Supporting Information

Surface engineering of ultrasmall supported Pd_xBi nanoalloys with enhanced electrocatalytic activity for selective alcohol oxidation

Chenyao Hu, ^a Zupeng Chen, ^b Fengyan Han, ^c Zixia Lin ^d and Xiaofei Yang *c, ^e

^a College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China.

^b Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences,

ETH Zürich, 8093 Zürich, Switzerland.

^c College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University,

Nanjing, 210037, P. R. China.

^d Testing Center, Yangzhou University, Yangzhou 225009, P. R. China.

^e Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School

of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.

Email: xiaofei.yang@njfu.edu.cn

Experimental

Materials and chemicals

Carbon black (Vulcan XC-72R) was purchased from Cabot Corp (USA). Pd(NO₃)₂ solution $(0.94 \text{M Pd}(\text{NO}_3)_2 \text{ and } 0.19 \text{M HNO}_3, \ge 99.9\%)$ was obtained from Shanghai July Chemical Co. (P. R. China). Hydrazine hydrate (HHA, \geq 85%, AR), ethylene glycol (EG, \geq 99.0%, AR) Bismuth(\mathbbm{I}) nitrate pentahydrate (AR, \geq 99.0%), methanol (AR, \geq 99.5%), ethanol (AR, \geq 99.7%), 1-Propanol (AR, \geq 99.5%), isopropanol (AR, \geq 99.7%) were obtained from Sinopharm Chemical Reagent Co. (P. R. China). All the chemicals employed were used as received.

Synthesis of Pd_xBi/CB

CB (100 mg) was ultrasonically dispersed in EG (200 mL containing 1.60 mL HHA) to form a uniform suspension. After ultrasonication, 250 µL Pd(NO₃)₂ and Bi(NO₃)₃ mixed solution (containing 2.0 M HNO₃)* was added to the above reaction system, which was further stirred for about 15 min. The resulting product was centrifuged, washed, and finally dried at room temperature in a vacuum oven overnight.

Synthesis of Pd/CB

CB (100 mg) was ultrasonically dispersed in EG (200 mL containing 1.60 mL HHA) to form a uniform suspension. After ultrasonication, 250 µL Pd(NO₃)₂ with 0.2 M was added to the above reaction system, which was further stirred for about 15 min. The resulting product was centrifuged, washed, and finally dried at room temperature in a vacuum oven overnight.

Physical characterizations

Transmission electron microscopy (TEM) measurements were performed on a JEOL JEM-2100 microscope operating at 200 kV, by depositing a drop of sample dispersion onto 200 mesh Cu grids coated with a carbon layer. The powder XRD patterns were recorded on the Beijing Purkinjie general instrument XD-3 X-ray diffraction using Cu K α radiation ($\lambda \approx 1.54$ Å) at 35 kV and 20 mA (20 from 10° to 80°). A glass slide was used to place the grinded sample. X-ray photoelectron spectroscopy (XPS) was performed on a RBD upgraded PHI-5000C ESCA system (Perkin Elmer) with Al K α radiation (hv = 1486.6 eV). Inductively coupled plasma-optical emission spectroscopy (ICP-OES) experiments was performed on a Varian 720-ES spectrometer.

^{*}For Pd_8Bi/CB synthesis, $c[Pd(NO_3)_2] = 0.75$ M, $c[Bi(NO_3)_3] = 0.09$ M;

For Pd₄Bi/CB synthesis, $c[Pd(NO_3)_2] = 0.63$ M, $c[Bi(NO_3)_3] = 0.16$ M; For Pd₂Bi/CB synthesis, $c[Pd(NO_3)_2] = 0.47$ M, $c[Bi(NO_3)_3] = 0.24$ M.

Electrochemical measurements

Electro-catalytic activities of samples were measured in a conventional three-electrode cell using a CHI 760D electrochemical workstation. The electrode assembly consists of a Pt wire as the counter electrode, and a mercuric oxide electrode with double salt bridges as the reference electrode in alkaline medium, a glassy carbon disk (3 mm in diameter) coated with 10 μ g catalyst as the working electrode. Before the preparation of the catalysts modified GCE, the GCE was polished with 1, 0.3 and 0.05 μ m α -Al₂O₃, sequentially. 10 mg catalysts was ultrasonically dispersed in 5.0 mL mixture of water and 5% Nafion solution (v[water] : v[Nafion solution] = 60:1) for 1 min. 5 μ L of as-prepared mixture was carefully injected on the gassy carbon disk and dried in the air for 3 h at room temperature. No ohmic-drop compensation was applied to any of the performed experiments. All the potentials were given on the reversible hydrogen electrode (RHE) scale.

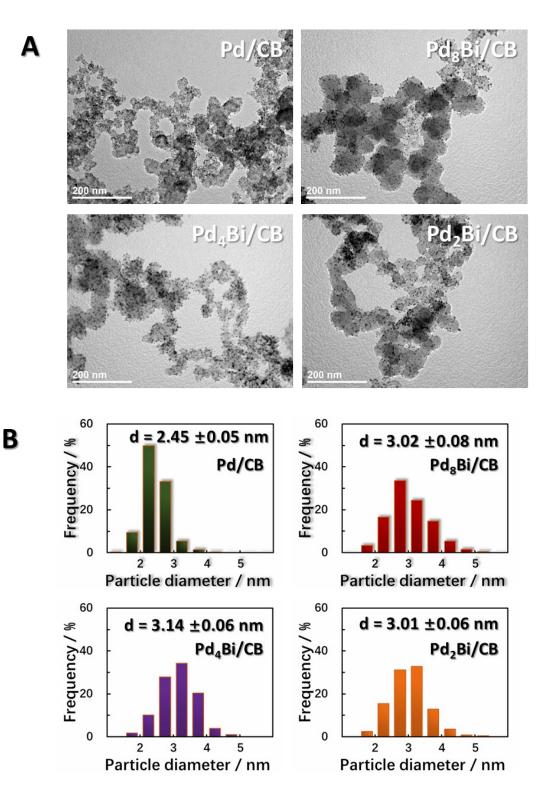


Fig. S1. High-magnification TEM images (A), the histograms of particle size distributions (B) of Pd/CB and Pd_xBi/CB nanocomposites.

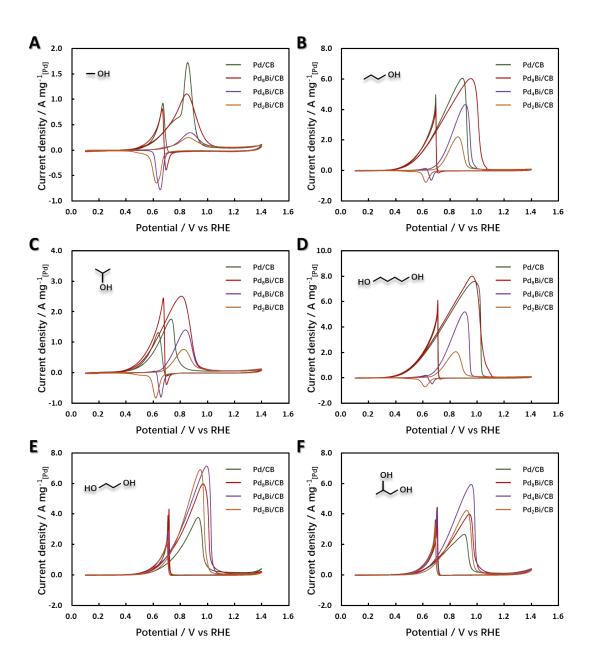


Fig. S2. CV curves recorded for the oxidation of different alcohols (1.0 M) in 1.0 M NaOH solutions (scan rate = 50 mV/s).

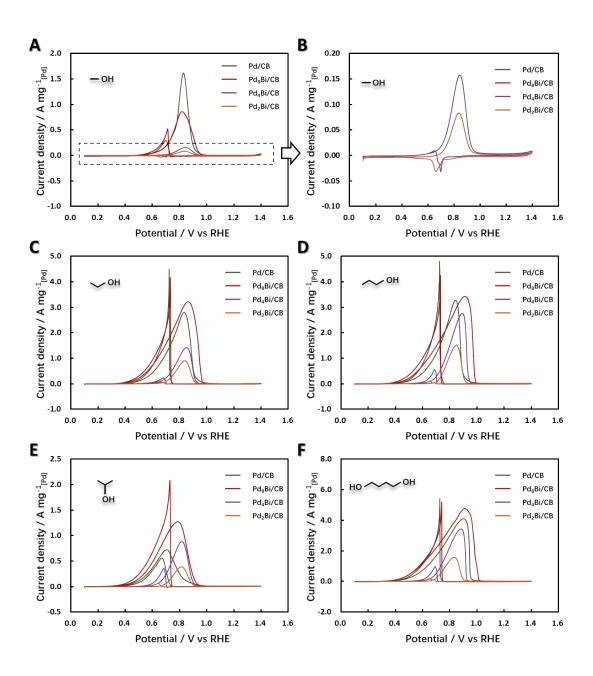


Fig. S3. CV curves recorded for the oxidation of different alcohols (1.0 M) in 1.0 M NaOH solutions (scan rate = 2 mV/s).

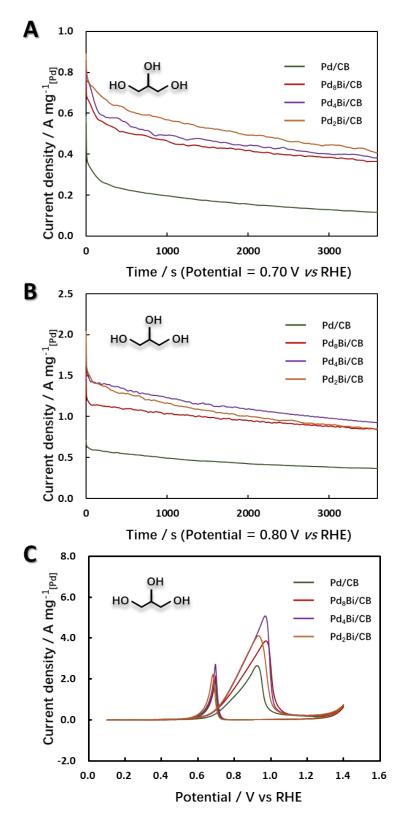


Fig. S4. Chronoamperometric curves at the potential of 0.70 V (A) and 0.80 V (B) recorded in 1.0 M glycerol + 1.0 M NaOH solution. CV curves of corresponding samples recorded after chronoamperometric test (C).