (PE : Ether = 10 : 1) and obtained as a white solid (Rf = 0.2, 38 %). **M.p.** = 177-179 °C. ¹**H NMR** (500

MHz, CDCl₃) $\delta_{\rm H}$ 7.41 (dd, *J* = 5.4, 3.3 Hz, 2H), 7.37 (dd, *J* = 5.4, 3.2 Hz, 2H), 7.30 (dd, *J* = 5.5, 3.2 Hz, 2H), 7.27-7.25 (m, 2H), 5.91-5.43 (m, 2H), 4.38 (d, *J* = 5.1 Hz, 2H); ¹⁹F {¹H}NMR (470 MHz, CDCl₃) $\delta_{\rm F}$ -117.3 (s, CHF); ¹⁹F NMR (470 MHz, CDCl₃) $\delta_{\rm F}$ -117.3 (m, CHF); ¹³C NMR (126 MHz, CDCl₃) $\delta_{\rm C}$ 137.2 (t,³*J*_{CF} = 3.4 Hz), 136.6, 127.9, 127.7, 127.3, 127.1, 103.9 (d, ¹*J*_{CF} = 223.9 Hz), 51.8 (dt, *J*_{CF} = 24.3, 7.2 Hz). HRMS (ESI⁺) m/z calcd for C₁₆H₁₂F₂ ONa [M+Na]⁺ 281.0748, found 281.0746.

Product **11** can also be efficiently prepared by adding NBS (2 equiv.) and AgF (2 equiv.) to a solution of starting material (1 equiv.) and dry DCM in the flask at RT. The reaction mixture was stirred at RT for overnight and the progress of the reaction was monitored by ¹H NMR. Upon completion of the reaction, the mixture was extracted with DCM, dried and concentrated under reduced pressure followed by silica gel column chromatography purification.

(5R,6S,Z)-5,6-difluoro-5,6-dihydrodibenzo[a,e][8]annulene 13

The product was prepared by following the general procedure, using ether as the solvent. The product was purified by column chromatography (PE) and obtained as a white solid (Rf = 0.15, 14 %). **M.p.** = 145-146 °C; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.66

(m, 2H), 7.30 (m, 4H), 7.17 (m, 2H), 6,86 (s, 2H, CH=CH), 6.29 (m, 2H, CHF); ¹⁹F {¹H}NMR (376 MHz, CDCl₃) δ_F -182.0 (s, CHF); ¹⁹F NMR (376 MHz, CDCl₃) δ_F -182.0 (m, CHF); ¹³C NMR (126 MHz, CDCl₃) δ_c 133.4, 132.9 (m), 131.8, 129.5, 128.6 (t, J = 5.6 Hz), 128.1, 127.5, 91.5 (dd, ${}^{1}J_{CF} = 178.0 \text{ Hz}$, ${}^{2}J_{CF} = 21.4 \text{ Hz}$). **HRMS** (ASAP⁺) m/z calcd for $C_{16}H_{12}F_2$ [M]⁺ 242.0907, found 242.0909.

(5R,6R,Z)-5,6-difluoro-5,6-dihydrodibenzo[a,e][8]annulene 14.

The product was prepared by following the general procedure, using ether as the solvent. The product was purified by column chromatography (PE) and obtained as a white solid (Rf = 0.1, 55 %). **M.p.** = 137-138 °C; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.46

The product was prepared by following the general procedure, using toluene as

(m, 2H), 7.27 (m, 4H), 7.16 (m, 2H), 7.05 (s, 2H, CH=CH), 6.01 (m, 2 H, CHF); ¹⁹F {¹H}NMR (376 MHz, CDCl₃) δ_F -182.0 (s, CHF); ¹⁹F NMR (376 MHz, CDCl₃) δ_F -182.0 (m, CHF); ¹³C NMR (126 MHz, CDCl₃) δ_c 134.5 (d, ${}^{3}J_{CF}$ = 4.4 Hz), 133.4 (dd, ${}^{2}J_{CF}$ = 19.4, ${}^{3}J_{CF}$ = 8.5 Hz), 132.2, 128.9, 128.8 (d, J = 6.2 Hz), 128.5 (d, J = 2.5 Hz), 127.8, 95.3 (dd, ${}^{1}J_{CF}$ = 176.5 Hz, ${}^{2}J_{CF}$ = 27.3 Hz). HRMS (ASAP⁺) m/z calcd for C₁₆H₁₂F₂ [M]⁺ 242.0907, found 242.0911.

5-(difluoromethyl)-5*H*-dibenzo[a,d][7]annulene 12

the solvent. The product was purified by preparative thin-layer chromatography (PE) and obtained as a yellow solid (Rf = 0.25, 10 %). M.p. = 84-86 °C. ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.35 (m, 8H), 6.95 (s, 2H, CH=CH), 6.13 (td, J = 57.5, 7.8, 1 Hz, 1H, CHF₂), 4.30 (m, 1H, CH); ¹⁹F {¹H}NMR (470 MHz, CDCl₃) δ_F -116.2 (s, CHF₂); ¹⁹F NMR (470 MHz, CDCl₃) δ_F -116.2 (dd, J_{CF} = 57.5 Hz, ${}^{2}J_{CF}$ = 11.9 Hz, CHF₂); ${}^{13}C$ NMR (126 MHz, CDCl₃) δ_{c} 134.1, 133.9 (t, ${}^{3}J$ = 4.0 Hz), 131.0, 130.9,

129.6, 129.3, 127.8, 113.1 (t, ¹*J*_{CF} = 242.8 Hz), 58.9 (t, ²*J*_{CF} = 23.7 Hz). **HRMS** (EI⁺) m/z calcd for C₁₆H₁₂F₂ 242.0901, found 242.0891.

(5R,6R,11R,12R)-5,6,11,12-tetrafluoro-5,6,11,12-tetrahydrodibenzo[a,e][8]annulene 15

The product was prepared by following the general procedure, using DCM as the solvent. The product was purified by preparative thin-layer chromatography (PE : Ether = 10 : 1) and obtained as a white solid (Rf = 0.35, 4 %). **M.p.** = 154-156 °C. ¹H **NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.52 (d, *J* = 7.8 Hz, 2H), 7.33 (t, *J* = 7.8 Hz, 2H), 7.18 (t, *J* = 7.6 Hz, 2H), 7.06 (d, *J* = 7.6 Hz, 2H), 6.43 (ddd, *J* = 47.0, 18.7, 6.4 Hz, 2H), 5.58 (ddd, *J* = 48.4, 25.4, 6.4 Hz, 2H); ¹⁹F {¹H}NMR (470 MHz, CDCl₃) $\delta_{\rm F}$ -164.1 (d, *J* = 9.8 Hz, CHF), -180.4 (ddd, *J* = 47.0, 25.4, 9.8 Hz, CHF); ¹³C NMR (126 MHz, CDCl₃) $\delta_{\rm C}$ 134.2, 132.1, 131.0, 130.4, 129.3, 124.8, 99.5, 93.4. **HRMS** (ESI⁺) m/z calcd for C₁₆H₁₂F₄Na [M+Na]⁺ 303.0767, found 303.0766.

NMR spectra

¹H NMR 13

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -25(f1 (ppm)

¹³C NMR 13

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR 14

¹⁹F {¹H} NMR 14

01222019-9-doh-zf20-M.11.fid 19F Observe with 1H decoupling - Full Range SW fzg499-trans

-80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 f1 (ppm)

¹H NMR 11

¹⁹F {¹H} NMR 11

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -25(f1 (ppm)

¹⁹F {¹H} NMR 10

01222019-21-doh-zf20-M.11.fid 19F Observe with 1H decoupling - Full Range SW fzg537-8

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -25(f1 (ppm)

13

¹H NMR 12

¹⁹F {¹H} NMR 12

11212017-31-doh-rzg-F.11.fid 19F Observe with 1H decoupling - Full Range SW rzg-1-7 (p-tlc 1 #2)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

15

¹³C NMR 12

¹H NMR 15

¹⁹F {¹H} NMR 15

HSQC

¹⁸O labelled NBS

Preparation of ¹⁸O labelled NBS

Succinimide (150 mg, 1.5 mmol) and *p*-Toluenesulfonic acid monohydrate (catalytic amount, 5 mg) were added into ¹⁸O-water (97 atom % ¹⁸O, 500 μ L) in a Schlenk flask. The mixture was stirred at 60°C for overnight. After reaction, the mixture was extracted with DCM and the combined organic phase was removed *in vacuo* to get the pure ¹⁸O labelled succinimide (128 mg) without further purification. ¹⁸O labelled succinimide **16** (128 mg) was then dissolved in a mixture of NaOH (56.9 mg, 1.4 mmol) and water (2 mL). Cooled the mixture in an ice bath and added Br₂ (223.7 mg, 71.7 μ L, 1.4 mmol) at once while stirring violently. The colour of mixture became orange and the NBS was precipitated immediately. Stir for 10 minutes, then filter the precipitated product and wash with ice water. The ¹⁸O labelled NBS (154 mg, yield around 68 %) was dried in a desiccator. **HRMS** (EI⁺) m/z calcd. for C₄H₄O₂N⁷⁹Br [M]⁺ 176.9420, found 176. 9425; C₄H₄O₁¹⁸O₁N⁷⁹Br [M]⁺ 178.9462, found 178.9459.

MS result for ¹⁸O labelled NBS

NMR and MS results for ¹⁸O labelled 10 and 11

The preparation of ^{18}O labelled 10 and 11 is through the general procedure with an aliquot (100 $\mu\text{L})$ of

[97%-atom-¹⁸0]-water.

¹H NMR of ¹⁸O labelled 10

-111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 -126 -127 -128 -129 -130 -131 -132 -133 -134 -135 -136 f1 (ppm)

MS result for ¹⁸O labelled NBS 10

¹H NMR of ¹⁸O labelled 11

$^{19}\mathsf{F}\left\{^{1}\mathsf{H}\right\}\mathsf{NMR}$ of $^{18}\mathsf{O}$ labelled 11

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -25(fl (ppm)

MS result for ¹⁸O labelled NBS 11

IR of commercially applied AgF

X-Ray Diffraction

X-ray diffraction data for all compounds were collected at either 178, 173 or 125 K using a Rigaku MM-007HF High Brilliance RA generator/confocal optics with XtaLAB P100, or P200 diffractometer [Cu Kα radiation ($\lambda = 1.54187$ Å)]. Intensity data were collected using either ω steps or both ω and ϕ steps accumulating area detector images spanning at least a hemisphere of reciprocal space. Data for all compounds analysed were collected using CrystalClear¹ and processed (including correction for Lorentz, polarization and absorption) using CrysAlisPro.² Structures were solved by direct (SIR2004³ SIR2011⁴ or dual-space (SHELXT⁵ methods and refined by full-matrix least-squares against F² (SHELXL-2018/3⁵. Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were refined using a riding model. The structure of 10 showed disorder in the orientation of the -CHF-O-CHF- bridge. The atoms of the minor component were refined isotropically, with restraints to C-F distances and similarity of thermal motion. The structure of **11** shows larger thermal ellipsoids than expected, even given it was run at the highest temperature of the series. Diffraction images show some smearing at low angles, which may partially explain this. The structure is unambiguously determined, however care should be taken when considering bond distances or angles. Two of the structures (12 and 14) showed narrow (~5 Å) channels running down the *c*-axis containing diffuse electron density (**12**: 340 Å³, **14**: 360 Å³) and the SQUEEZE⁶ routine implemented in PLATON⁷ as used to remove the contribution to the diffraction pattern of the unordered electron density in the void spaces. All calculations except SQUEEZE were performed using either the CrystalStructure⁸ Olex2⁹ interface. Figures were prepared using Mercury¹⁰ or CrystalMaker.¹¹ Selected crystallographic data are presented in Table 1. Thermal ellipsoid plots of the structures are presented in figures S1-S6 CCDC 1947537-1947542 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

Table 1. Selected crystallographic data.

	10	11	12	13	14	15
empirical formula	C ₁₆ H ₁₂ F ₂ O	$C_{16}H_{12}F_2O$	$C_{16}H_{12}F_2$	$C_{16}H_{12}F_2$	$C_{16}H_{12}F_2$	$C_{16}H_{12}F_4$
fw	258.27	258.27	242.27	242.27	242.27	280.26
crystal description	Colourless plate	Colourless prism	Colourless needle	Colourless needle	Colourless needle	Colourless plate
crystal size [mm ³]	0.09×0.03×0.01	0.30×0.06×0.04	0.14×0.03×0.01	0.02×0.01×0.01	0.16×0.02×0.02	0.12×0.10×0.03
space group	Iba2	P31	R3	$P2_{1}/c$	R3	$P2_{1}/c$
<i>a</i> [Å]	14.2552(3)	8.8519(6)	34.4377(4)	10.4484(5)	35.747(2)	12.7703(4)
<i>b</i> [Å]	22.1202(7)			12.8848(4)		7.4822(2)
<i>c</i> [Å]	7.4973(2)	13.9613(10)	5.42477(7)	8.6234(4)	4.9460(4)	13.8047(5)
α [°]						
β[°]				100.333(4)		110.433(4)
γ [°]						
vol [Å] ³	2364.11(11)	947.39(15)	5571.60(12)	1142.10(9)	5473.5(6)	1236.05(8)
Ζ	8	3	18	4	18	4
ρ (calc) [g/cm ³]	1.451	1.358	1.300	1.409	1.323	1.506
μ [mm ⁻¹]	0.930	0.870	0.790	0.856	0.804	1.113
F(000)	1072	402	2268	504	2268	576
reflections collected	13323	9709	22504	12689	19054	13407
independent reflections (R _{int})	2383 (0.1145)	2225 (0.0690)	2550 (0.0421)	2325 (0.0864)	2212 (0.1080)	2524 (0.0391)
data/restraints/parameters	2383/27/185	2225/1/172	2550/0/163	2325/0/164	2212/0/163	2524/0/181

GoF on F^2	1.043	1.058	1.062	1.075	1.036	1.031
$R_{I} \left[I > 2\sigma(I) \right]$	0.0531	0.0695	0.0445	0.0578	0.0527	0.0625
wR_2 (all data)	0.1362	0.2084	0.1235	0.1781	0.1392	0.1869
largest difference peak/hole [e/Å ³]	0.24, -0.30	0.44, -0.19	0.55, -0.35	0.28, -0.25	0.42, -0.23	0.54, -0.32
Flack parameter ¹²	0.07(18)	0.1(3)	-	-	-	-

Figure S1. Thermal ellipsoid plot (50 % probability ellipsoids) of **10**. Minor component of disorder omitted for clarity.

Figure S2. Thermal ellipsoid plot (30 % probability ellipsoids) of 11.

Figure S3. Thermal ellipsoid plot (50 % probability ellipsoids) of 12.

Figure S4. Thermal ellipsoid plot (50 % probability ellipsoids) of 13.

Figure S5. Thermal ellipsoid plot (50 % probability ellipsoids) of 14.

Figure S6. Thermal ellipsoid plot (50 % probability ellipsoids) of 15.

REFERENCES for X-Ray crystallography

- 1. CrystalClear-SM Expert v2.1. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan, 2015.
- CrysAlisPro v1.171.39.8d. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, U.K. 2015.
- 3. Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl. Cryst. **2005**, *38*, 381-388.
- 4. Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; Giacovazzo, C.; Mallamo, M.; Mazzone, A.; Polidori, G.; Spagna, R. *J. Appl. Cryst.* **2012**, *45*, 357-361.
- 5. Sheldrick, G. M. Acta Crystallogr., Sect. A. 2015, 71, 3-8.
- 6. Spek, A. L. Acta Crystallogr. Sect C. 2015, 71, 9-18.
- 7. Spek, A. L. Acta Crystallogr. Sect D. 2009, 65, 148-155.

- 8. CrystalStructure v4.3.0. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan, 2018.
- 9. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
- Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. *J. Appl. Cryst.* 2008, 41, 466-470.
- 11. Palmer, D. C. (2014). *CrystalMaker*. CrystalMaker Software Ltd, Begbroke, Oxfordshire, England.
- 12. Parsons, S.; Flack, H. D.; Wagner, T. Acta Crystallogr. Sect B. 2013, 69, 249-259.