Chemical Communications

COMMUNICATION

Electronic Supporting Information for:

Benjamin J. Frogley and Anthony F. Hill*

Tungsten-Platinum μ -Carbido and μ -Methylidyne Complexes

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

www.rsc.org/

Experimental

Unless otherwise stated, experimental work was carried out at room temperature under a dry and oxygen-free nitrogen atmosphere using standard Schlenk techniques with dried and degassed solvents.

NMR spectra were obtained on a Bruker Avance 400 (¹H at 400.1 MHz, ¹³C at 100.6 MHz, ¹⁹F at 376.5 MHz), a Bruker Avance 600 (¹H at 600.0 MHz, ¹³C at 150.9 MHz) or a Bruker Avance 700 (¹H at 700.0 MHz, ¹³C at 176.1 MHz) spectrometers at the temperatures indicated. Chemical shifts (δ) are reported in ppm with coupling constants given in Hz and are referenced to the solvent peak, or external references (CFCl₃ for ${}^{19}F{}^{1}H$), 85% H_3PO_4 in H_2O for ${}^{31}P{}^{1}H$ }, 1.2M Na_2PtCl_6 in H_2O for ${}^{195}Pt$). The multiplicities of NMR resonances are denoted by the abbreviations s (singlet), d (doublet), t (triplet), m (multiplet), br (broad) and combinations thereof for more highly coupled systems. Where applicable, the stated multiplicity refers to that of the primary resonance exclusive of $^{\mbox{\tiny 183}}\mbox{W}$ satellites. In some cases, distinct peaks were observed in the ¹H and ¹³C{¹H} NMR spectra, but to the level of accuracy that is reportable (i.e. 2 decimal places for ¹H NMR, 1 decimal place for ¹³C NMR) they are reported as having the same chemical shift. The abbreviation 'pz' is used to refer to the pyrazolyl rings on the (Tp*) hydridotris(3,5-dimethylpyrazol-1-yl)borate ligand. Spectra provided generally correspond to samples obtained directly from chromatography and may contain residual solvent as recrystallised samples often display reduced solubility.

Infrared spectra were obtained using a Shimadzu FTIR-8400 spectrometer. The strengths of IR absorptions are denoted by the abbreviations vs (very strong), s (strong), m (medium), w (weak), sh (shoulder) and br (broad). Elemental microanalytical data were provided the London Metropolitan University. High-resolution electrospray ionisation mass spectrometry (ESI-MS) was performed by the ANU Research School of Chemistry mass spectrometry service with acetonitrile or methanol as the matrix.

Data for X-ray crystallography were collected with an Agilent Xcalibur CCD diffractometer an Agilent SuperNova CCD diffractometer using Mo-K α radiation (λ = 0.71073 Å) or Cu-K α radiation (λ = 1.54184 Å) and the CrysAlis PRO software.^{1 1} Data for **5** were collected at the Australian Synchrotron on the MX1 beamline using silicon double crystal monochromated synchrotron radiation at 100 K. Raw frame data were collected using BluIce² and data reduction, interframe scaling, unit cell refinement and absorption corrections were processed using XDS.³ The structures were solved by direct or Patterson methods and refined by full-matrix least-squares on F^2 using the SHELXS or SHELXT and SHELXL programs.⁴ Hydrogen atoms were located geometrically and refined using a riding model. Diagrams were produced using the CCDC visualisation program Mercury.⁵

Synthesis of the bromocarbyne $[W(\equiv CBr)(CO)_2(Tp^*)]$ has been described previously.⁶ The platinum complexes chloro(2,2':6',2''-terpyridine)platinum(II) chloride $[PtCl(terpy)]Cl\cdot 2H_2O,^7$ chloro(2,2':6',2''-terpyridine)platinum(II) hexafluorophosphate $[PtCl(terpy)]PF_{6},^8$ dichloro(1,10phenanthroline)platinum(II) $[PtCl_2(phen)],^9$ dichloro(tetramethylcyclobutadiene)platinum(II), $[PtCl_2(\eta^4-C_4Me_4)],^{10}$ and dichloro(tetraethylcyclobutadiene)platinum(II) $[PtCl_2(\eta^4-C_4Et_4)]^{10}$ were synthesised according to the literature methods.

[W{≡CPt(terpy)}(CO)₂(Tp*)]PF₆ (4). A solution of [W(≡CBr)(CO)₂(Tp*)] (200 mg, 0.318 mmol) in THF (10 mL) at – 78 °C was treated with "BuLi (200 µL, 1.6 M in hexanes, 0.32 mmol) and the mixture was stirred for 30 min at reduced temperature. After this time, [PtCl(terpy)]PF₆ (194 mg, 0.318 mmol) was added, the mixture was warmed to RT and stirring continued for 2 h. The volatiles were then removed *in vacuo* and the residue was subjected to column chromatography (30 x 3 cm silica gel column), eluting first with CH₂Cl₂ and gradually increasing the polarity to 50% v/v CH₃CN/CH₂Cl₂. A slow-moving red-purple band was collected and the volatiles were removed under reduced pressure to give a purple precipitate which was collected by filtration and washed with petroleum spirits (30–

40 °C) (3 x 5 mL) and ice-cold CH_2Cl_2 (3 x 5 mL) to give a purple solid of pure 4 (228 mg, 0.203 mmol, 64%). IR (CH₂Cl₂, cm⁻¹): 1954, 1858 v_{CO}. ¹H NMR (400 MHz, CD₃CN, 25 °C): δ_{H} = 2.38 (s, 3 H, pzCH₃), 2.42 (s, 3 H, pzCH₃), 2.46 (s, 6 H, pzCH₃), 2.69 (s, 6 H, pzCH₃), 5.84 (s, 1 H, pzCH), 5.95 (s, 2 H, pzCH), 7.57 (br, 2 H, *terpy*), 8.25–8.42 (m, 7 H, *terpy*), 8.69 (br, 2 H, *terpy*). ¹³C{¹H} NMR (101 MHz, CD₃CN, 25 °C): δ_{c} = 12.7, 12.9, 15.3, 17.1 (pzCH₃), 107.2, 107.3 (pzCH), 124.7, 126.7, 129.2, 142.8, 143.0 (terpy), 146.2, 147.1, 152.6, 153.1 (pzCCH₃), 154.2, 154.8, 160.0 (terpy), 228.3 (WCO). W=CPt was not observed but is tentatively assigned at ca 368 ppm based on ¹H-¹³C HMBC correlations with pzCH₃ protons. ³¹P{¹H} NMR (162 MHz, CD₃CN, 25 °C): $\delta_P = -$ 144.6 (heptet, ¹*J*_{PF} = 709, P*F*₆). ¹⁹F{¹H} NMR (376 MHz, CD₃CN, 25 °C): $\delta_F = -72.9$ (d, ${}^{1}J_{FP} = 709$, PF₆). MS (ESI, *m/z*): Found: 976.2018. Calcd for $C_{33}H_{33}^{11}BN_9O_2^{195}Pt^{184}W$ [M–PF₆]⁺: 976.1997. Anal. Found: C, 35.40; H, 3.08; N, 11.35. Calcd for $C_{33}H_{33}BF_6N_9O_2PPtW$: C, 35.31; H, 2.96; N, 11.23%. A crystal suitable for structure determination was grown by slow evaporation of an acetonitrile solution. Crystal data for $C_{33}H_{33}BF_6N_9O_2PPtW$ (*M* =1122.40 g.mol⁻¹): monoclinic, space group P2₁/n (no. 14), a = 19.2295(3), b = 7.9562(2), c = 27.8172(5) Å, β = 100.500(2)°, V = 4184.59(15) Å³, Z = 4, T = 150.0(1) K, μ (CuKα) = 12.117 mm⁻¹, *Dcalc* = 1.782 g.cm⁻³, 30606 reflections measured (9.354° $\leq 2\Theta \leq 147.584$ °), 8396 unique $(R_{int} = 0.0445, R_{sigma} = 0.0428)$ which were used in all calculations. The final R_1 was 0.0406 (I > $2\sigma(I)$) and wR_2 was 0.1026 (all data). CCDC 1945291.

 $[(Tp^*)(CO)_2W\equiv CPtCl(phen\{C\equiv W(CO)_2(Tp^*)-2\}]$ (5). solution of [W(≡CBr)(CO)₂(Tp*)] (200 mg, 0.318 mmol) in THF (10 mL) at -78 °C was treated with "BuLi (200 μ L, 1.6 M in THF, 0.32 mmol) and the mixture was stirred for 30 min at reduced temperature. After this time, [PtCl₂(phen)] (71 mg, 0.16 mmol) was added, the mixture was slowly warmed to RT and stirring was continued for 2 h. The volatiles were then removed under reduced pressure and the residue was subjected to column chromatography (50 x 3 cm silica gel column), eluting initially with petroleum ether (40-60 °C) and gradually increasing the ratio to 60% v/v CH₂Cl₂/petrol. An orange band was collected and the solvents were removed under reduced pressure to give an orange solid of pure 5 (136 mg, 0.0902 mmol, 57%). IR (CH₂Cl₂, cm⁻¹): 1977s, 1944s, 1886s, 1854s v_{CO}. UV-Vis (CH₂Cl₂): λ_{max} = 395 nm (ϵ = 5250 Lmol⁻¹cm⁻¹). ¹H NMR (600 MHz, CDCl₃, 25 °C): δ_H = 2.32 (s, 3 H, pzCH₃), 2.36 (s, 3 H, pzCH₃), 2.39 (s, 3 H, pzCH₃), 2.41 (s, 3 H, pzCH₃), 2.42 (s, 6 H, pzCH₃), 2.46 (s, 3 H, pzCH₃), 2.70 (s, 3 H, pzCH₃), 2.72 (s, 6 H, pzCH₃), 2.79 (s, 6 H, pzCH₃), 5.69 (s, 1 H, pzCH), 5.78 (2 x s coincidental, 2 H, pzCH), 5.93 (s, 2 H, pzCH), 7.08 (br, 1 H, phen), 7.77 (d, ³J_{HH} = 8.6, 1 H, phen), 7.81 (d, ${}^{3}J_{HH}$ = 8.6, 1 H, phen), 7.99 (d, ${}^{3}J_{HH}$ = 8.6, 1 H, phen), 8.27 (d, ${}^{3}J_{HH}$ = 8.5, 1 H, phen), 8.38 (d, ${}^{3}J_{HH}$ = 8.5, 1 H, phen), 9.64 (br, 1 H, phen). ¹³C{¹H} NMR (151 MHz, CDCl₃, 25 °C): δ_{c} = 12.5, 12.7, 12.8, 13.0 (2 C), 15.0, 15.4, 15.5, 16.9 (2 C), 17.7 (2 C) (pzCH₃), 106.0, 106.1, 106.9, 107.0, 107.9, 108.0 (pzCH), 124.2, 125.9, 127.0, 127.6, 131.1, 133.6, 136.0, 136.2, 143.7, 144.3, 144.4, 144.8, 145.3, 146.5, 147.0, 147.8, 150.7, 152.0, 152.3, 152.4, 152.5, 154.6, 154.7, 168.7 (total of 24 C, $pzCCH_3$ & phen), 226.1, 227.3 (CO), 267.0 (W=CC), 331.3 (br, W=CPt). MS 1508.2811. (ESI, *m/z*): Found: Calcd for

Chemical Comunications

C₄₈H₅₂¹¹B₂ClN₁₄O₄¹⁹⁵Pt¹⁸⁴W₂ [M + H]⁺: 1508.2844. Found: 1531.2709. Calcd for C₄₈H₅₁¹¹B₂ClN₁₄O₄¹⁹⁵Pt¹⁸⁴W₂ [M + Na]⁺: 1531.2670. Anal. Found: C, 38.08; H, 3.46; N, 12.82. Calcd for C₄₈H₅₁B₂ClN₁₄O₄PtW₂: C, 38.23; H, 3.41; N, 13.00%. Crystals used for structure determination were grown by slow evaporation of a CHCl₃/ethanol mixture and proved to be a chloroform solvate. *Crystal data for* C₄₉H₅₂B₂Cl₄N₁₄O₄PtW₂ (*M* =1627.25 g.mol⁻¹): monoclinic, space group P2₁/n (no. 14), *a* = 17.029(8), *b* = 20.850(9), *c* = 18.411(7) Å, *b* = 112.825(7)°, *V* = 6025(4) Å³, *Z* = 4, *T* = 100.033(2) K, μ (Synchrotron) = 6.355 mm⁻¹, *Dcalc* = 1.794 g.cm⁻³, 47606 reflections measured (2.768° ≤ 2Θ ≤ 52.738°), 11485 unique (*R*_{int} = 0.1946, R_{sigma} = 0.1316) which were used in all calculations. The final *R*₁ was 0.0782 (I > 2 σ (I)) and *wR*₂ was 0.2202 (all data) for 697 refined parameters with 0 restraints. CCDC 1945292.

[W₂Pt(µ-CH)₂(CO)₄(Tp*)₂] (7). А solution of [W(≡CBr)(CO)₂(Tp*)] (200 mg, 0.318 mmol) in THF (10 mL) at -78 °C was treated with "BuLi (200 µL, 1.6 M in THF, 0.32 mmol) and the mixture was stirred for 30 min at reduced temperature. After this time, $[PtCl_2(\eta^4-C_4Me_4)]$ (60 mg, 0.16 mmol) was added, the mixture was slowly warmed to RT and stirring was continued for 1 h. The volatiles were removed under reduced pressure and the residue was subjected to column chromatography (40 x 3 cm silica gel column), eluting initially with petroleum ether (40-60 °C) and gradually increasing the polarity to 60% v/v CH₂Cl₂/petrol. A bright orange band was collected and the solvents were removed under reduced pressure to give an orange solid of pure 7 (111 mg, mmol, 0.0857 mmol, 53%). IR (CH_2Cl_2, cm⁻¹): 1976s, 1943s v_{CO} , 1811 $v_{\mu CO}$. UV-Vis (CH₂Cl₂): λ_{max} = 321 (ϵ = 10,960 Lmol⁻¹cm⁻¹). ¹H NMR (700 MHz, CDCl₃, 25 °C): δ_H = 2.20–2.52 (br, 12 H, pzCH₃), 2.37 (s, 6 H, pzCH₃), 2.41 (s, 12 H, pzCH₃), 2.59 (s, 6 H, pzCH₃), 5.80-5.95 (br, 4 H, pzCH), 5.84 (s, 2 H, pzCH), 12.09 (s, ²J_{HW} = 44, 2 H, W=CH). ¹H NMR (700 MHz, CDCl₃, -40 °C): δ_{H} = 2.17 (s, 6 H, pzCH₃), 2.34 (s, 6 H, pzCH₃), 2.35 (s, 6 H, pzCH₃), 2.37 (s, 6 H, pzCH₃), 2.42 (s, 6 H, pzCH₃), 2.57 (s, 6 H, pzCH₃), 2.65 (s, 6 H, pzCH₃), 5.77 (s, 2 H, pzCH), 5.84 (s, 2 H, pzCH), 5.99 (s, 2 H, pzCH), 12.09 (s, ${}^{2}J_{HW}$ = 44, 2 H, W \equiv CH). ${}^{13}C{}^{1}H{}$ NMR (176 MHz, CDCl₃, -40 °C): δ_{C} = 13.0, 13.0, 13.1, 15.6, 17.3, 19.0 (pzCH₃), 107.1, 107.2, 107.6 (pzCH), 144.2, 144.5, 145.2, 151.0, 153.2, 154.0 (pzCCH₃), 218.6, 229.9 (WCO), 293.8 (W≡CH). ¹⁹⁵Pt NMR (86 MHz, CDCl₃, 25 °C): δ_{Pt} = -3084 (¹J_{PtW} = 209). MS (ESI, *m/z*): Found: 1295.2706. Calcd for C₃₆H₄₆¹¹B₂N₁₂O₄¹⁹⁵Pt¹⁸⁴W₂ [M-e⁻]⁺: 1295.2624. Found: 1318.2582. Calcd for $C_{36}H_{46}^{11}B_2NaN_{12}O_4^{195}Pt^{184}W_2$ [M+Na]⁺: 1318.2522. Anal. Found: C, 33.41; H, 3.59; N, 12.88%. Calcd for $C_{36}H_{46}B_2N_{12}O_4PtW_2$: C, 33.38; H, 3.58; N, 12.98%. A crystal suitable for structure determination was grown by slow evaporation of an acetonitrile solution. Crystal data for $C_{38}H_{49}B_2N_{13}O_4PtW_2$ (M =1336.31 g.mol⁻¹): triclinic, space group P-1 (no. 2), a = 10.5256(5) Å, b = 12.7095(7), c = 17.9699(8), $\alpha = 70.976(5)^{\circ}$, $\beta = 89.192(4)^{\circ}$, $\gamma =$ 80.546(4)°, $V = 2239.8(2) Å^3$, Z = 2, T = 150.0(1) K, μ (CuK α) = 15.448 mm⁻¹, *Dcalc* = 1.981 g.cm⁻³, 12461 reflections measured $(7.464^{\circ} \le 2\Theta \le 133.192^{\circ})$, 7842 unique ($R_{int} = 0.0233$, $R_{sigma} =$ 0.0381) which were used in all calculations. The final R_1 was 0.0390 (I > $2\sigma(I)$) and wR_2 was 0.0959 (all data) for 554 refined parameters with 0 restraints. CCDC 1945293.

References

- 1. Agilent, CrysAlis PRO, Agilent Technologies Ltd, Yarnton, Oxfordshire, England, 2014.
- T. M. McPhillips, S. E. McPhillips, H.-J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis and P. Kuhn, *Journal of Synchrotron Radiation*, 2002, 9, 401-406.
- 3. W. Kabsch, J. Appl. Crystallogr., 1993, 26, 795-800.
- 4. (a) G. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, 64, 112-122; (b) G. M. Sheldrick, Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 2015, 71, 3-8.
- (a) C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453-457; (b) C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Crystallogr.*, 2008, **41**, 466-470.
- 6. T. Desmond, F. J. Lalor, G. Ferguson and M. Parvez, J. Chem. Soc., Chem. Commun., 1984, 75-77.
- S. Banerjee, J. A. Kitchen, S. A. Bright, J. E. O'Brien, D. C. Williams, J. M. Kelly and T. Gunnlaugsson, *Chem. Commun.*, 2013, 49, 8522-8524.
- J. A. Bailey, M. G. Hill, R. E. Marsh, V. M. Miskowski, W. P. Schaefer and H. B. Gray, *Inorg. Chem.*, 1995, **34**, 4591-4599.
- 9. G. R. Newkome, K. J. Theriot, F. R. Fronczek and B. Villar, Organometallics, 1989, 8, 2513-2523.
- 10. D. Steinborn, R. Nünthel, J. Sieler and R. Kempe, *Chem. Ber.*, 1993, **126**, 2393-2396.

Chemical Communications

COMMUNICATION

This journal is © The Royal Society of Chemistry 2019

Chem. Commun., 2019, **00**, 1-3 | **4**

COMMUNICATION

Chemical Communications

This journal is © The Royal Society of Chemistry 20xx

Chem. Commun., 2019, **00**, 1-3 | **5**

Chemical Comunications

6 | Chem. Commun., 2019, **00**, 1-3

This journal is © The Royal Society of Chemistry 2019

This journal is © The Royal Society of Chemistry 20xx

Chem. Commun., 2019, **00**, 1-3 | **7**

¹H-¹³C HMBC NMR spectrum (400 & 101 MHz, CD₃CN, 25 °C, δ) of [W{=CPt(terpy)}(CO)₂(Tp*)]PF₆ (**4**).

8 | Chem. Commun., 2019, 00, 1-3

This journal is © The Royal Society of Chemistry 2019

Chemical Communications

COMMUNICATION

¹H NMR (600 MHz, CDCl₃, 25 °C, δ) of [(Tp*)(CO)₂W≡CPtCl(phen{C≡W(CO)₂(Tp*)-2}] (5).

This journal is © The Royal Society of Chemistry 20xx

COMMUNICATION

Chemical Comunications

10 | Chem. Commun., 2019, **00**, 1-3

This journal is © The Royal Society of Chemistry 2019

Chemical Communications

COMMUNICATION

This journal is © The Royal Society of Chemistry 20xx

Chem. Commun., 2019, **00**, 1-3 | **11**

Chemical Comunications

12 | Chem. Commun., 2019, 00, 1-3

This journal is © The Royal Society of Chemistry 2019

This journal is © The Royal Society of Chemistry 20xx

Chem. Commun., 2019, **00**, 1-3 | **13**

Chemical Comunications

14 | Chem. Commun., 2019, 00, 1-3

This journal is © The Royal Society of Chemistry 2019

COMMUNICATION

Chemical Communications

This journal is © The Royal Society of Chemistry 20xx

Chem. Commun., 2019, **00**, 1-3 | **15**

Chemical Comunications

16 | Chem. Commun., 2019, **00**, 1-3

This journal is © The Royal Society of Chemistry 2019

COMMUNICATION

Chemical Communications

This journal is © The Royal Society of Chemistry 20xx

Chem. Commun., 2019, **00**, 1-3 | **17**

Please do not adjust margins

Chemical Comunications

18 | Chem. Commun., 2019, **00**, 1-3

This journal is © The Royal Society of Chemistry 2019