Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Modulation of Coordination Geometry of NCN and NCNC Rh Complexes for Ambidextrous Chiral Catalysts

Jun-ichi Ito, Takahiro Ishihara, Takaki Fukuoka, Binti Mat Napi Siti Rokiah,

Hajime Kameo and Hisao Nishiyama

Contents:

1. General Procedure.	S2
2. Preparation of ligand precursors and Rh complexes.	S2
3. Asymmetric alkynylation of ethyl trifluoropyruvate with alkynes.	S9
4. X-ray analysis of 2a , 2b , 3a , and 4 .	S17
5. DFT calculation.	S22
6. References.	S29
7. NMR charts.	S30

1. General Procedure.

All air- and moisture-sensitive compounds were manipulated using standard Schlenk and vacuum line techniques under an argon atmosphere. ¹H, ¹³C and ¹⁹F NMR spectra was measured at room temperature on a Varian Mercury 300 spectrometer. ¹H NMR chemical shifts are reported in δ units, in ppm relative to the singlet at 7.26 for CDCl₃ and 7.16 ppm for C₆D₆ and ¹³C NMR chemical shifts are reported relative to the triplet at 77.0 ppm for CDCl₃ and 128.0 ppm for C₆D₆. ¹⁹F NMR spectra are reported in terms of chemical shifts relative to the external signal of CF₃COOH at δ –78.5 ppm. Infrared spectra were recorded on a JASCO FT/IR-230 spectrometer. Mass spectra were recorded on a JEOL JMS-700. Elemental analyses were recorded on a YANACO MT-6 and a PerkinElmer 2400II.

2. Preparation of ligand precursors and Rh complexes.

Preparation of 1,5-bis(chloromethyl)-2,4-dimethylbenzene.^[S1]

A mixture of m-xylene (20 mL, 163 mmol) and para-formaldehyde (11.6 g, 400 mmol) in acetic acid (40 mL) and HCl (160 mL) was stirred at 70 °C for 2 days. The resulting suspension was extracted with CH_2Cl_2 (50 mL x 5) and the extract was washed with saturated NaHCO₃ solution (50 mL x 4), water (50 mL x 2) and brine (50 mL) and dried over MaSO₄. After filtration, the solvent was removed and the residue was crystallized from hexane to give 1,5-bis(chloromethyl)-2,4-dimethylbenzene (21.8 g, 110 mmol, 67%) as colorless crystals. ¹H NMR (300 MHz, C₆D₆): δ 6.76 (s, 1H), 6.59 (s, 1H), 4.07 (s, 4H), 2.03 (s, 6H). ¹³C NMR (75 MHz, C₆D₆): δ 138.2, 134.1, 133.6, 131.9, 44.7, 18.5.

Preparation of 1.

To a mixture 1,5-bis(chloromethyl)-2,4-dimethylbenzene (2.01 g, 9.9 mmol), (S)-1-phenylethylamine (2.66 g, 22.0 mmol), and K₂CO₃ (5.52 g, 40 mmol) was added DMF (20 ml). The reaction mixture was heated at 100 °C for 2.5 h. Then, the mixture was diluted with ethyl acetate (100 ml) and the solution was washed with 5% of potassium carbonate and brine. The organic layer was dried with sodium sulfate and was concentrated. The crude product was purified by column chromatography on silica gel (eluent; hexane:ethyl acetate = 4:2 with 2% of NEt₃) to give **1a** (2.41 g, 6.5 mmol, 65 % yield). The use of (*S*)-1-(naphthalene-1-yl)ethylamine (1.02 g, 6.0 mmol) and (S)-1-phenylpropan-1-amine (1.02 g, 5.0 mmol) afforded **1b** (877 mg, 1.97 mmol, 66%) and **1c** (1.71 g, 4.27 mmol, 85%), respectively.

1a: Colorless solid. ¹ H NMR (300 MHz, CDCl₃, rt): δ 1.38 (d, *J*= 6.6 Hz, 6H), 2.22 (s, 6H), 3.56 (s, 4H), 3.84 (q, *J* = 6.6 Hz, 2H), 6.92 (s, 1H), 7.10 (s, 1H), 7.27-7.40 (m, 10H). ¹³C NMR (75 MHz, CDCl₃, rt): δ 18.6, 24.8, 49.5, 58.2, 126.5, 126.7, 128.2, 129.0, 132.1, 134.6, 135.6, 145.5. IR (KBr, cm⁻¹): 3231, 3027, 2964, 2923, 2860, 2802, 1490, 1454, 1377, 1110, 1018, 841. Anal. Calcd for $C_{26}H_{32}N_2$: C, 83.82; H, 8.66; N, 7.52, found: C, 83.63; H, 8.67; N, 7.15. HRMS (FAB, m/z) calcd for $C_{26}H_{32}N_2$ 372.2644[M+H⁺], found 372.2651. [α]_D¹⁸ = -44.2 (c 0.99, CHCl₃).

1b: Colorless solid. ¹H NMR (300 MHz, CDCl₃, rt): δ 1.58 (d, *J* = 6.6 Hz, 6H), 2.32 (s, 6H), 3.69 (d, *J* = 6.6 Hz, 2H), 3.77 (d, *J* = 6.6 Hz, 2H), 4.75 (q, *J* = 6.6 Hz, 2H), 7.02 (s, 1H), 7.18 (s, 1H), 7.50-7.58 (m, 6H), 7.82 (d, *J* = 7.8 Hz, 4 H), 7.92-7.95 (m, 2H), 8.21-8.24 (m, 2H). ¹³C NMR (75 MHz, CDCl₃, rt): δ 18.5, 23.7, 49.4, 53.3, 122.5, 122.5, 122.6, 124.8, 125.2, 125.3, 126.7, 128.5, 129.0, 130.8, 131.9, 133.5, 134.5, 135.4, 140.6. IR (KBr, cm⁻¹): 3426, 3046, 2965, 2921, 2863, 1735, 1594, 1509, 1450, 1369, 1237, 1172, 1113. Anal. Calcd for C₃₄H₃₆N₂: C, 86.40; H, 7.68; N, 5.93, found: C, 86.30; H, 7.72; N, 5.94. HRMS (FAB, m/z) calcd for C₃₄H₃₈N₂ 473.2957 [M+H⁺], found 473.2963.

 $[\alpha]_D^{26} = -39.2$ (c 1.0, CHCl₃).

1c: colorless oil. ¹H NMR (300 MHz, CDCl₃, rt): 0.88 (t, J = 7.4 Hz, 6 H), 1.52 (br, 2H), 1.64-1.88 (m, 4H), 2.26 (s, 6H), 3.52-3.63 (m, 6H), 6.97 (s, 1H), 7.14 (s, 1H), 7.28-7.40 (m, 10H). ¹³C NMR (75 Hz, CDCl₃, rt): 11.1, 18.6, 31.3, 49.5, 65.0, 126.7, 127.2, 128.0, 129.2, 132.1, 134.7, 135.7, 144.0. IR (KBr, cm⁻¹): 3322, 3060, 2024, 2961, 2926, 2872, 1601, 1454, 1357, 1117, 759, 701. Anal. Calcd for C₂₈H₃₆N₂: C, 83.95; H, 9.06; N, 6.99, found: C, 83.66; H, 9.45; N, 6.87. [α]_D²⁵ = -47.3 (c 1.0, CHCl₃).

Preparation of 2.

To a mixture of **1a** (373 mg, 1.0 mmol) and RhCl₃·3H₂O (263 mg, 1.0 mmol) was added diisopropylamine (5 ml) and then the reaction mixture was refluxed for 24 h. The crude product was purified by column chromatography on silica gel (eluent; chloroform) to give **2a** (355 mg, 0.65 mmol, 65% yield). **1b** (444 mg, 1.0 mmol)/RhCl₃·3H₂O (263 mg, 1.0 mmol) and **1c** (409 mg, 1.0 mmol)/RhCl₃·3H₂O (296 mg, 1.1 mmol) gave **2b** (447 mg, 0.69 mmol, 69%) and **2c** (228 mg, 0.40 mmol, 40%), respectively.

2a: ¹H NMR (300 MHz, CDCl₃, rt): δ 1.97 (d, *J* = 6.9 Hz, 6H), 1.99 (s, 6H), 3.60 (dd, *J* = 5.6, 14.2 Hz, 2H), 3.84 (dd, *J* = 11.1, 14.2 Hz, 2H), 4.39 (dq, *J* = 11.1, 6.9 Hz, 2H), 4.75 (br, 2H, N-*H*)), 6.41 (s, 1H), 7.34-7.49 (m, 10H). ¹³C NMR (75 MHz, CDCl₃, rt): δ 18.9, 23.5, 55.7, 62.2, 126.3, 127.2, 128.4, 129.1, 131.0, 136.4, 139.9, 145.7 (d, *J*_{RhC} = 30.8 Hz). IR (KBr, cm⁻¹): 3226 (v_{NH}), 3000, 2952, 2911, 1604, 1550, 1495, 1455, 1379, 1202, 1078, 1028. Anal. Calcd for C₂₆H₃₁Cl₂N₂Rh: C, 57.26; H, 5.73; N, 5.14, found: C, 57.13; H, 5.73; N, 4.86. HRMS (FAB, m/z) calcd for C₂₆H₃₁Cl₂N₂Rh [M⁺] 544.0919, found 544.0925. [α]_D¹⁸ = 27.1 (c 0.3, CHCl₃).

2b: ¹H NMR (300 MHz, CDCl₃, rt): δ 1.89 (s, 6H), 2.10 (d, *J* = 6.6 Hz, 6H), 3.71 (dd, *J* = 4.2, 15.0 Hz, 2H), 3.88 (dd, *J* = 9.6, 15.0 Hz, 2H), 5.10 (br, 2H, N-*H*), 5.52 (dq, *J* = 11.1, 6.6 Hz, 2H), 6.37 (s,

1H), 7.56-7.67 (m, 8H), 7.90-7.97 (m, 4H), 8.24 (d, J = 8.7 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃, rt): d 19.0, 24.4, 55.6, 55.8, 121.9, 122.1, 125.5, 125.8 126.1, 126.8, 127.3, 128.5, 128.9, 131.0, 133.7, 136.5, 136.6, 146.0 (d, $J_{RhC} = 30.8$ Hz). IR (KBr, cm⁻¹): 3228 (v_{NH}), 2916, 2855, 1598, 1557, 1511, 1452, 1377, 1172, 1106, 1065. Anal. Calcd for C₃₄H₃₅Cl₂N₂Rh: C, 63.27; H, 5.47; N, 4.34, found: C, 63.40; H, 5.47; N, 4.30. HRMS (FAB, m/z) calcd for C₃₄H₃₅Cl₂N₂Rh 644.1232 [M⁺], found 644.1234. [α]p²⁷ = 39.1 (c 0.66, CHCl₃).

2c: ¹H NMR (300 MHz, CDCl₃, rt): 1.05 (t, J= 7.2 Hz, 6H), 1.96 (s, 6H), 2.01-2.14 (m, 2H), 2.61-2.74 (m, 2H), 3.55 (ddd, J = 2.3, 4.3, 14.3 Hz, 2H), 3.82 (dd, J = 10.2, 14.3 Hz, 2H), 4.15 (dt, J = 5.1, 10.8 Hz, 2H), 4.78 (br, 2H), 6.41 (s, 1H), 7.31-7.45 (m, 10H). ¹³C NMR (75 MHz, CDCl₃, rt): 11.7, 18.9, 30.7, 55.8, 68.4, 127.0, 127.2, 128.3, 129.0, 131.0, 136.8, 138.3, 147.2 (d, J = 30.8 Hz). IR (KBr, cm⁻¹): 3228 (v_{NH}), 3024, 2965, 2935, 2876, 1606, 1559, 1454, 1178, 1086, 1034, 971, 852, 702. Anal. Calcd for C₂₈H₃₅Cl₂N₂Rh: C, 58.65; H, 6.15; N, 4.89, found: C, 58.71; H, 6.22; N, 4.87. [α]_D²⁷ = 0.6 (c 0.33, CHCl₃).

Preparation of 3.

To a mixture of 2a (160 mg, 0.292 mmol) and silver acetate (249 mg, 1.49 mmol) was added toluene and the reaction mixture was stirred at room temperature for 37 h. The crude product was purified by column chromatography on silica gel (eluent: hexane:ethyl acetate = 2:1) to give 3a (152 mg, 0.256 mmol, 88% yield). Reaction of 2b (194 mg, 0.30 mmol) and AgOAc (251 mg, 1.5 mmol) at room temperature for 36 h gave 3b (156 mg, 0.23 mmol, 75%). Reaction of 2c (114.7 mg, 0.20 mmol) and AgOAc (166.9 mg, 1.0 mmol) at room temperature for 46 h gave 3c (103.6 mg, 0.17 mmol, 83%). Reaction of 2a (133 mg, 0.24 mmol) and AgOCOtBu (255 mg, 1.23 mmol) gave 3a' (143 mg, 0.22 mol, 90%).

3a: ¹H NMR (300 MHz, CDCl₃, rt): δ 1.97 (d, *J* = 6.8 Hz, 6H), 1.98 (s, 3H), 1.98 (s, 6H), 3.44-3.65 (m, 4H), 3.96 (dq, *J* = 10.1, 6.8 Hz, 2H), 6.41 (s, 1H), 7.31-7.45 (m, 10H), 7.78 (m, 2H, N-*H*). ¹³C NMR (75 MHz, CDCl₃, rt): δ 19.0, 23.5, 24.1, 55.1, 61.2, 126.126.6, 127.0, 127.8, 128.9, 130.1, 138.0, 141.0, 154.2 (*J*_{RhC} = 31.9 Hz), 183.2. IR (KBr, cm⁻¹): 3030, 2924, 1588 (vco), 1495, 1455, 1375, 1321, 1087, 1027. Anal. Calcd for C₃₀H₃₇N₂O₄Rh: C, 60.81; H, 6.29; N, 4.73, found: C, 60.24; H, 6.38; N, 4.21. HRMS (FAB, m/z) calcd for C₃₀H₃₇N₂O₄Rh 592.1808 [M⁺], found 592.1808. [α]_D¹⁸ = -210.1 (c 0.35, CHCl₃).

3a^{*}: ¹H NMR (300 MHz, CDCl₃, rt): 1.17 (s, 18H), 1.93 (d, J = 6.6 Hz, 6H), 1.97 (s, 6H), 3.47-3.61 (m, 4H), 3.96 (dq, J = 6.9, 11.0 Hz, 2H), 6.39 (s, 1H), 7.32-7.44 (m, 10H), 7.64 (br, 2H). ¹³C NMR (75 MHz, CDCl₃, rt): 19.0, 23.3, 28.2, 39.6 ($J_{RhC} = 1.1$ Hz), 55.3, 60.9, 126.5, 126.6, 127.8, 128.9, 129.8, 138.1, 141.0, 156.2 ($J_{RhC} = 31.4$ Hz), 190.9 ($J_{RhC} = 1.1$ Hz). IR (KBr, cm⁻¹): 3592, 3063, 2953, 1596, 1479, 1394, 1332, 1214, 1109, 1026, 764, 702. Anal. Calcd for C₃₆H₄₉N₂O₄Rh: C, 63.90; H, 7.30; N, 4.14, found: C, 64.07; H, 7.54; N, 4.02. [α]_D²⁴ = -187.9 (c 0.76, CHCl₃).

3b:¹H NMR (300 MHz, CDCl₃, rt): δ 1.60 (s, 6H), 2.13 (s, 6H), 2.28 (d, *J* = 6.9 Hz, 6H), 3.68 (dd, *J* = 3.5, 14.1 Hz, 2H), 3.93 (dd, *J*=10.4, 14.1 Hz, 2H), 4.39 (dq, *J* = 10.4, 6.9 Hz, 2H), 6.31 (s, 1H), 7.20-7.30 (m, 4H), 7.54-7.72 (m, 10H), 9.01 (br, 2H). ¹³C NMR (75 MHz, CDCl₃, rt): 19.0, 23.5, 24.1, 55.2, 61.4, 123.6, 126.0, 126.1, 126.3, 127.0, 127.58, 127.63, 129.1, 130.2, 132.9, 133.1, 138.0, 138.3, 154.4 (*J*_{RhC} = 32.0 Hz), 183.4. IR (KBr, cm⁻¹): 3053, 2927, 1581, 1376, 1324, 1174, 1129, 1082, 858, 749. Anal. Calcd for C₃₈H₄₁N₂O₄Rh: C, 65.89; H, 5.97; N, 4.04, found: C, 65.83; H, 5.90; N, 4.01. [α]_D²⁷ = -112.4 (c 0.34, CHCl₃).

3c: ¹H NMR (300 MHz, CDCl₃, rt): 0.97 (t, J = 7.2 Hz, 6H), 1.89-2.02 (m, 2H), 1.95 (s, 6H), 1.95 (s, 6H), 2.85-2.99 (m, 2H), 3.45-3.57 (m, 4H), 3.71 (dt, J = 4.8, 10.5 Hz, 2H), 6.40 (s, 1H), 7.32-7.44 (m, 10H), 8.43 (br, 2H). ¹³C NMR (75Hz. CDCl₃, rt): 11.8, 19.0, 24.2 ($J_{RhC} = 1.2$ Hz), 30.0, 54.6, 126.9, 127.4, 127.7, 128.7, 130.0, 138.3, 139.1, 153.8 ($J_{RhC} = 32.6$ Hz), 183.1. IR (KBr, cm⁻¹): 3064, 2965, 2931, 2877, 1584, 1454, 1375, 1322, 1169, 1016, 854, 773, 702. Anal. Calcd for C₃₂H₄₁N₂O₄Rh: C, 61.93; H, 6.66; N, 4.51, found: C, 61.45; H, 6.64; N, 4.51. [α]D²⁷ = -214.9 (c 0.38, CHCl₃).

S6

Preparation of 4.

To a mixture of **3a** (59.5 mg, 0.10 mmol) and NaHCO₃ (84.1 mg, 010 mmol) was added benzene- d_6 (0.7 mL). The solution was heated at 80 °C for 70 h. After centrifugation of the mixture, the solvent was removed under reduced pressure. The residue was crystallization with hexane and CH₂Cl₂ to give yellow crystals of **4** (35.2 mg, 0.033 mmol, 65% yield).

¹H NMR (300 MHz, C₆D₆, rt): δ 1.70 (s, 3H), 1.72 (d, J = 6.9 Hz, 3H), 1.75 (d, J = 7.5 Hz, 3H), 1.76 (s, 3H), 2.38 (s, 3H), 3.40 (d, J = 16.2 Hz, 1H), 3.53-3.69 (m, 2H), 3.93 (dd, J = 10.2, 15.0 Hz, 1H), 4.04-4.19 (m, 2H), 4.60-4.72 (br, 2H), 6.26 (s, 1H), 6.78-6.83 (m, 3H), 6.95-7.08 (m, 5H), 7.32 (d, J 7.8 Hz, 1H). ¹H NMR (300 MHz, CDCl₃, rt): δ 1.66 (d, J = 6.9 Hz, 3H), 1.67 (d, J = 6.6 Hz, 3H), 1.90 (s, 3H), 1.96 (s, 3H), 2.08 (s, 3H), 3.68-3.78 (m, 1H), 3.83-3.99 (m, 3H), 4.47 (br, 1H), 4.06-4.24 (m, 2H), 4.63 (dq, J = 8.3, 16.4Hz, 2H), 6.22 (s, 1H), 6.86-6.94 (m, 3H), 7.13 (br, 1H), 7.34-7.48 (m, 5H). ¹³C NMR (75 MHz, C₆D₆, rt): δ 19.48, 19.51, 24.6, 25.6, 26.1, 60.1, 63.8, 64.2, 72.8, 122.0, 122.9, 125.3, 125.5, 126.7, 128.8, 129.0, 129.1, 135.2, 138.4, 141.6, 142.0, 152.9 (d, $J_{RhC} = 37.7$ Hz), 154.9, 163.0 (d, $J_{RhC} = 32.5$ Hz), 183.9. IR (KBr, cm⁻¹): 3253, 3222, 2971, 2920, 1588 (v_{CO}), 1495, 1455, 1375, 1321, 1087, 1027. Anal. Calcd for C₅₆H₆₈N₄O₅Rh₂: C, 62.11; H, 6.33; N, 5.17, found: C, 62.05; H, 6.86; N, 5.08.

The heating reaction of **3a** in benzene- d_6 at 80 °C was monitored by ¹H NMR spectroscopy (Figure S1). In the absence of K₂CO₂, equilibrium mixtures of **3a** and **4** were obtained. In contrast, reaction in the presence of K₂CO₃ resulted in the full conversion of **3a**.

Figure S1. Time conversion curves. Heating of **3a** in benzene- d_6 at 80 °C (a) in the absence of K₂CO₃ and (b) in the presence of K₂CO₃.

Preparation of 8.

To a solution of **4** (23.6 mg, 0.022 mmol) in toluene (2 mL) was added PhCCH (24 μ L, 0.22 mmol). The solution was stirred at room temperature for 3 h and was concentrated in reduced pressure. The residue was washed with hexane to give **8** as a yellow solid (23.7 mg, 0.037 mmol, 86% yield). ¹H NMR (300 MHz, C₆D₆, rt): δ 1.20 (d, *J* = 6.6 Hz, 3H), 1.60 (s, 3H), 1.61 (d, *J* = 5.1 Hz, 3H), 1.97 (s, 3H), 2.02 (s, 3H), 3.69-3.99 (m, 4H), 4.29-4.51 (m, 2H), 6.00 (brs, 1H), 6.38 (s, 1H), 6.90-7.34 (m, 11H), 7.55-7.58 (m, 2H), 7.83 (d, *J* = 7.2 Hz, 2H), 8.40 (br, 1H); ¹³C NMR (75 MHz, C₆D₆, rt): 19.0, 19.3, 19.5, 23.7, 25.8, 57.3, 57.4, 63.4, 64.3, 98.9 (d, *J*_{RhC} = 58.1 Hz), 105.2 (d, *J*_{RhC} = 11.4 Hz), 125.2, 126.5, 127.2, 128.6, 129.2, 129.3, 129.8, 130.4, 131.8, 136.9, 138.4, 141.8, 142.3, 154.6 (d, *J*_{RhC} = 35.3 Hz), 181.2; IR (KBr, cm⁻¹): 3225, 3031, 2930, 2859, 2104 (v_{CC}), 1571, 1387, 1085, 1027, 757, 701; Anal. Calcd for C₃₆H₃₉N₂O₂Rh: C, 68.13; H, 6.19; N, 4.41, found: C, 68.06; H, 6.30; N, 4.18.

3. Asymmetric alkynylation of ethyl trifluoropyruvate with alkynes

A mixture of alkyne (0.3 mmol) and ketone (0.2 mmol) in the presence of Rh catalysts (3 mol%) was stirred under an argon atmosphere. After removal of the solvent, a crude product was purified by column chromatography on silica gel with hexane/ethyl acetate to give 7.

PhH	• 0 + Ⅲ	Rh cat. (3 mol	%) ►	HO CF ₃	
5a	F ₃ C CO ₂ E	it 30 ⁰C, 24 h	Ph	7a	
entry	cat	solvent	temp	yield (%)	ee (%) ^b
1	3a	Et ₂ O	30	72	63 (<i>R</i>)
2	3a	toluene	30	45	67 (<i>R</i>)
3	3a	THF	30	3	53 (<i>R</i>)
4	3a	Et ₂ O	0	<1	_
5	3b	Et ₂ O	30	75	69 (<i>R</i>)
6	3c	Et ₂ O	30	3	40 (<i>R</i>)
7	3a'	Et ₂ O	30	<1	_
8	4	Et ₂ O	30	81	36 (<i>S</i>)
9	4	Et ₂ O	15	71	42 (<i>S</i>)
10	4	Et ₂ O	0	57	66 (<i>S</i>)
11	4	toluene	0	8	57 (<i>S</i>)

Table S1. Asymmetric alkynylation of ethyl trifluoropyruvate with phenylacetylene.^a

^{*a*} Reaction condition: **5a** (0.3 mmol), **6** (0.2 mmol), catalysts (3 mol%), solvent (2 mL), 30 °C, 24 h. ^{*b*} Determined by HPLC.

۸r	0	Rh cat. (3 mol%)	HOC	F ₃	
л <u> </u>	F ₃ C CO ₂ Et 6	Et₂O, 30 ºC, 24 h	Ar 7	:O ₂ Et	
Entry	RCCH	cat	Temp, time	yield (%)	ee (%) ^b
1	4-CF ₃ C ₆ H ₄ (5b)	3 a	30, 24	58	85 (+)
2	$4-CF_{3}C_{6}H_{4}$ (5b)	4	-20, 48	22	46 (-)
3	$4\text{-BrC}_{6}\text{H}_{4}\left(\mathbf{5c}\right)$	3a	30, 24	72	79 (+)
4	$4\text{-}\mathrm{Br}\mathrm{C}_{6}\mathrm{H}_{4}\left(\mathbf{5c}\right)$	4	-20, 48	8	79 (-)
5	$4\text{-}\mathrm{Br}\mathrm{C}_{6}\mathrm{H}_{4}\left(\mathbf{5c}\right)$	4	0, 24	62	9 (-)
6	9-phenanthrene (5d)	3a	30, 24	67	68 (+)
7	9-phenanthrene (5d)	4	-20, 48	31	21 (-)
8	4-CH ₃ C ₆ H ₄ (5e)	3a	30, 24	0	N.D. ^d
9°	4-CH ₃ C ₆ H ₄ (5e)	4	0, 24	54	66 (+)
10	4-CH ₃ C ₆ H ₄ (5e)	4	0, 45	50	69 (-)
11	4-CH ₃ OC ₆ H ₄ (5f)	3 a	30, 24	0	N.D. ^d
12 ^c	4-CH ₃ OC ₆ H ₄ (5 f)	4	0, 24 h	64	75 (+)
13	4-CH ₃ OC ₆ H ₄ (5f)	4	0, 24 h	23	57 (-)

Table S2. Asymmetric alkynylation of ethyl trifluoropyruvate 6 with alkynes 5.^a

^a Reaction condition: **5** (0.3 mmol), **6** (0.3 mmol), catalysts (3 mol%), Et₂O (2 mL), 30 °C, 24 h. ^b Determined by HPLC. ^c Pretreatment of **4** with **5e**, **f** at room temperature for 12 h before addition of **6**. ^d Not determined.

Ethyl 2-hydroxy-4-phenyl-2-(trifluoromethyl)but-3-ynoate (7a)^[S2]

¹H NMR (300 MHz, CDCl₃, rt): δ 1.40 (t, J = 7.2 Hz, 3H), 4.31 (bs, 1H), 4.38-4.55 (m, 2H), 7.31-7.42 (m,3H), 7.49-7.53 (m, 2H). ¹³C NMR (75 MHz, CDCl₃, rt): δ 13.8, 65.1, 71.7 (q, J_{CF} = 34 Hz), 79.7, 87.2, 120.6 121.7 (J_{CF} = 284 Hz), 128.4, 129.6, 132.2, 166.5. ¹⁹F NMR (162 MHz, CDCl₃, rt): δ -79.1. HRMS (FAB, m/z) calcd for C₁₃H₁₁F₃O₃ 273.0739 [M+H⁺], found 273.0736.

Figure S2. HPLC chart (Daicel CHIRLPAK AD–H, hexane:*i*PrOH = 99:1, 1.0 mL/min, 271 nm) of 7a (Table 1, entry 1). $[\alpha]_D^{26} = -32.1$ (c 1.0, CHCl₃). (lit.^[S2] $[\alpha]_D^{29} = -44.6$ (c = 1.01, CHCl₃, 99 % ee (*R*)).

Figure S3. HPLC chart of 7a (Table 1, entry 5). $[\alpha]_D^{28} = +33.3$ (c 1.0, CHCl₃).

Ethyl 2-hydroxy-2-(trifluoromethyl)-4-(4-(trifluoromethyl)phenyl)but-3-ynoate (7b)

¹H NMR (300 MHz, CDCl₃, rt): δ 1.41 (t, J = 7.2 Hz, 3H), 4.36 (s, 1H), 4.40-4.57 (m, 2H), 7.61 (s, 4H). ¹³C NMR (75 MHz, CDCl₃, rt): δ 14.1, 65.3, 71.7 (q, $J_{CF} = 34$ Hz), 81.9, 85.5, 121.4 ($J_{CF} = 284$ Hz), 123.5 ($J_{CF} = 270$ Hz), 124.2, 125.2 ($J_{CF} = 4$ Hz), 131.2 ($J_{CF} = 33$ Hz), 132.3, 165.8. ¹⁹F NMR (162 MHz, CDCl₃, rt): δ -63.9, -78.9. HRMS (FAB, m/z) calcd for C₁₄H₁₀F₆O₃ 341.0612 [M+H⁺], found 341.0618.

Figure S4. HPLC chart (Daicel CHIRLPAK AD–H, hexane:*i*PrOH = 95:5, 1.0 mL/min, 254 nm) of 7b (Table 2, entry 1), $[\alpha]_D^{27} = -38.0$ (c 0.23, CHCl₃).

2019 2019 2015/12/21 19:53:50

Figure S5. HPLC chart of 7b (Table 2, entry 2), $[\alpha]_D^{24} = +22.8$ (c 1.1, CHCl₃).

Ethyl 4-(4-bromophenyl)-2-hydroxy-2-(trifluoromethyl)but-3-ynoate (7c) [S2]

¹H NMR (300 MHz, CDCl₃, rt): δ 1.40 (t, J = 7.2 Hz, 3H), 4.33 (bs, 1H), 4.39-4.56 (m, 2H), 7.34-7.38 (m,2H), 7.46-7.50 (m, 2H). ¹³C NMR (75 MHz, CDCl₃, rt): δ 14.0, 65.2, 71.7 (q, J_{CF} = 34 Hz), 80.7, 86.0, 115.8, 119.3, 121.4 (J_{CF} = 284 Hz), 124.0 131.5, 133.3, 165.9. ¹⁹F NMR (162 MHz, CDCl₃, rt): δ -78.9. HRMS (FAB, m/z) calcd for C₁₃H₁₆BrF₃O₃ 350.9844 [M+H⁺], found 350.9847.

Figure S6. HPLC chart (Daicel CHIRLPAK AD–H, hexane:*i*PrOH = 99:1, 1.0 mL/min, 254 nm) of 7c (Table 2, entry3), $[\alpha]_D^{26} = -34.4$ (c 1.1, CHCl₃).

Figure S7. HPLC chart of 7c (Table 2, entry 4), $[\alpha]_D^{17} = +37.2$ (c 0.51, CHCl₃).

Ethyl 2-hydroxy-4-(phenanthren-9-yl)-2-(trifluoromethyl)but-3-ynoate (7d)

¹H NMR (300 MHz, CDCl₃, rt): δ 1.48 (t, J = 7.1 Hz, 3H), 4.50 (s, 1H), 4.50-4.59 (m, 2H), 7.58-7.73 (m, 4H), 7.83-7.86 (m, 1H), 8.07 (s, 1H), 8.34-8.37 (m, 1H), 8.61-8.68 (m, 2H). ¹³C NMR (75 MHz, CDCl₃, rt): δ 14.1, 65.2, 72.0 (q, $J_{CF} = 34$ Hz), 83.9, 85.8, 116.8, 121.7 ($J_{CF} = 284$ Hz), 122.4, 122.6, 126.2, 126.9, 127.06, 127.08, 128.0, 128.6, 129.7, 130.4, 130.48, 130.52, 133.3, 166.2. ¹⁹F NMR (162 MHz, CDCl₃, rt): δ -78.7. HRMS (FAB, m/z) calcd for C₂₁H₁₅F₃O₃ 372.0973 [M⁺], found 372.0963.

Figure S8. HPLC chart (Daicel CHIRLPAK AD–H, hexane:*i*PrOH = 95:5, 1.0 mL/min, 254 nm) of 7d (Table 2, etnry 5), $[\alpha]_D^{27} = -35.9$ (c 1.0, CHCl₃).

Figure S9. HPLC chart of 7d (Table 2, entry 6), $[\alpha]_D^{24} = +13.1$ (c 1.4, CHCl₃).

Ethyl 2-hydroxy-4-(p-tolyl)-2-(trifluoromethyl)but-3-ynoate (7e) [S2]

¹H NMR (300 MHz, CDCl₃, rt): δ 1.41 (t, J = 7.2 Hz, 3H), 2.37 (s, 3H), 4.27 (s, 1H), 4.39-4.55 (m, 2H), 7.14 (d, J = 8.1 Hz, 2H), 7.39 (d, J = 8.1 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃, rt): δ 14.1, 21.8, 65.0, 71.7 (q, $J_{CF} = 34$ Hz), 79.0, 87.3, 117.4, 121.6 ($J_{CF} = 283$ Hz), 128.9, 131.9, 139.8, 166.2. ¹⁹F NMR (162 MHz, CDCl₃, rt): δ -79.0. HRMS (FAB, m/z) calcd for C₁₄H₁₃F₃O₃ 286.0717 [M⁺], found

287.0906.

Figure S10. HPLC chart (Daicel CHIRLPAK AD–H, hexane:*i*PrOH = 99:1, 1.0 mL/min, 254 nm) of 7e (Table 2, entry 7), $[\alpha]_D^{20} = -34.2$ (c 1.1, CHCl₃).

Figure S11. HPLC chart of 7e (Table 2, entry 8), $[\alpha]_D^{20} = +39.5$ (c 0.89, CHCl₃).

Ethyl 2-hydroxy-4-(4-methoxyphenyl)-2-(trifluoromethyl)but-3-ynoate (7f) [S2]

¹H NMR (300 MHz, CDCl₃, rt): δ 1.39 (t, J = 7.1 Hz, 3H), 3.81 (s, 3H), 4.32 (br, 1H), 4.37-4.54 (m, 2H), 6.82-6.87 (m, 2H), 7.41-7.46 (m, 2H). ¹³C NMR (75 MHz, CDCl₃, rt): δ 13.8, 55.3, 64.9, 71.7 (q, $J_{CF} = 34$ Hz), 78.4, 87.3, 112.6, 114.0, 121.8 ($J_{CF} = 284$ Hz), 133.7, 160.5, 166.6. ¹⁹F NMR (162 MHz, CDCl₃, rt): δ -79.1. HRMS (FAB, m/z) calcd for C₁₄H₁₃F₃O₄ 302.0766 [M⁺], found 302.0768.

Figure S12. HPLC chart of 7f (Table 2, entry 9), $[\alpha]_D^{21} = -37.5$ (c 1.1, CHCl₃).

Figure S13. HPLC chart of 7f (Table 2, entry 10), $[\alpha]_D^{21} = +29.9$ (c 1.2, CHCl₃).

4. X-ray analysis of 2a, 2b, 3a, and 4.

The diffraction data of **2b** and **3a** were collected on a Brucker SMART APEX CCD diffractometer with graphite monochromated Mo_{Kα} radiation ($\lambda = 0.71073$ Å) and the diffraction data of **2a** and **4** were collected on a Bruker D8 QUEST CCD diffractometer with graphite-monochromated Mo Kα radiation ($\lambda = 0.71073$ Å). An empirical absorption correction was applied by using SADABS. The structure was solved by direct method and refined by full-matrix least-square on F^2 using SHELXTL. All non-hydrogen atoms were refined with aniotropic displacement parameters. All hydrogen atom were located on calculated positions and refined as rigid groups. CCDC 1507453 (**2a**), CCDC 1507454 (**2b**), CCDC 1507455 (**3a**) and CCDC 1507456 (**4**) contain the supplementary crystallographic data for this paper.

Figure S15. ORTEP diagram of **2a** with 50% probability level. Selected bond lengths (Å) and angles (°). Rh1-C1 1.909(8), Rh1-N1 2.076(4), Rh1-Cl1 2.3117(10), Rh2-Cl5 1.919(8), Rh2-N2 2.086(4), Rh2-Cl2 2.3092(10), N1-Rh1-N1 166.2(2), Cl1-Rh1-Cl1 172.37(7), C1-Rh1-N1 83.09(11), C1-Rh1-Cl1 93.82(4), N2-Rh2-N2 165.5(2), Cl2-Rh2-Cl2 173.05(8), C15-Rh2-N2 82.74(10), C15-Rh2-Cl2 93.47(4).

Figure S16. ORTEP diagram of **2b** with 50% probability level. Selected bond lengths (Å) and angles (°). Rh1-C1 1.902(2), Rh1-N1 2.080(2), Rh1-N2 2.0841(17), Rh1-Cl1 2.3254(7), Rh1-Cl2 2.3152(7), N1-Rh1-N2 165.69(8), Cl1-Rh1-Cl2 173.27(3), C1-Rh1-N1 82.89(9), C1-Rh1-N2 82.86(9), C1-Rh1-Cl1 93.09(8), C1-Rh1-Cl2 93.58(8).

Figure S17. ORTEP diagram of **3a** with 50% probability level. Selected bond lengths (Å) and angles (°). Rh1-C1 1.904(3), Rh1-N1 2.085(3), Rh1-N2 2.072(3), Rh1-O1 2.037(2), Rh1-O3 2.030(2), Rh2-C31 1.901(3), Rh2-N3 2.090(3), Rh2-N4 2.073(3), Rh2-O5 2.037(2), Rh2-O7 2.026(2), N1-Rh1-N2 166.05(11), O1-Rh1-O3 174.80(9), C1-Rh1-N1 82.86(13), C1-Rh1-N2 83.19(13), C1-Rh1-O1 94.71(12), C1-Rh1-O3 90.48(12), N3-Rh2-N4 165.57(12), O5-Rh2-O7 174.06(10), C31-Rh2-N3 82.30(14), C31-Rh2-N4 83.28(13), C31-Rh2-O5 93.49(12), C31-Rh2-O7 92.32(12).

Figure S18. ORTEP diagram of **4** with 50% probability level. Selected bond lengths (Å) and angles (°). Rh1-C1 1.919(3), Rh1-C22 1.985(3), Rh1-N1 2.138(3), Rh1-N2 2.104(3), Rh1-O1 2.234(2), Rh1-O3 2.2807(6), N1-Rh1-N2 163.94(10), C1-Rh1-O1 178.12(10), C22-Rh1-O3 172.26(12), Rh1-O3-Rh1 159.76(15).

	2a	2b
Empirical formula	$C_{26}H_{31}Cl_2 N_2Rh$	$C_{34}H_{35}Cl_2N_2Rh$
Formula weight	545.34	645.45
Temperature, K	93	153
Crystal system	Monoclinic	Monoclinic
Space group	<i>C</i> 2	<i>C</i> 2
a, Å	16.4067(10)	20.2556(16)
b, Å	17.1103(11)	12.2123(10)
c, Å	10.8096(7)	13.0390(11)
α, deg		
β, deg	127.0881(14)	111.6700(10)
γ, deg		
V, Å ³	2420.7(3)	2997.5(4)
Z	4	4
D _{calcd} , g cm ⁻³	1.496	1.430
μ (MoK α), mm ⁻¹	0.942	0.774
Reflections collected	8335	11188
Independent reflections	4104 [R(int) = 0.0253]	7310 [R(int) = 0.0238]
parameters	292	364
GOF	1.290	1.045
R1 [<i>I</i> >2σ(<i>I</i>)]	0.0253	0.0280
wR2 [<i>I</i> >2σ(<i>I</i>)]	0.0761	0.0669
R1 (all data)	0.0255	0.0295
wR2 (all data)	0.0766	0.0677
Largest diff. peak and hole, eÅ ⁻³	0.991 and -0.856	1.029 and -0.267

Table S3. Crystallographic Data for complexes 2a, 2b, 3a and 4.

Table S3. Continued.

	3 a	4
Empirical formula	C ₃₂ H ₄₂ N ₂ O _{4.50} Rh	$C_{28}H_{34}N_2O_{2.50}Rh$
Formula weight	629.59	541.48
Temperature, K	123	123
Crystal system	Triclinic	Orthorhombic
Space group	<i>P</i> 1	P21212
a, Å	8.797(4)	12.3574(6)
b, Å	12.138(5)	17.1055(8)
c, Å	15.509(6)	11.4148(6)
α , deg	89.798(7)	
β, deg	86.468(7)	
γ, deg	70.434(7)	
V, Å ³	1557.2(11)	2412.9(2)
Z	2	2
D _{calcd} , g cm ⁻³	1.343	1.488
μ (MoK α), mm ⁻¹	0.587	0.738
Reflections collected	11142	16600
Independent reflections	8980 [R(int) = 0.0361]	4265 [R(int) = 0.0366]
parameters	735	319
GOF	1.042	1.370
R1 [<i>I</i> >2σ(<i>I</i>)]	0.0348	0.0210
wR2 [<i>I</i> >2σ(<i>I</i>)]	0.0900	0.0549
R1 (all data)	0.0352	0.0214
wR2 (all data)	0.0905	0.0551
Largest diff. peak and hole, eÅ ⁻³	1.259 and -0.470	0.472 and -0.295

5. DFT calculation.

DFT Calculations of **2a**, **3a** and model complexes $[Me_2C_6H_2(CH_2NRR')RhCl_2]$ (**2d**: R=R'=H; **2e**: R=Me, R'=H; **2f**: R=R'=Me) were performed with the Gaussian 09 program package.^[S3] Geometries of the ground state were calculated by using density functional theory (DFT) with B3PW91 functional in gas phase. In all geometry optimizations, the 6-311G(d) basis set was used for C, H, N, O and Cl atoms and the SDD basis set was used for the Rh atom. We confirmed that the optimized structure of **2a** reproduced the experimental values in the solid state (Tables S4).

In the case of model complexes **2d-f**, H₂O adducts **2d-f-H₂O** with six-coordinated geometry were more stable than those of H₂O free complex **2d-f** by about 4.5-5.3 kcal/mol (Figures S20-22). In contrast, H₂O adduct **2a-H₂O** was unfavorable than H₂O free complex **2a** by about 4.5 kcal/mol (Figure S19). LUMO level of **2a** was higher than those of other model complexes **2d-f** (Figure S23).

1 0	1	
	Optimized structure	XRD Analysis
Rh-C1	1.910	1.909(8)
Rh-N1	2.107	2.076(4)
Rh-N2	2.107	2.076(4)
Rh-Cl1	2.347	2.3117(10)
Rh-Cl2	2.347	2.3117(10)
N1-Rh-N2	164.7	166.2(2)
C11-Rh-C12	171.4	172.37(7)

Table S4. Comparison of geometric data of 2a between the optimized and X-ray structures.

Figure S19. Optimized structure of **2a** and **2a-H₂O** with the Gibbs energies ΔG^0 (kcal/mol) in parentheses.

Figure S20. Optimized structure of 2d and 2d-H₂O with the Gibbs energies ΔG^0 (kcal/mol) in parentheses.

Figure S21. Optimized structure of 2e and 2e-H₂O with the Gibbs energies ΔG^0 (kcal/mol) in parentheses.

Figure S22. Optimized structure of **2e** and **2e-H₂O** with the Gibbs energies ΔG^0 (kcal/mol) in parentheses.

Figure S23. Molecular orbitals of HOMO and LUMO of **3a**, **3d**, **3e** and **3f**. In all complexes, HOMO and LUMO consisted of d_{xy} and d_{z2} orbitals, respectively.

Cartesian coordinates of optimized structures

2a				Н	7.2863
				 С	3.9948
Rh	4.9508	13.5032	4.3147	Н	3.0650
Cl	7.2780	13.3329	4.0731	С	5.2080
С	4.9507	15.4077	4.3146	Н	5.2351
Ν	5.2441	13.7844	6.3903	С	4.7322
С	4.8788	16.0556	5.5362	Н	5.1884
С	4.7338	15.1522	6.7292	Н	3.6825
Η	5.2434	15.5440	7.6153	С	5.0929
Η	3.6730	15.0338	6.9730	Н	4.0723
С	4.7580	12.7185	7.3099	С	4.8278
Η	3.6674	12.7413	7.2257	С	4.8907
С	4.8900	17.4493	5.5296	Н	4.8836
С	4.9506	18.1337	4.3146	С	4.7407
Η	4.9506	19.2193	4.3146	Н	4.7678
Η	4.8427	18.0080	6.4615	Н	5.5698
С	5.2589	11.3699	6.8147	Н	3.8146
Η	4.8703	11.1473	5.8169	С	6.0612
Η	4.9199	10.5734	7.4820	Н	6.0360
Η	6.3518	11.3351	6.7709	Н	5.8030
Η	6.2646	13.8059	6.4310	Н	7.0923
Ν	4.6574	13.7843	2.2390	Н	6.3759
С	5.0226	16.0555	3.0930	С	4.7520
С	5.1676	15.1522	1.9001	Ν	4.4605
Η	4.6580	15.5439	1.0139	С	4.9722
Η	6.2285	15.0338	1.6562	С	3.6313
С	5.1435	12.7184	1.3195	Н	2.6847
Н	6.2342	12.7415	1.4035	С	6.0262
С	5.0113	17.4493	3.0995	Н	6.9663
Η	5.0586	18.0079	2.1677	С	3.7073
С	4.6430	11.3698	1.8150	Н	2.8266
Η	5.0318	11.1474	2.8128	С	5.9475
Η	4.9821	10.5733	1.1478	Н	6.8295
Η	3.5501	11.3348	1.8589	С	4.9061
Η	3.6369	13.8057	2.1984	Н	4.9643
Cl	2.6236	13.3327	4.5562	С	5.0922
С	5.1716	12.9757	8.7568	Н	4.6393
Η	4.7609	13.9084	9.1502	Н	6.1447
Η	4.8081	12.1681	9.3975	С	4.6858
Н	6.2621	13.0105	8.8580	Н	5.6601
С	4.7297	12.9753	-0.1274	С	4.9634
Η	5.1401	13.9080	-0.5210	С	5.0420
Н	5.0932	12.1676	-0.7680	Н	5.0016
Н	3.6391	13.0099	-0.2284	Н	4.2164
				 Н	5.9710
				С	3.6073
2a-H	2 0			Н	3.5751
				 Н	3.8168
Rh	4.9321	13.2328	4.3198	Н	2.6189
Cl	7.2720	13.0991	3.9183	Н	3.4549
С	4.9060	15.1603	4.3313	Cl	2.6292

С

Ν

С

С

Η

С

Η

С

5.1412

5.3677

4.8356

6.3253

7.2353

4.0261

3.1230

6.3585

13.0858

13.5989

15.8209

13.5814

13.6153

13.5108

13.4794

14.0418

8.8664

6.4057

5.5456

9.4209

8.8265

10.9765

11.5788

10.7316

Cl	2.6292	13.0546	4.7714	
0	5.1315	10.9077	4.0558	
Η	6.0929	10.8093	4.0837	
Η	4.7310	10.3365	4.7171	
2d				
Rh	4.9742	13.2483	4.3193	

14.4270

13.0593

12.6828

14.0053 14.3613

14.9174

15.3347

14.7061

12.5574

12.2212

17.2205

17.8814

18.9693

17.9992

19.0750

17.7627

17.7828

11.3913

10.9945

10.5935

11.6916

13.7461

13.0311

13.5911

15.8149

13.5728

13.6456

13.3965

13.3230

14.0257 14.4455

12.9525

12.5398

13.9365

14.2861

14.9060

15.3152

14.7013

12.5130

12.0851 17.2143

17.9878

19.0641

17.7376

17.7800

11.4455

11.0661

10.6164

11.8399

13.7441

11.1444

9.6600

9.2413 11.5153

12.5407

6.7358

7.6375

6.9648

7.4414

7.2375

5.5547

4.3235

4.3204

6.8394

6.6527

7.5157

7.3831

7.2816

6.2689

7.9813

7.4864

6.3461

2.2665

3.1115

-0.8147

-0.2850 -2.2085

-2.7473

-2.1264

-2.6037

-0.8913

-0.4082

-2.8294

-3.8558

1.9243

1.0173

1.7031 1.2499

1.4987

3.0958

1.8074

1.9889

1.1319

1.2653

1.3965

2.4151

0.7164

1.1421

2.3511

-0.1773

Cl	7.2765	13.0975	3.9304
С	4.9304	15.1606	4.3211
Ν	5.3455	13.5391	6.3568
С	4.9075	15.8061	5.5471
С	4.8488	14.8997	6.7454
Η	5.4162	15.2754	7.6031
Η	3.8093	14.7705	7.0616
Η	4.9337	12.8331	6.9588
С	4.8757	17.2051	5.5552
С	4.8649	17.8686	4.3237
Η	4.8387	18.9558	4.3248
С	4.8411	17.9785	6.8450
Η	4.8359	19.0548	6.6616
Η	5.7113	17.7579	7.4734
Η	3.9496	17.7418	7.4361
Η	6.3579	13.4849	6.4513
Ν	4.5899	13.5260	2.2819
С	4.9225	15.8089	3.0963
С	5.0255	14.9082	1.8968
Н	4.4445	15.2593	1.0377
Н	6.0709	14.8264	1.5843
Н	5.0328	12.8403	1.6783
С	4.8862	17.2078	3.0909
С	4.8828	17.9845	1.8026
Н	4.8388	19.0595	1.9883
Н	4.0226	17.7255	1.1752
Η	5.7833	17.7902	1.2097
Η	3.5809	13.4269	2.1875
Cl	2.6814	12.9916	4.7080

2d-H₂O

Rh	4.9548	13.2212	4.3144	
Cl	7.2867	13.1024	3.9506	
С	4.9234	15.1446	4.3270	
Ν	5.3363	13.5400	6.3568	
С	4.9003	15.8055	5.5465	
С	4.8339	14.8998	6.7449	
Н	5.3947	15.2727	7.6089	
Н	3.7924	14.7660	7.0539	
Н	4.9492	12.8405	6.9819	
С	4.8759	17.2041	5.5570	
С	4.8719	17.8666	4.3249	
Н	4.8518	18.9543	4.3239	
С	4.8424	17.9801	6.8456	
Н	4.8434	19.0565	6.6612	
Н	5.7097	17.7560	7.4771	
Н	3.9482	17.7495	7.4356	
Н	6.3514	13.5041	6.4299	
Ν	4.5736	13.5230	2.2878	
С	4.9207	15.8035	3.1047	
С	5.0188	14.9021	1.9032	
Н	4.4415	15.2561	1.0422	
Η	6.0638	14.8130	1.5903	
Н	5.0105	12.8250	1.6941	
С	4.8922	17.2021	3.0936	
С	4.8955	17.9780	1.8044	
Η	4.8575	19.0538	1.9884	
Η	4.0349	17.7236	1.1753	
Η	5.7955	17.7779	1.2124	
Η	3.5645	13.4304	2.1945	
Cl	2.6388	13.0112	4.7355	

2e				
Rh	4.9733	13.2673	4.3193	
Cl	7.2815	13.1339	3.9386	
С	4.9295	15.1785	4.3212	
Н	5.3019	12.7906	8.3384	
Ν	5.3968	13.5674	6.3599	
С	4.8979	15.8202	5.5479	
С	4.8357	14.9018	6.7377	
Η	5.3629	15.2874	7.6187	
Η	3.7923	14.7295	7.0222	
С	5.0347	12.5098	7.3128	
Η	3.9620	12.3287	7.2506	
С	4.8661	17.2194	5.5563	
С	4.8645	17.8823	4.3238	
Н	4.8387	18.9695	4.3249	
С	4.8214	17.9940	6.8450	
Н	4.8177	19.0702	6.6605	
Н	5.6863	17.7737	7.4805	
Н	3.9251	17.7578	7.4289	
Н	5.5651	11.5951	7.0447	
Н	6.4128	13.6479	6.3267	
Н	4.6715	12.7829	0.2988	
Ν	4.5379	13.5514	2.2784	
С	4.9303	15.8233	3.0959	
С	5.0376	14.9111	1.9046	
Н	4.4957	15.2736	1.0228	
Η	6.0888	14.7876	1.6234	
С	4.9512	12.5140	1.3243	
Н	6.0314	12.3851	1.3873	
С	4.8946	17.2224	3.0901	
С	4.9020	18.0006	1.8027	
Η	4.8587	19.0756	1.9892	
Н	4.0460	17.7437	1.1688	
Н	5.8063	17.8050	1.2163	
Η	4.4656	11.5742	1.5906	
Η	3.5192	13.5847	2.3099	
Cl	2.6739	13.0291	4.7011	

4.1109 4.4169 4.6302

2e-H₂O _____

O H

Η

4.9515

5.7878 4.2257

10.9305

10.5653

10.5688

Rh	4.9586	13.2341	4.3039	
Cl	7.2939	13.1181	3.9493	
С	4.9274	15.1579	4.3191	
Н	5.3022	12.8440	8.3574	
Ν	5.3852	13.5614	6.3555	
С	4.8942	15.8136	5.5404	
С	4.8243	14.8976	6.7301	
Н	5.3495	15.2791	7.6149	
Н	3.7796	14.7261	7.0119	
С	5.0467	12.5281	7.3388	
Н	3.9773	12.3229	7.2830	
С	4.8668	17.2122	5.5559	
С	4.8692	17.8784	4.3255	
Η	4.8472	18.9660	4.3278	
С	4.8222	17.9846	6.8464	
Н	4.8234	19.0615	6.6648	

Н	5.6846	17.7597	7.4841	
Η	3.9237	17.7512	7.4286	
Η	5.6019	11.6174	7.1083	
Η	6.3999	13.6506	6.3034	
Η	4.6498	12.7960	0.2831	
Ν	4.5350	13.5492	2.2674	
С	4.9295	15.8193	3.0995	
С	5.0332	14.9133	1.9034	
Η	4.4907	15.2785	1.0225	
Η	6.0835	14.7903	1.6177	
С	4.9512	12.5243	1.3019	
Η	6.0352	12.4200	1.3462	
С	4.8980	17.2179	3.0919	
С	4.9084	17.9986	1.8056	
Η	4.8684	19.0737	1.9935	
Η	4.0519	17.7456	1.1704	
Η	5.8121	17.8013	1.2184	
Η	4.4974	11.5735	1.5774	
Η	3.5166	13.5815	2.2963	
Cl	2.6381	13.0418	4.7187	
0	4.9361	10.9344	4.1536	
Η	5.7736	10.5737	4.4616	
Η	4.2164	10.6048	4.7020	

2f

Rh	4.9746	13.2377	4.3195	
Cl	7.2019	13.0219	3.5897	
С	4.9290	15.1492	4.3208	
Н	5.3568	12.7829	8.3504	
Ν	5.5469	13.5783	6.3918	
С	4.8933	15.7896	5.5483	
С	4.8331	14.8601	6.7285	
Н	5.2677	15.2813	7.6436	
Н	3.7919	14.5975	6.9337	
С	5.1308	12.5041	7.3129	
Η	4.0652	12.3161	7.2033	
С	4.8611	17.1891	5.5566	
С	4.8652	17.8517	4.3234	
Η	4.8399	18.9390	4.3245	
С	4.8086	17.9660	6.8441	
Η	4.8204	19.0418	6.6576	
Η	5.6618	17.7361	7.4916	
Η	3.9018	17.7414	7.4160	
Η	5.6820	11.5951	7.0668	
Η	4.6143	12.7728	0.2865	
Ν	4.3881	13.5547	2.2466	
С	4.9350	15.7929	3.0948	
С	5.0408	14.8695	1.9132	
Η	4.5878	15.2715	0.9983	
Н	6.0935	14.6575	1.7084	
С	4.8547	12.5035	1.3232	
Η	5.9284	12.3674	1.4312	
С	4.9006	17.1924	3.0891	
С	4.9177	17.9731	1.8030	
Η	4.8567	19.0470	1.9914	
Η	4.0762	17.7058	1.1545	
Η	5.8340	17.7912	1.2311	
Η	4.3485	11.5684	1.5683	
Cl	2.7592	12.9185	5.0504	
С	6.9983	13.8026	6.5680	
Н	7.1984	14.0535	7.6176	

Н	7.5496	12.9069	6.2930	
Н	7.3272	14.6162	5.9250	
С	2.9278	13.7111	2.0706	
Η	2.7162	13.9570	1.0220	
Η	2.4190	12.7894	2.3415	
Н	2.5613	14.5056	2.7169	

2f-H₂O

Rh	4.9629	13.2081	4.2976
Cl	7.2178	13.0334	3.5744
С	4.9321	15.1327	4.3151
Н	5.3274	12.8319	8.3672
Ν	5.5376	13.5731	6.3891
С	4.8978	15.7869	5.5376
С	4.8318	14.8618	6.7196
Н	5.2695	15.2796	7.6356
Н	3.7894	14.6057	6.9275
С	5.1206	12.5238	7.3337
Н	4.0568	12.3262	7.2167
С	4.8670	17.1858	5.5530
С	4.8690	17.8521	4.3223
Н	4.8451	18.9398	4.3251
С	4.8175	17.9603	6.8425
Н	4.8348	19.0368	6.6589
Н	5.6690	17.7252	7.4909
Н	3.9093	17.7395	7.4141
Н	5.6876	11.6134	7.1289
Н	4.5988	12.7893	0.2683
N	4.3924	13.5551	2.2339
C	4.9329	15.7938	3.0951
Ċ	5.0332	14.8785	1.9070
H	4.5709	15.2805	0.9964
Н	6.0851	14.6733	1.6904
С	4.8651	12.5182	1.2983
Н	5.9441	12.4115	1.3849
С	4.8995	17.1927	3.0879
С	4.9118	17.9759	1.8028
Н	4.8516	19.0498	1.9928
Н	4.0678	17.7100	1.1566
Н	5.8256	17.7951	1.2264
Н	4.3937	11.5702	1.5549
Cl	2.7234	12.9401	5.0724
0	4.9098	10.9098	4.1530
Н	5.7679	10.5310	4.3686
Н	4.2460	10.5981	4.7781
С	6.9890	13.7958	6.5565
Н	7.1973	14.0568	7.6026
Н	7.5395	12.8979	6.2859
Н	7.3149	14.6017	5.9030
С	2.9308	13.6980	2.0681
Н	2.7082	13.9476	1.0224
Н	2.4347	12.7685	2.3365
Η	2.5611	14.4852	2.7214
3a			

С	-0.000010	-1.374706	-0.000152	
С	1.210111	-2.013725	-0.212373	
С	1.215611	-3.414155	-0.210048	
С	-0.000022	-4.075321	-0.000439	

С	-1.215649	-3.414189	0.209309	Н	-3.241429	-3.951931	-0.324216
С	-1.210136	-2.013758	0.211931	Н	-2.930693	-3.968064	1.408163
С	2.485309	-4.189676	-0.432976	Н	3.319563	-1.484658	-0.049055
С	-2.485356	-4.189745	0.432065	Н	2.534941	-0.990121	-1.548612
С	2.382290	-1.106305	-0.469851	Н	-2.534969	-0.990438	1.548381
С	-2.382310	-1.106385	0.469596	Н	-3.319583	-1.484645	0.048714
С	2.542679	2.661926	0.097984	Н	1.502734	2.894611	-0.155815
С	2.953447	1.312366	-0.484897	Н	3.170982	3.456074	-0.311784
С	4.429390	1.035301	-0.261983	Н	2.644543	2.674170	1.185708
С	4.937938	0.838647	1.026230	Н	2.751283	1.319938	-1.559797
С	6.294538	0.605974	1.220865	Н	4.270489	0.858865	1.884003
С	7.165158	0.572378	0.134509	Н	6.673840	0.451385	2.226787
С	6.669535	0.768625	-1.149355	Н	8.224834	0.392306	0.289625
С	5.309567	0.994711	-1.343125	Н	7.340188	0.741747	-2.003328
С	-2.542698	2.661971	-0.097410	Н	4.926547	1.143139	-2.349996
С	-2.953451	1.312284	0.485186	Н	-2.644593	2.674456	-1.185128
С	-4.429398	1.035259	0.262245	Н	-1.502746	2.894597	0.156412
С	-4.937979	0.838920	-1.026003	Н	-3.170988	3.456029	0.312553
С	-6.294580	0.606265	-1.220658	Н	-2.751264	1.319624	1.560083
С	-7.165167	0.572373	-0.134285	Н	-4.270556	0.859370	-1.883790
С	-6.669511	0.768307	1.149615	Н	-6.673908	0.451923	-2.226607
С	-5.309543	0.994376	1.343402	Н	-8.224844	0.392316	-0.289415
С	-0.585469	0.577762	-2.965122	Н	-7.340138	0.741197	2.003601
С	-0.002544	0.697380	-4.358985	Н	-4.926496	1.142556	2.350299
С	0.585497	0.577092	2.965171	Н	0.417432	-0.270535	-4.649847
С	0.002690	0.696262	4.359119	Н	0.804641	1.430912	-4.389215
Ν	2.090237	0.249329	0.081592	Н	-0.782521	0.961397	-5.072645
Ν	-2.090251	0.249369	-0.081551	Н	-0.414978	-0.272470	4.650606
0	0.296719	0.672227	-2.025394	Н	-0.806058	1.428052	4.389290
0	-1.795712	0.389008	-2.815317	Н	0.782344	0.962225	5.072422
0	-0.296690	0.671920	2.025489	Н	-0.000026	-5.163179	-0.000553
0	1.795691	0.388057	2.815289	Н	2.305290	-5.266048	-0.390847
Rh	-0.000002	0.535414	0.000038	Н	-2.202973	0.222984	-1.109159
Н	3.241424	-3.951962	0.323295	Н	2.202940	0.222697	1.109197
Н	2.930591	-3.967861	-1.409069				
Η	-2.305331	-5.266110	0.389799				

[S1] M. Gerisch, J. R. Krumper, R. G. Bergman, T. D. Tilley Organometallics 2003, 22, 47.

[S2] K. Aikawa, Y. Hioki, K. Mikami, Org. Lett. 2010, 12, 5716.

[S3] (a) Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.

Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M.

Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M.

Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T.

Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N.

Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C.

Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,

V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,

C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador,

J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2013**.

Fig S 24. ¹H and ¹³C NMR spectra of **2a**.

Fig S 25. 1 H and 13 C NMR spectra of **2b**.

Fig S 26. ¹H and ¹³C NMR spectra of 2c.

Fig S 27. ¹H and ¹³C NMR spectra of 3a.

Fig S 28. 1 H and 13 C NMR spectra of **3b**.

Fig S 29. ¹H and ¹³C NMR spectra of 3c.

Fig S 30. 1 H and 13 C NMR spectra of **4a**.

Fig S 31. 1 H and 13 C NMR spectra of **4b**.

Fig S 32. ¹H and ¹³C NMR spectra of 4c.

Fig S 33. 1 H and 13 C NMR spectra of **5**.

Fig S 34. 1 H and 13 C NMR spectra of **7a**.

Fig S 35. 1 H and 13 C NMR spectra of **7b**.

Fig S 36. ¹H and ¹³C NMR spectra of 7c.

Fig S 37. 1 H and 13 C NMR spectra of 7d.

Fig S 38. ¹H and ¹³C NMR spectra of 7e.

Fig S 39. ¹H and ¹³C NMR spectra of 7f.

Fig S 40. 1 H and 13 C NMR spectra of **8**.