Supporting Information

Visible light mediated selective α-functionalization of 1,3-dicarbonyl compounds via disulfide induced aerobic oxidation

Jingnan Zhao, Fan Yang, Zongyi Yu, Xiaofei Tang, Yufeng Wu, Cunfei Ma, Qingwei Meng*

State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, 116024, P.R. China.

* E-mail: mengqw@dlut.edu.cn

Table of Contents

1	. General Experimental	3
2	. General Procedures	5
	2.1 General experimental procedure for the disulfide catalyzed hydroxylation reaction	5
	2.2 Optimization of reaction parameters for the hydroxylation reaction	5
	2.3 General experimental procedure for the disulfide catalyzed hydroxymethylation reaction	8
	2.4 Optimization of Reaction Parameters for the Hydroxymethylation Reaction	9
3	. Preliminary mechanistic studies	12
	3.1 Mechanistic experiments of the disulfide-catalyzed hydroxylation reaction	12
	3.2 Mechanistic experiments of the disulfide-catalyzed hydroxymethylation reaction	13
4	The UV-visible spectroscopy and Fluorescence quenching studies	20
5	Quantum Yield Measurement	25
6	Continuous-flow setup	28
	6.1 Generalities of photo reactions	28
	6.2 Residence time calculation	29
	6.3 Typical runs	
	6.4 Gram-scale	
7	Characterization data for all products	33
8	NMR Spectra	54

1. General Experimental

1.1 Solvents and Reagents

All solvents were commercially supplied or provided by the communal stills of the School of Pharmaceutical Science and Technology, Dalian University of Technology. Anhydrous acetonitrile, toluene, tetrahydrofuran and dichloromethane were dried using Na and stored over thoroughly dried 4 Å molecular sieves.

All other reagents were purchased from various commercial sources and used as received.

1.2 Photoreactor

The photocatalytic reactions were carried out on a WP-TEC-1020 photoreactor purchased from Wattcas Company.

Figure S1. WP-TEC-1020 photoreactor

1.3 Chromatography and Spectroscopy

Analytical TLC was visualized with UV light at 254nm. Thin layer chromatography was carried out on TLC glass sheets with silica gel 60 F254. Purification of reaction products was carried out by chromatography using silica gel 60 (200-300 mesh). All ¹H NMR (400/500 MHz) and ¹³C NMR (101/126 MHz) were recorded on a VARIAN INOVA-400/500M and AVANCE II 400 spectrometer at 25 °C. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as internal standard (CDCl₃: δ 7.26, for ¹H NMR and CDCl₃: δ 77.0 for ¹³C NMR). For ¹H NMR, data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, dd = double doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz) and integration. High resolution mass spectrometry data were obtained with UPLC/Q-Tof Mass Spectrometer and were determined by electrospray ionization (ESI).

2. General Procedures

2.1 General experimental procedure for the disulfide catalyzed hydroxylation reaction

The reaction was performed on photochemical reactor. A mixture of 5-chloroindanone carboxylic methyl ester (1a, 22.46 mg, 0.1 mmol), bis(4-fluorophenyl) disulfide (2d, 13.01 mg, 0.005mmol) were stirred in 4 mL of DMF in a quartz tube at room temperature under the irradiation of 10 W blue LED for a given time. Meanwhile, the solution was bubbled with an air pump. The solvent was removed under reduced pressure and the reside was purified by column chromatography on silica gel (ethyl acetate/petroleum ether) to provide the corresponding products.

2.2 Optimization of reaction parameters for the hydroxylation reaction

In our initial screening reactions, the toluene solution of 1-indanone-derived β -keto ester (1a) and disulfide (2a) was placed under 3W white LED irradiation and stirred for 24h with the reaction vial open to air, the desired α -hydroxylated product 3a was formed in very low yield (Table S1, entry1). It should be noticed that in the absence of disulfide, none of the products was observed. Meanwhile, we founded that photo irradiation also played an essential role. Various light sources were applied to the model reaction. The results showed that not all of the selected light sources were effective for this transformation and blue LED (450-455nm) was the best choice.

CI	O CO ₂ Me		disulfide (2a , 10 air, PhMe (2.0 light irradiation, r.	CI CO ₂ Me			
	Entry	disufide	light source	solvent	temp.	yield ^b	
	1	2a	3 W white LED	PhMe	RT	31%	
	2		3 W white LED	PhMe	RT	Trace	
	3	2a	Darkness	PhMe	RT	n.r.	
	4	2a	3 W red LED	PhMe	RT	Trace	
	5	2a	3 W yellow LED	PhMe	RT	Trace	
	6	2a	3 W green LED	PhMe	RT	Trace	
	7	2a	3 W blue LED	PhMe	RT	43%	
	8	2a	3 W purple LED	PhMe	RT	36%	
	9	2a	3 W black LED	PhMe	RT	48%	

^aReaction conditions: **1a** (0.1 mmol), disulfide (10 mol%), PhMe (2.0 mL), in a 10 mL glass vial at room temperature under the irradiation of 3 W LED for 24 h. Meanwhile, the solution was bubbled with an air pump. ^bDetermined by ¹H NMR analysis.

When the aromatic ring of disulfide replaced by different functional groups, the reaction efficiency was improved. Among the tested disulfides, bis(4-fluorophenyl) disulfide (2d) showed the highest catalytic reactivity. The effect of solvent was also examined. Among the typical solvents, DMF was founded to be the most effective. Overall, the most efficient and environmentally friendly method to prepare a high yield of 2a involved using 10 mol% bis(4-fluorophenyl) disulfide in DMF under 3 W blue LED irradiation.

Table S2. Evaluation of disulfides and solvents^a

Linuy	Distillat	Light	Solvent	1 lolu
1	2a	3 W blue LED	PhMe	43%
2	2b	3 W blue LED	PhMe	30%
3	2c	3 W blue LED	PhMe	27%
4	2d	3 W blue LED	PhMe	56%
5	2e	3 W blue LED	PhMe	47%
6	2f	3 W blue LED	PhMe	41%
7	2g	3 W blue LED	PhMe	46%
8	2h	3 W blue LED	PhMe	31%
9	2i	3 W blue LED	PhMe	28%
10	2j	3 W blue LED	PhMe	trace
11	2k	3 W blue LED	PhMe	trace
12	21	3 W blue LED	PhMe	trace
13	2m	3 W blue LED	PhMe	trace
14	2d	3 W blue LED	Hexane	Trace
15	2d	3 W blue LED	<i>p</i> -xylene	24%
16	2d	3 W blue LED	THF	Trace

17	2d	3 W blue LED	EA	55%
18	2d	3 W blue LED	MeCN	Trace
19	2d	3 W blue LED	Acetone	20%
20	2d	3 W blue LED	DMF	79%
21	2d	3 W blue LED	DMAC	3%
22	2d	3 W blue LED	DMSO	Trace
23	2d	3 W blue LED	МеОН	Trace
24	2d	3 W blue LED	EtOH	Trace
25	2d	3 W blue LED	Tetralin	Trace
26	2d	3 W blue LED	$\mathrm{CH}_2\mathrm{Cl}_2$	30%
27	2d	3 W blue LED	CHCl ₃	53%
28	2d	3 W blue LED	CCl ₄	78%
29	2d	3 W blue LED	DMC	7%
30	2d	3 W blue LED	Dioxane	7%
31	2d	3 W blue LED	Morpholine	Trace

^aReaction conditions: **1a** (0.1 mmol), disulfide (10 mol%), solvent (2.0 mL), in a 10 mL glass vial at room temperature under the irradiation of 3 W blue LED for 24 h. Meanwhile, the solution was bubbled with an air pump. ^bDetermined by ¹H NMR analysis.

Table S3. Evaluation of Concentration

CI ⁄	1a) }—CO₂Me	e S S (2d air, DMF 10W blue LED, r.t.) , 12 h	O OH CO ₂ Me 3a
	Entry	Cat (x mol%)	concentration	light	yield ^b
	1	10	0.050 mol/L	10 W blue LED	90%
	2	5	0.050 mol/L	10 W blue LED	86%
	3	1	0.050 mol/L	10 W blue LED	33%
	4	5	0.0125 mol/L	10 W blue LED	81%
	5	5	0.0250 mol/L	10 W blue LED	90%
	6	5	0.0500 mol/L	10 W blue LED	82%
	7	5	0.1000 mol/L	10 W blue LED	81%
	8	5	0.0250 mol/L	10 W white LED	86%
	9 ^d	5	0.0250 mol/L	10 W white LED	88%
	10	5	0.0250 mol/L	10 W blue LED	96%
	11 ^d	5	0.0250 mol/L	10 W blue LED	96%
	12 ^c	5	0.0250 mol/L	10 W blue LED	42%

^aReaction conditions: **1a** (0.1 mmol), disulfide and DMF in a 10 mL quartz tube at room temperature performed on photochemical reactor under the irradiation of blue LED for a given time. Meanwhile, the solution was bubbled with an air pump for 24h. ^bDetermined by HPLC analysis. ^c Performed on glass vial. ^dO₂ balloon.

2.3 General experimental procedure for the disulfide catalyzed hydroxymethylation reaction

The reaction was performed on photochemical reactor. A mixture of 5-chloroindanone carboxylic methyl ester (1a, 22.46 mg, 0.1 mmol), styrene (5a, 15.67mg) and phenyl disulfide (2a, 10.91 mg, 0.005mmol) were stirred in 2 mL of MeCN in a quartz tube at room temperature under the irradiation of 10 W blue LED for a given time. Meanwhile, the solution was bubbled with an air pump. The solvent was removed under reduced pressure and the reside was purified by column chromatography on silica gel (ethyl acetate/petroleum ether) to provide the corresponding products.

2.4 Optimization of Reaction Parameters for the Hydroxymethylation Reaction

In our initial screening reactions, the toluene solution of 1-indanone-derived β -keto ester (1a) styrene (5a, 20.83 mg, 2.0 equiv) and disulfide (2a) was placed under 3W white LED irradiation and stirred for 24 h with the reaction vial open to air, the desired α -hydroxymethylated product 4a was formed in very low yield (Table S4, entry1). It should be noticed that in the absence of disulfide, none of the products was observed. Meanwhile, we founded that photo irradiation also played an essential role. Various light sources were applied to the model reaction. The results showed that not all of the selected light sources were effective for this transformation and blue LED (450-455nm) was the best choice.

Table S4. Evaluation of solvents and disulfides.^a

^aReaction conditions: **1a** (0.1 mmol), disulfide (5 mol%), solvent (2.0 mL) and styrene (2.0 eq) in a 10 mL quartz tube performed on photochemical reactor under the irradiation of LED for 12 h. Meanwhile, the solution was bubbled with an air pump. ^bDetermined by ¹H NMR analysis.

Table S5. Evaluation of Olefines^a

Entry	Disufide	Olefin	4a yield $(\%)^{b}$
1	2a	5a	81
2	2a	5b	63
3	2a	5c	44
4	2a	5d	43
5	2a	5e	84
6	2a	5f	83.
7	2a	5g	51
8	2a	5h	84
9	2a	5i	76
10	2a	5j	69
11	2a	5k	88
12	2a	51	66
13	2a	5m	n.r.

14	2a	5n	n.r.
15	2a	50	n.r.
16	2a	5p	n.r.
17	2a	5q	n.r.
18	2c	5a	77
19	2d	5a	85

^aReaction conditions: Performed on photochemical reactor with quartz tube, **1a** (0.1 mmol), disulfide (5 mol%), MeCN (2.0 mL) and olefine at room temperature under the irradiation of 10W blue LED for 24h. Meanwhile, the solution was bubbled with an air pump. ^bDetermined by HPLC analysis.

Table S6. Evaluation of Disulfide and Styrene loading^a

^aReaction conditions: Performed on photochemical reactor with quartz tube, **1a** (0.1 mmol), disulfide styrene and MeCN (2.0 mL) in a quartz tube at room temperature under the irradiation of 10 W blue LED for a given time. Meanwhile, the solution was bubbled with an air pump. ^bDetermined by HPLC analysis. ^c O₂ balloon. ^d 4h.

3. Preliminary mechanistic studies

3.1 Mechanistic experiments of the disulfide-catalyzed hydroxylation reaction

3.1.1 The addition of TEMPO in the model reaction system

Scheme S1. Addition of TEMPO in disulfide-catalyzed hydroxylation reaction

A mixture of 5-chloroindanone carboxylic methyl ester (**1a**, 22.46 mg, 0.1 mmol), bis(4-fluorophenyl) (**2d**, 13.01 mg, 0.005mmol) and TEMPO (1.0 equiv) were stirred in 4 mL of DMF in a quartz tube at room temperature under the irradiation of 10 W blue LED for 8h. Meanwhile, the solution was bubbled with an air pump. The solvent was removed under reduced pressure and the reside was purified by column chromatography on silica gel (ethyl acetate/petroleum ether) to provide the corresponding product **3a** in 89% yield.

3.1.2 The addition of DABCO in the model reaction system

Scheme S2. Addition of DABCO in disulfide-catalyzed hydroxylation reaction

We carried out control experiments trying to verify the presence of photoexcited singlet oxygen. When the single oxygen quencher, 1,4-diazabicyclo[2.2.2]octane (DABCO), was added to the reaction system, a greatly reduced product yield was observed.

3.1.3 The model reaction was carried out under N₂

Scheme S3. Disulfide-catalyzed hydroxylation reaction in N₂ atmosphere

A mixture of 5-chloroindanone carboxylic methyl ester (1a, 22.46 mg, 0.1 mmol), bis(4-fluorophenyl) (2d, 13.01 mg, 0.005mmol) were stirred in 4 mL of DMF in a quartz tube at room temperature under the irradiation of 10 W blue LED for 12h under N_2 . The solvent was removed under reduced pressure, analysis by NMR and HPLC showed no product formation.

3.2 Mechanistic experiments of the disulfide-catalyzed hydroxymethylation reaction

3.2.1 The model reaction was carried out under N₂

Scheme S4. Disulfide-catalyzed hydroxymethylation reaction in N₂ atmosphere

A mixture of 5-chloroindanone carboxylic methyl ester (1a, 22.46 mg, 0.1 mmol), styrene (5a, 15.67mg), phenyl disulfide (2a, 10.91 mg, 0.005mmol) and were stirred in 2 mL of MeCN in a quartz tube at room temperature under the irradiation of 10 W blue LED for a given time. The system was protected by N_2 . The solvent was removed under reduced pressure, analysis by NMR and HPLC showed no product formation.

3.2.2 The addition of TEMPO in the model reaction system

Scheme S5. Addition of TEMPO in disulfide-catalyzed hydroxymethylation reaction

A mixture of 5-chloroindanone carboxylic methyl ester (**1a**, 22.46 mg, 0.1 mmol), styrene (**5a**, 15.67mg), phenyl disulfide (**2a**, 10.91 mg, 0.005mmol) and TEMPO (15.92mg, 1.0 eq) were stirred in 2 mL of MeCN in a quartz tube at room temperature under the irradiation of 10 W Blue LED for a given time. Meanwhile, the solution was bubbled with an air pump. Analysis by NMR and HPLC showed no product formation. The HRMS spectrum of the system is demonstrated as bellow.

Scheme S6. HRMS evidence of thiyl radical and alkyl radical

3.2.3 The formation of benzaldehyde.

Due to the volatility of benzaldehyde in the non-closed reaction system, we improved the reaction system and tried to collect the produced benzaldehyde. We used a needle tube instead of the gas line of the photoreactor to introduce air into the system, and add a trap to the system to increase the exhaust gas absorption. The reaction was stopped after 24 hours. Aldehyde was isolated by flash chromatography eluting with $CH_2Cl^2/MeOH$ (50:1) with 0.0086g (53% yield compared to styrene).

¹H NMR (500 MHz, Chloroform-d) δ 10.00 (s, 1H), 7.86 (d, J = 7.4 Hz, 2H), 7.61 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.5 Hz, 2H).

COLD TRAP (MeCN at -15 ℃)

3.2.4 NMR study of substrate-disulfide complex

We carried out a set of NMR experiments to seek evidence of the substrate-disulfide complex. To a dried 8 mL reaction flask equipped with a magnetic stir bar was charged with substrate **1a** (0.1 mmol, 22.46 mg), **2a** (0.005mmol, 10.91 mg) and CDCl₃ (2 mL).

Disulfide-olefin complex

The ¹H-NMR (400 MHz, CDCl₃) spectra were shown in Figure S2, from which the changes of peaks and chemical shifts were observed at δ 3.90-3.30 ppm as the ratio of disulfide and **1a** increased. The spectra from δ 3.87-3.73 ppm and δ 3.59-3.31 ppm were enlarged in Figure S2b and Figure S2c.

From Figure S2b and Figure S2c, the chemical shift of $-COOCH_3$ (δ 3.80 ppm, 3.86 ppm) from the keto form and enol form of **1a** drifted upfield and the peak of α -H (-CH-) (δ 3.56 ppm) as well as β -H (-CH₂-) (δ 3.35 ppm) were shifted to upfield, which indicated that the electron density on the substrate had increased.

Figure S2. a) The coordination of 2a and 1a by ¹H-NMR analysis.

Figure S2. b) The detail view from δ 3.89 – 3.70 ppm of Figure S2

Figure S2. c)The detail view from δ 3.65 – 3.25 ppm of Figure S2

3.2.5 NMR study of disulfide-styrene complex

We carried out a set of NMR experiments to seek evidence of the disulfide–olefin complex. By analyzing a series of ¹H NMR of a fixed amount of styrene mixed with increasing amounts of disulfide **2a** in CD3CN, we found that the chemical shift of the styrene CH=CH₂ drifted upfield, which indicated that the electron density on the styrene had increased.

Figure S3. The coordination of 5a and 1a by ¹H-NMR analysis.

6.815 6.810 6.805 6.800 6.795 6.790 6.785 6.780 6.775 6.775 6.760 6.755 6.750 6.745 6.740 6.735 6.730 6.725 6.720 6.715 fl(pom)

Figure S4. a) The detail view from δ 3.65 – 3.25 ppm of Figure S3

Figure S4. b) The detail view from δ 3.65 – 3.25 ppm of Figure S3

4 The UV-visible spectroscopy and Fluorescence quenching studies

UV-visible spectroscopy of reaction solution was recorded on a UV-9000S spectrophotometer. The sample was prepared by mixing disulfide **2a** and substrate **1a** with MeCN (M[**1a**] = 0.025 mol/L, M[**2a**] = 0.0025 mol/L) in a light path quartz UV cuvette. The UV-visible spectroscopy indicated that the maximum absorption wavelength of reaction solution was found to be 328nm. The absorption was collected and result was listed in Figure S5.

A set of UV-Vis spectra scanning experiments were carried out as follows: It can be observed that diphenyl disulfide has little change in absorption spectrum regardless of whether it is irradiated with visible light (below), and the combination of diphenyl disulfide and substrate is formed. There is a clear new absorption peak at around 400 nm, which indirectly proves that the complex may interact with the visible blue light wavelength. This result is also consistent with online nuclear magnetic characterization. The complex formed may be the key to a photocatalytic reaction. Meanwhile, the photographs of reaction solution before and after blue LEDs irradiation indicated that an EDA complex might exist.

Figure S5. a) UV-visible spectroscopy of hydroxylation system

Figure S5. b) The photographs of reaction solution before and after blue LEDs irradiation.

Figure S5. c) UV-visible spectroscopy of 3v and disulfide mixture

Figure S5. d) UV-visible spectroscopy of 3aa and disulfide mixture

Figure S5. e) UV-visible spectroscopy of 3ab and disulfide mixture

Figure S5. f) UV-visible spectroscopy of 3ac and disulfide mixture

Emission quenching experiments (Stern-Volmer studies)

Emission intensities were recorded using Hitachi F-7000 Fluorescence Spectrometer for all experiments. The excitation wavelength was fixed at 435nm, and the emission wavelength was measured at 435nm. The sample was prepared by mixing disulfide **2a**, substrate **1a**, styrene **5a**, CuI with solvent DMF and MeCN in a light path quartz fluorescence cuvette. The emission intensity was collected and the results were listed as follows. The samples were prepared by mixing by PhSSPh (2×10^{-2} mol/L) and different amount of substrate **1a** (2×10^{-3} mol/L to 3×10^{-2} mol/L) in DMF. The emission intensity was collected and the results were presented in Figure S6.

Figure S6. Quenching of PhSSPh fluorescence emission in the presence of 1a

Figure S7. Quenching of PhSSPh fluorescence emission in the presence of 5a

Figure S8. UV-visible spectroscopy of hydroxylation system

Figure S9. The detail view of Figure S8

Figure S10. UV-visible spectroscopy of hydroxymethylation system

5 Quantum Yield Measurement

5.1 Visible light irradiation on/off experiment

An on/off visible light irradiation experiment was carried out to verify the effect of photoirradiation, and show that the continuous irradiation of visible light is necessary for promoting the present transformation.

Scheme S7. Visible light on/off experiment of disulfide-catalyzed hydroxylation reaction

5.2 Measurement of quantum yield

According to the procedure of Yoon, the photon flux of the LED was determined by standard ferrioxalate actinometry. A 0.15 M solution of ferrioxalate was prepared by dissolving potassium ferrioxalate hydrate (2.21 g) in H₂SO₄ (30 mL of a 0.05 M solution). A buffered solution of 1,10-phenanthroline was prepared by dissolving 1,10-phenanthroline (50 mg) and sodium acetate (11.25 g) in H₂SO₄ (25 mL of a 0.5 M solution). Both solutions were stored in the dark. To determine the photon flux of the LED, the ferrioxalate solution (4.0 mL) was placed in a cuvette and irradiated for 90 s at $\lambda = 450$ nm. After irradiation, the phenanthroline solution (0.7 mL) was added to the cuvette and the mixture was allowed to stir in the dark for 1 h to allow the ferrous ions to completely coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm. A nonirradiated sample was also prepared and the absorbance at 510 nm was measured. Conversion was calculated using Equation S1.

mol Fe²⁺ =
$$\frac{V \cdot \Delta A}{l \cdot \epsilon}$$
 (Equation S1)

Where V is the total volume (0.00470 L) of the solution after addition of phenanthroline, ΔA is the difference in absorbance at 510 nm between the irradiated and non-irradiated solutions, 1 is the path length (1.0 cm), and ϵ is the molar absorptivity at 510 nm (11,100 L mol⁻¹ cm⁻¹). The photon flux can be calculated using Equation S2.

photo flux =
$$\frac{\text{mol Fe}^{2+}}{\emptyset \cdot t \cdot f}$$
 (Equation S2)

Where Φ is the quantum yield for the ferrioxalate actinometer, t is the time (90.0 s), and f is the fraction of light absorbed at $\lambda = 450$ nm. The photon flux was calculated to be 9.83×10^{-8} einstein s⁻¹.

Determination of fraction of light absorbed at 450 nm for the ferrioxalate solution:

The absorbance of the above ferrioxalate solution at 450 nm was measured to be 1.187. The fraction of light absorbed (f) by this solution was calculated using Equation S3, where A is the measured absorbance at 450 nm.

$$f = 1 - 10^{-A(450nm)}$$
 (Equation S3)

Figure S11. Absorbance of the ferrioxalate actinometer solution.

Determination of the reaction quantum yield:

The reaction was performed on photochemical reactor. A mixture of 5-chloroindanone carboxylic methyl ester (1a, 22.46 mg, 0.1 mmol), bis(4-fluorophenyl) disulfide (2d, 13.01 mg, 0.005mmol) were stirred in 4 mL of DMF in a quartz tube at room temperature under the irradiation of 10 W blue LED for a 1h. Meanwhile, the solution was bubbled with an air pump. After irradiation, the yield of product 3a was determined to be 6% (0.006 mmol of 3a). The reaction quantum yield (Φ) was determined using Equation S4 where the photon flux is 9.83 × 10⁻⁸ einstein s⁻¹ (determined by actinometry as described above), t is the reaction time (3600 s) and f is the fraction of incident light absorbed by the reaction mixture, determined using Equation S3. An absorbance of the reaction mixture at 450 nm was measured to be 0.032.

$$\phi = \frac{\text{mol of product formed}}{\text{photon flux } \cdot \text{t} \cdot \text{f}} \quad (\text{Equation S4})$$

The reaction quantum yield (Φ) was thus determined to be 0.23

Figure S12. Absorbance of the reaction mixture solution.

6 Continuous-flow setup

6.1 Generalities of photo reactions

The photo reactions were conducted in a commercial continuous-flow reactor (Corning[®] Advanced FlowTM Lab Photo Reactor) featuring a compact glass mesofluidic module (155 × 125 mm size, 0.8 mm channel height, 2.7 mL internal volume) integrated with a high capacity heat exchanger (2 layer, 22 mL, 1 W mL⁻¹ K⁻¹). LED panels were mounted on both sides of the fluidic module (40 mm from the center of the reactive layer), and each LED panel was equipped with multiple wavelengths (20 LEDs for each wavelength) and a heat exchanger (T=15°C). The thermoregulation of both the glass fluidic module and the LED panels was carried out with Huber minichiller 280 thermostats. Meonoethylenglycol was utilized as thermofluid. The feed solution was conveyed to the photoreactor with a HPLC pump (Corning Intelligent Pump, UI-22, 0.1 – 10 mL min⁻¹) through a section of 1/8" PFA tubing (Swagelok®). The feed solution was installed on a precision scale for accurate flow rate monitoring. A dome-type back-pressure regulator (BPR, Zaiput Flow Technologies®) was inserted downstream the reactor. The gas flow rate was controlled with a Bronkhorst® F210CTM mass flow controller (MFC).

Figure S13. Continuous-Flow setup

6.2 Residence time calculation

The residence time is calculated according to Equation S1:

Residence time (min) =
$$\frac{\text{Internal volume (mL)}}{\text{Flow rate (mL min^{-1})}}$$
 (Equation S1)

The total flow rate combines the individual flow rates of all fluids fed into the reactor. The gas flow rate is calculated from the flow rate measured by the MFC according to Equation S2-3:

$$n_{O_2} = \frac{P_N(atm)V_N(L)}{R(L.atm.mol^{-1}.K^{-1})T_N(K)}$$
(Equation S2)
$$V_{real} = \frac{n_{O_2}RT_{real}}{P_{real}}$$
(Equation S3)

For example, the actual volume of O_2 delivered under 5 barg and 30°C when the MFC is set at 1 mL min⁻¹ is 0.22 mL min⁻¹ (see Equations S4-5):

$$n_{O_2} = \frac{P_N(atm)V_N(L)}{R(L.atm.mol^{-1}.K^{-1})T_N(K)} = \frac{1*0.001}{0.082*273.15} = 0.0446 \ mmol \ \text{(Equation S4)}$$
$$V_{real} = \frac{n_{O_2}RT_{real}}{P_{real}} = \frac{0.0000446*0.082*303.15}{5} = 0.22 \ mL \ \text{(Equation S5)}$$

,

Residence (irradiation) time within the reactor time was calculated according to Equation S1:

$$Residence Time = \frac{Internal \ volume \ (mL)}{Flow \ rate \ liquid \ phase \ \left(\frac{mL}{\min}\right) + Real \ flow \ rate \ gas \ phase \ \left(\frac{mL}{\min}\right)}$$
$$= \frac{2.7}{0.5 + 0.22} \ min = 3.75 \ min$$
$$Total \ Residence \ Time = \frac{total \ time}{\frac{V_{mixcure}}{flow}} \ x \ Residence \ Time$$
$$= \frac{240 min}{10 mL/0.5 mL \ min^{-1}} \times 3.75 \ min = 45 \ min$$

6.3 Typical runs

The HPLC pump used to deliver a solution of **1a** (0.2246g, 1 mmol, 1.0 equiv) and bis(4-fluorophenyl) disulfide **2d** (0.0127g, 5 mol%) in 10 mL DMF was set to 0.5 mL min⁻¹ and the oxygen flow was set to 1 mL min⁻¹ with the MCF, and both fluids were conveyed to the continuous-flow photoreactor through perfluoroalkoxyalkane (PFA) tubing (1/8" O.D.). Mixing and irradiation (385nm LED, 100% intensity) occurred along the entire reactor channel (2.7 mL internal volume, min residence time) under 5 barg of pressure.

Table S7. Process optimization for the preparation of 3a

Entry	ntrv 1 a		feed 1	O_2	Т	back-	light	Total	Res.	Conv. ^a
Entry	14	(eq)	(mL n	nin ⁻¹)	- (°C)	pressure	resource	time	time	(yield) ^b
1	0.1M	0.1	0.5	2.5	20	0	385 nm	1h	2.6 min	quant.
2	0.1M	0.1	0.5	2.5	20	5	385 nm	1h	7.8 min	18%
3	0.1M	0.1	0.5	2.5	20	10	385 nm	1h	10.6 min	21%
4	0.1M	0.2	0.5	2.5	20	5	385 nm	1h	10.6 min	21%
5	0.1M	0.1	0.5	5.0	20	5	385 nm	1h	5.2 min	13%
6	0.1M	0.1	0.5	1.0	20	5	385 nm	1h	11.4 min	26%
7	0.1M	0.1	1.0	2.0	20	5	385 nm	1h	11.3 min	28%
8	0.1M	0.1	0.1	0.2	20	5	385 nm	1h	22.7 min	25%
9	0.1M	0.1	0.5	1.0	30	5	385 nm	1h	11.2 min	33%
10	0.1M	0.1	0.5	1.0	50	5	385 nm	1h	11.0 min	37%
11	0.1M	0.1	0.5	1.0	30	5	405 nm	1h	11.2 min	22%
12	0.1M	0.1	0.5	1.0	30	5	white LED	1h	11.2 min	quant.
13	0.1M	0.1	0.5	1.0	30	5	385 nm	2h	22.5 min	59%
14	0.1M	0.1	0.5	1.0	30	5	385 nm	3h	33.8 min	81%
15	0.1M	0.1	0.5	1.0	30	5	385 nm	4h	45.0 min	84% (87%)

^a Reactions were carried out using continuous-flow reactor. ^b Determined by HPLC analysis. ^c Isolated yield.

Table S8. Gram-scale continuous flow process optimization for the preparation of 3a

^a Reactions were carried out using continuous-flow reactor. ^b Determined by ¹H-NMR. ^c **1a** (1.12g, 5 mmol) in 15 mL DMF ^d **2d** (0.060g, 5 mol%) in 15 mL DMF.

The HPLC pump used to deliver a solution of **1a** (1.12 g, 5 mmol, 1.0 equiv), disulfide **2a** (0.054g, 5 mol%) and styrene **5a** in 15 mL MeCN was set to 1.5 mL min⁻¹ and the oxygen flow was set to 2.5 mL min⁻¹ with the MCF, and both fluids were conveyed to the continuous-flow photoreactor through perfluoroalkoxyalkane (PFA) tubing (1/8" O.D.). Mixing and irradiation (4000K white LED, 100% intensity) occurred along the entire reactor channel (2.7 * 3 mL internal volume, min residence time).

Table S9. Gram-scale continuous flow process optimization for the preparation of 4a^a

	CI CI 1a (1.12 g, 5 mm)	O₂Me DI)	+ 5a		Photor 2 4000K w MeCN,	reactor a /hite LED r.t., O ₂		CH ₂ OH CO ₂ Me	
Entry	feed 1^c feed 2^d	O ₂	5a	Т	back-	light	Total	Res.	vield ^b
Entry	(mL min ⁻¹)		(equiv)	(°C)	pressure	resource	time	time	yield
1	1.5	2.5	1.5	30	0	white LED	4h	83.5 min	quant.
2	1.5	12.5	1.5	30	5	white LED	4h	56.8 min	9%

3	1.:	5	2.5	1.5	50	0	white LED	4h	90.4 min	18%
4	1.:	5	12.5	1.5	50	5	white LED	4h	60.0 min	24%
5	4.0	0	15.0	1.5	30	0	white LED	4h	56.9 min	35%
6	4.0	0	20.0	1.5	30	0	white LED	4h	66.5 min	41%
7	4.0	0	20.0	1.5	30	0	385 nm	8h	133.0 min	37%
8	4.0	0	20.0	1.5	30	0	405 nm	8h	133.0 min	29%
9	0.2	4.0	20.0	1.5	30	0	white LED	8h	110.1 min	56%
10	0.2	4.0	20.0	4.0	30	5	white LED	8h	110.8 min	71%

^a Reactions were carried out using continuous-flow reactor. ^b Determined by ¹H-NMR. . ^c 1a (1.12g, 5 mmol) and 5a in 15 mL MeCN, ^d 2a (0.108g, 10 mol%) in 30 mL DMF.

6.4 Gram-scale

Scheme S8. Gram-scale experiments.

7 Characterization data for all products

methyl 5-chloro-2-hydroxy-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (3a)

Prepared according to the general procedure with a reaction time of 8h. After column chromatography (silica gel, petroleum ether/ether acetate = 5/1, Rf = 0.2) to give **3a** as white solid: 23.11 mg, 96% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 8.2 Hz, 1H), 7.49 (dd, *J* = 1.7, 0.8 Hz, 1H), 7.43 – 7.39 (m, 1H), 3.95 (s, 1H), 3.74 (s, 3H), 3.69 (d, *J* = 17.4 Hz, 1H), 3.23 (d, *J* = 17.4 Hz, 1H) ¹³C NMR (126 MHz, CDCl₃) δ 199.38, 171.51, 153.54, 142.79, 132.00, 129.02, 126.74, 126.36, 80.45, 53.53, 39.01.

HRMS (m/z): (ESI) calc'd for $C_{11}H_9CIO_4 [M+H]^+:241.0262$, found: 241.0263.

methyl 2-hydroxy-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (3b)

Prepared according to the general procedure with a reaction time of 12h. After column chromatography (silica gel, petroleum ether/ether acetate = 5/1, Rf = 0.3) to give **3b** as white solid: 12.99 mg, 63% yield. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.81 (d, *J* = 7.7 Hz, 1H), 7.68 (td, *J* = 7.7, 1.3 Hz, 1H), 7.50 (dt, *J* = 7.7, 1.3 Hz, 1H), 7.47 – 7.41 (m, 1H), 3.98 (s, 1H), 3.81 – 3.67 (m, 4H), 3.26 (d, *J* = 17.2 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.92, 152.21, 136.18, 133.55, 128.17, 126.49, 125.34, 80.39, 53.46, 39.29, 29.70.

HRMS (m/z): (ESI) calc'd for $C_{11}H_{10}O_4 [M+H]^+:207.0652$, found: 207.0651.

3c

methyl 5-fluoro-2-hydroxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3c)

Prepared according to the general procedure with a reaction time of 8 h. After column chromatography (silica gel, petroleum ether/ether acetate = 5/1, Rf = 0.3) to give **3b** as white solid: 17.49 mg, 78% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.82 (dd, *J* = 8.4, 5.3 Hz, 1H), 7.14 (q, *J* = 8.4, 5.3 Hz, 2H), 4.00 (s, 1H), 3.75 (s, 3H), 3.72 (d, *J* = 17.5 Hz, 1H), 3.24 (d, *J* = 17.5 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 197.78, 170.56, 167.97, 165.91, 154.16, 126.73, 115.54, 112.42, 52.54, 38.12, 28.68.

HRMS (m/z): (ESI) calc'd for $C_{11}H_9FO_4 [M+H]^+:225.0558$, found: 225.0558.

methyl 5-bromo-2-hydroxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3d)

Prepared according to the general procedure with a reaction time of 8 h. After column chromatography (silica gel, petroleum ether/ether acetate = 5/1, Rf = 0.3) to give **3d** as white solid: 27.94 mg, 98% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.68 (s, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 3.95 (s, 1H), 3.75 (s, 3H), 3.70 (d, *J* = 17.4 Hz, 1H), 3.24 (d, *J* = 17.4 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 199.54, 171.46, 153.55, 132.39, 131.91, 129.83, 126.40, 80.34, 53.59, 38.87, 29.69.

HRMS (m/z): (ESI) calc'd for $C_{11}H_9BrO_4 [M+H]^+:284.9757$, found: 284.9760.

3e

methyl 6-bromo-2-hydroxy-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (3e)

Prepared according to the general procedure with a reaction time of 8 h. After column chromatography (silica gel, petroleum ether/ether acetate = 5/1, Rf = 0.3) to give **3e** as white solid: 27.94 mg, 98% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.92 (d, *J* = 1.9 Hz, 1H), 7.77 (dd, *J* = 8.2, 1.9 Hz, 1H), 7.41 – 7.36 (m, 1H), 4.01 (s, 1H), 3.75 (s, 3H), 3.67 (d, *J* = 17.4 Hz, 1H), 3.19 (d, *J* = 17.4 Hz, 1H).

¹³**C NMR** (126 MHz, CDCl₃) δ 171.53, 163.53, 161.55, 147.60, 135.21, 127.95, 124.00, 111.13, 53.57, 38.73, 29.68.

HRMS (m/z): (ESI) calc'd for $C_{11}H_9BrO_4 [M+H]^+:284.9757$, found: 284.9760.

3f

methyl 4-bromo-2-hydroxy-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (3f)

Prepared according to the general procedure with a reaction time of 12h. After column chromatography (silica gel, petroleum ether/ether acetate = 5/1, Rf = 0.3) to give **3f** as white solid: 24.23 mg, 85% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.84 (d, *J* = 7.8 Hz, 1H), 7.76 (d, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 7.8 Hz,

1H), 3.99 (s, 1H), 3.77 (s, 3H), 3.68 (d, *J* = 17.8 Hz, 1H), 3.18 (d, *J* = 17.8 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 200.14, 171.50, 151.92, 138.84, 135.52, 129.88, 124.06, 121.86, 53.63, 40.38, 29.69.

HRMS (m/z): (ESI) calc'd for $C_{11}H_9BrO_4 [M+H]^+:284.9757$, found: 284.9760.

3g

methyl 6-fluoro-2-hydroxy-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (3g)

Prepared according to the general procedure with a reaction time of 12 h. After column chromatography (silica gel, petroleum ether/ether acetate = 5/1, Rf = 0.3) to give **3g** as white solid: 15.24 mg, 68% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.50 – 7.45 (m, 1H), 7.44 (dd, *J* = 7.3, 2.5 Hz, 1H), 7.39 (td, *J* = 8.5, 2.5 Hz, 1H), 3.97 (s, 1H), 3.75 (s, 3H), 3.69 (d, *J* = 16.8 Hz, 1H), 3.22 (d, *J* = 16.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 171.53, 163.53, 161.55, 147.60, 135.21, 127.95, 124.00, 111.13, 53.57, 38.73, 29.68.

HRMS (m/z): (ESI) calc'd for $C_{11}H_9FO_4 [M+H]^+:225.0558$, found: 225.0556.

3h

methyl 2-hydroxy-6-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3h)

Prepared according to the general procedure with a reaction time of 12h. After column chromatography (silica gel, petroleum ether/ether acetate = 5/1, Rf = 0.3) to give **3h** as white solid: 17.84 mg, 81% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.60 (d, *J* = 1.6 Hz, 1H), 7.49 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.38 (d, *J* = 7.9 Hz, 1H), 3.95 (t, *J* = 4.3 Hz, 1H), 3.73 (s, 3H), 3.68 (d, *J* = 17.1 Hz, 1H), 3.20 (d, *J* = 17.1 Hz, 1H), 2.42 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 200.83, 172.02, 149.60, 138.24, 137.46, 133.68, 126.13, 125.17, 80.73, 53.40, 38.96, 21.06.

HRMS (m/z): (ESI) calc'd for $C_{12}H_{12}O_4$ [M+H]⁺:221.0808, found: 221.0808.

3i

methyl 2-hydroxy-6-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3i)

Prepared according to the general procedure with a reaction time of 12h. After column chromatography (silica gel, petroleum ether/ether acetate = 5/1, Rf = 0.2) to give **3i** as white solid: 7.80 mg, 33% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.38 (d, J = 8.5 Hz, 1H), 7.28 (d, J = 2.6 Hz, 1H), 7.22 (d, J = 2.6 Hz,

1H), 3.94 (s, 1H), 3.85 (s, 3H), 3.75 (s, 3H), 3.65 (d, *J* = 16.9 Hz, 1H), 3.17 (d, *J* = 16.9 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 200.75, 171.98, 159.86, 145.15, 134.68, 127.17, 125.63, 106.28, 81.06, 55.65, 53.44, 38.68.

HRMS (m/z): (ESI) calc'd for $C_{12}H_{12}O_5 [M+H]^+:237.0757$, found:237.0758.

methyl 2-hydroxy-4-methoxy-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (3j)

Prepared according to the general procedure with a reaction time of 12h. After column chromatography (silica gel, petroleum ether/ether acetate = 5/1, Rf = 0.2) to give **3j** as white solid: 4.02 mg, 17% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.44 – 7.36 (m, 2H), 7.11 (dd, *J* = 6.9, 1.9 Hz, 1H), 3.92 (s, 3H), 3.74 (s, 3H), 3.66 (d, *J* = 17.6 Hz, 1H), 3.11 (d, *J* = 17.6 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 200.94, 172.03, 156.73, 141.19, 134.88, 129.66, 116.65, 116.30, 80.24, 55.56, 53.40, 36.16.

HRMS (m/z): (ESI) calc'd for $C_{12}H_{12}O_5 [M+H]^+:237.0757$, found: 237.0758.

methyl 2-hydroxy-5,6-dimethoxy-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (3k)

Prepared according to the general procedure with a reaction time of 12h. After column chromatography (silica gel, petroleum ether/ether acetate = 5/1, Rf = 0.2) to give **3k** as white solid: 3.46 mg, 13% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.20 (s, 1H), 6.90 (s, 1H), 4.00 (s, 3H), 3.94 (s, 1H), 3.92 (s, 3H), 3.75 (s, 3H), 3.64 (d, *J* = 17.0 Hz, 1H), 3.16 (d, *J* = 17.0 Hz, 1H).

¹³**C NMR** (126 MHz, CDCl₃) δ 172.20, 156.78, 150.04, 148.09, 126.16, 107.31, 105.38, 80.79, 56.41, 56.18, 53.44, 39.00, 29.71.

HRMS (m/z): (ESI) calc'd for $C_{13}H_{14}O_6 [M+H]^+$: 267.0863, found: 267.0864.

isopropyl 5-chloro-2-hydroxy-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (31)

Prepared according to the general procedure with a reaction time of 12 h. After column chromatography (silica gel, petroleum ether/ether acetate = 5/1, Rf = 0.2) to give **31** as white solid: 23.64 mg, 88% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 8.2 Hz, 1H), 7.50 (d, *J* = 1.7 Hz, 1H), 7.41 (dd, *J* = 8.2, 1.7 Hz, 1H), 5.08 (hept, *J* = 6.2 Hz, 1H), 3.97 (s, 1H), 3.66 (d, *J* = 17.3 Hz, 1H), 3.21 (d, *J* = 17.3 Hz, 1H), 1.21 (d, *J* = 6.2 Hz, 3H), 1.14 (d, *J* = 6.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.63, 153.68, 142.68, 128.97, 126.69, 126.27, 80.31, 71.17, 38.98, 29.71, 21.56, 21.34.

HRMS (m/z): (ESI) calc'd for $C_{13}H_{13}ClO_4 [M+H]^+$: 269.0575, found:269.0577.

adamantan-1-yl 5-chloro-2-hydroxy-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (3m)

Prepared according to the general procedure with a reaction time of 12h. After column chromatography (silica gel, petroleum ether/ether acetate = 10/1, Rf = 0.4) to give **3m** as white solid: 33.20 mg, 92% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 8.2 Hz, 1H), 7.49 (d, *J* = 1.7 Hz, 1H), 7.41 (dd, *J* = 8.2, 1.7 Hz, 1H), 4.04 (s, 1H), 3.64 (d, *J* = 17.3 Hz, 1H), 3.21 (d, *J* = 17.3 Hz, 1H), 2.17 – 2.12 (m, 3H), 1.98 (d, *J* = 3.0 Hz, 6H), 1.62 (d, *J* = 3.0 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 199.97, 169.80, 153.68, 142.37, 132.47, 128.77, 126.51, 126.07, 84.25, 80.52, 40.95, 39.26, 35.85, 30.83.

HRMS (m/z): (ESI) calc'd for C₂₀H₂₁ClO₄ [M+H]⁺: 361.1201, found: 361.1200.

3n

methyl 2-hydroxy-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (3n)

Prepared according to the general procedure with a reaction time of 12 h. After column chromatography (silica gel, petroleum ether/ether acetate = 5/1, Rf = 0.3) to give **3n** as white solid: 11.89 mg, 54% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.06 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.54 (td, *J* = 7.9, 1.4 Hz, 1H), 7.38 – 7.33 (m, 1H), 7.28 (s, 1H), 4.33 (s, 1H), 3.75 (s, 3H), 3.25 – 2.98 (m, 2H), 2.72 (dt, *J* = 13.6, 5.0 Hz, 1H), 2.25 (ddd, *J* = 13.6, 9.3, 5.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 194.57, 171.08, 144.05, 134.45, 130.17, 128.96, 128.26, 127.01, 53.01, 32.75, 29.70, 25.58.

HRMS (m/z): (ESI) calc'd for $C_{12}H_{12}O_4 [M+H]^+$: 221.0808, found:221.0809.

N-(tert-butyl)-2-hydroxy-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (30)

Prepared according to the general procedure with a reaction time of 12 h. After column chromatography (silica gel, petroleum ether/ether acetate = 3/1, Rf = 0.2) to give **30** as white solid: 13.11 mg, 53% yield. **¹H NMR** (400 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 7.7 Hz, 1H), 7.67 – 7.59 (m, 1H), 7.46 (d, *J* = 7.7 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 1H), 6.73 (s, 1H), 3.70 (d, *J* = 16.7 Hz, 1H), 3.49 (s, 1H), 3.07 (d, *J* = 16.7 Hz, 1H), 1.32 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 203.75, 169.41, 153.06, 136.18, 134.02, 127.97, 126.32, 125.06, 82.30, 51.41, 40.75, 28.56, 1.03.

HRMS (m/z): (ESI) calc'd for $C_{14}H_{17}NO_3 [M+H]^+$: 248.1281, found: 248.1281.

2-hydroxy-1-oxo-N-phenyl-2,3-dihydro-1H-indene-2-carboxamide (3p)

Prepared according to the general procedure with a reaction time of 12h. After column chromatography (silica gel, petroleum ether/ether acetate = 4/1, Rf = 0.3) to give **3p** as white solid: 17.64 mg, 66% yield.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.68 (s, 1H), 7.75 (d, *J* = 7.7 Hz, 1H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.56 –

7.43 (m, 3H), 7.38 (t, *J* = 7.4 Hz, 1H), 7.29 – 7.22 (m, 2H), 7.10 – 7.03 (m, 1H), 4.12 (s, 1H), 3.81 (d, *J* =

16.8 Hz, 1H), 3.14 (d, *J* = 16.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 203.00, 168.22, 152.98, 136.91, 136.50, 133.70, 129.01, 128.18, 126.38,

125.23, 124.78, 119.98, 119.71, 82.73, 40.85.

HRMS (m/z): (ESI) calc'd for $C_{16}H_{13}NO_3 [M+H]^+$: 268.0968, found: 268.0970.

3q

5-chloro-2-hydroxy-1-oxo-N-phenyl-2,3-dihydro-1H-indene-2-carboxamide (3q)

Prepared according to the general procedure with a reaction time of 12 h. After column chromatography (silica gel, petroleum ether/ether acetate = 5/1, Rf = 0.2) to give **3q** as white solid: 27.76 mg, 92% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.72 (s, 1H), 7.73 (d, *J* = 8.2 Hz, 1H), 7.58 – 7.48 (m, 3H), 7.41 (d, *J* = 8.2 Hz, 1H), 7.31 (t, *J* = 7.8 Hz, 2H), 7.13 (d, *J* = 7.8 Hz, 1H), 3.83 (d, *J* = 16.9 Hz, 1H), 3.17 (d, *J* = 16.9 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 201.56, 167.85, 154.30, 143.26, 136.75, 132.11, 129.05, 126.67, 126.22, 124.92, 119.72, 82.86, 40.57, 29.70.

HRMS (m/z): (ESI) calc'd for $C_{16}H_{12}CINO_3 [M+H]^+$: 302.0578, found: 302.0582.

3r

2-hydroxy-6-methoxy-1-oxo-N-phenyl-2,3-dihydro-1H-indene-2-carboxamide (3r)

Prepared according to the general procedure with a reaction time of 12h. After column chromatography (silica gel, petroleum ether/ether acetate = 3/1, Rf = 0.2) to give **3r** as white solid: 25.87 mg, 87% yield.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.67 (s, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.25 – 7.17 (m, 3H), 7.11 (d, *J* = 2.5 Hz, 1H), 7.03 (d, *J* = 8.0 Hz, 1H), 3.75 (s, 3H), 3.69 (d, *J* = 16.5 Hz, 1H), 3.03 (d, *J* = 16.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 203.00, 168.43, 159.82, 146.07, 136.93, 134.82, 128.98, 127.12, 125.96,

124.74, 119.73, 106.19, 83.24, 55.65, 40.22, 29.70.

HRMS (m/z): (ESI) calc'd for $C_{17}H_{15}NO_4 [M+H]^+$: 298.1074, found: 298.1079.

3s

2-hydroxy-1-oxo-N-(p-tolyl)-2,3-dihydro-1H-indene-2-carboxamide (3s)

Prepared according to the general procedure with a reaction time of 12 h. After column chromatography (silica gel, petroleum ether/ether acetate = 3/1, Rf = 0.2) to give **3s** as white solid: 22.22 mg, 79% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.55 (s, 1H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.70 (d, *J* = 7.6 Hz, 1H), 7.58 (d, *J* = 7.5, 1.2 Hz, 1H), 7.41 (d, *J* = 7.6 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.08 (d, *J* = 7.5 Hz, 2H), 7.01 – 6.93 (m, 1H), 3.78 (d, *J* = 16.8 Hz, 1H), 3.62 (s, 1H), 3.11 (d, *J* = 16.8 Hz, 1H), 2.18 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.06, 167.99, 152.97, 136.46, 134.42, 134.37, 133.74, 129.49, 128.16, 126.37, 125.22, 119.68, 82.72, 40.86, 20.87.

HRMS (m/z): (ESI) calc'd for $C_{17}H_{15}NO_3 [M+H]^+$: 282.1125, found:282.1126

2-hydroxy-1-oxo-N-(o-tolyl)-2,3-dihydro-1H-indene-2-carboxamide (3t)

Prepared according to the general procedure with a reaction time of 12h. After column chromatography (silica gel, petroleum ether/ether acetate = 3/1, Rf = 0.2) to give **3t** as white solid: 14.47 mg, 87% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.55 (s, 1H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.70 (d, *J* = 7.6 Hz, 1H), 7.58 (td, *J* = 7.5, 1.2 Hz, 1H), 7.41 (d, *J* = 7.6 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.08 (d, *J* = 7.5 Hz, 2H), 7.01 – 6.93 (m, 1H), 3.78 (d, *J* = 16.8 Hz, 1H), 3.62 (s, 1H), 3.11 (d, *J* = 16.8 Hz, 1H), 2.18 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.26, 168.35, 153.14, 136.37, 134.41, 134.34, 133.79, 129.44, 128.04, 126.38, 125.14, 119.78, 82.57, 77.36, 77.04, 76.72, 40.82, 20.87. HRMS (m/z): (ESI) calc'd for C₁₇H₁₅NO₃ [M+H]⁺: 282.1125, found:282.1126

3u

Prepared according to the general procedure with a reaction time of 12h. After column chromatography (silica gel, petroleum ether/ether acetate = 3/1, Rf = 0.2) to give **3u** as white solid: 15.19 mg, 54% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.81 (s, 1H), 8.04 (d, *J* = 7.9 Hz, 1H), 7.59 – 7.49 (m, 3H), 7.32 (dt, *J* = 26.5, 7.7 Hz, 4H), 7.10 (d, *J* = 7.7 Hz, 1H), 4.84 (s, 1H), 3.62 (ddd, *J* = 17.4, 13.0, 5.4 Hz, 1H), 3.01 (ddd, *J* = 17.4, 5.4, 2.1 Hz, 1H), 2.62 (ddd, *J* = 13.0, 5.4, 2.1 Hz, 1H), 2.34 (td, *J* = 13.2, 5.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 197.05, 167.79, 145.69, 136.94, 134.64, 130.66, 129.01, 128.00, 126.71,

124.66, 119.64, 34.64, 29.70, 27.09, 26.34, 22.69, 14.11.

HRMS (m/z): (ESI) calc'd for $C_{17}H_{15}NO_3 [M+H]^+$: 282.1125, found: 282.1124.

methyl 5-chloro-2-(hydroxymethyl)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (4a)

Prepared according to the general procedure with a reaction time of 24 h. After column chromatography (silica gel, petroleum ether/ether acetate = 5/1, Rf = 0.1) to give **4a** as white solid: 20.62 mg, 81% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.70 (d, *J* = 8.2 Hz, 1H), 7.51 (s, 1H), 7.41 – 7.37 (m, 1H), 4.12 (d, *J* = 11.2 Hz, 1H), 3.90 (d, *J* = 11.2 Hz, 1H), 3.71 (s, 3H), 3.54 (d, *J* = 17.5 Hz, 1H), 3.39 (d, *J* = 17.5 Hz, 1H), 2.53 (s, 1H).

¹³C NMR (126 MHz, CDCl3) δ 200.03, 170.76, 154.99, 142.26, 133.70, 128.70, 126.81, 125.81, 64.64, 62.50, 52.92, 34.58.

HRMS (m/z): (ESI) calc'd for C₁₂H₁₁ClO₄ [M+H]⁺: 255.0419, found: 255.0419.

methyl 2-(hydroxymethyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4b)

Prepared according to the general procedure with a reaction time of 24 h. After column chromatography (silica gel, petroleum ether/ether acetate = 5/1, Rf = 0.1) to give **4b** as white solid: 19.60 mg, 89% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 7.7 Hz, 1H), 7.67 (t, *J* = 7.2 Hz, 1H), 7.54 (d, *J* = 7.2 Hz, 1H), 7.44 (d, *J* = 7.7 Hz, 1H), 4.16 (d, *J* = 11.3 Hz, 1H), 3.90 (d, *J* = 11.3 Hz, 1H), 3.74 (s, 3H), 3.59 (d, *J* = 17.5 Hz, 1H), 3.43 (d, *J* = 17.5 Hz, 1H).

¹³**C NMR** (126 MHz, CDCl₃) δ 136.19, 135.16, 130.82, 130.14, 128.19, 127.60, 126.49, 125.37, 112.34, 53.48, 52.98, 39.27.

HRMS (m/z): (ESI) calc'd for $C_{12}H_{12}O_4 [M+H]^+$: 221.0808, found:221.0811.

methyl 5-fluoro-2-(hydroxymethyl)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (4c)

Prepared according to the general procedure with a reaction time of 24 h. After column chromatography (silica gel, petroleum ether/ether acetate = 4/1, Rf = 0.2) to give 4c as white solid: 20.25 mg, 85% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (dd, *J* = 8.6, 5.2 Hz, 1H), 7.13 (d, *J* = 8.6 Hz, 1H), 7.07 (td, *J* = 8.6, 2.2 Hz, 1H), 4.09 (d, *J* = 11.3 Hz, 1H), 3.83 (d, *J* = 11.3 Hz, 1H), 3.68 (s, 2H), 3.50 (d, *J* = 17.7 Hz, 1H), 3.35 (d, *J* = 17.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl3) δ 199.98, 171.01, 154.81, 134.08, 131.65, 131.22, 129.93, 125.95, 77.34,

77.02, 76.70, 64.90, 62.25, 52.95, 34.68.

HRMS (m/z): (ESI) calc'd for C₁₂H₁₁FO₄ [M+H]⁺: 239.0714, found: 239.0719.

methyl 6-fluoro-2-(hydroxymethyl)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (4d)

Prepared according to the general procedure with a reaction time of 24 h. After column chromatography (silica gel, petroleum ether/ether acetate = 4/1, Rf = 0.2) to give **4d** as white solid: 19.77 mg, 83% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.47 (t, *J* = 8.4, 4.2 Hz, 1H), 7.37 (ddt, *J* = 16.7, 8.4, 4.2 Hz, 2H), 4.11 (d, *J* = 11.3 Hz, 1H), 3.89 (d, *J* = 11.3 Hz, 1H), 3.71 (s, 3H), 3.51 (d, *J* = 17.2 Hz, 1H), 3.36 (d, *J* = 17.2 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.15, 163.77, 161.29, 148.72, 137.00, 136.92, 128.04, 127.96, 123.56, 110.67, 64.96, 63.04, 52.92, 34.50.

HRMS (m/z): (ESI) calc'd for $C_{12}H_{11}FO_4 [M+H]^+$: 239.0714, found: 239.0719.

4e

methyl 5-bromo-2-(hydroxymethyl)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (4e)

Prepared according to the general procedure with a reaction time of 24 h. After column chromatography (silica gel, petroleum ether/ether acetate = 5/1, Rf = 0.1) to give **4e** as white solid: 26.62 mg, 89% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.63 (s, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.49 (d, *J* = 8.0 Hz, 1H), 4.06 (d, *J* = 11.2 Hz, 1H), 3.82 (d, *J* = 11.2 Hz, 1H), 3.65 (s, 3H), 3.48 (d, *J* = 17.7 Hz, 1H), 3.33 (d, *J* = 17.7 Hz, 1H), 1.57 (s, 1H).

¹³**C NMR** (101 MHz, CDCl3) δ 199.98, 171.01, 154.81, 134.08, 131.65, 131.22, 129.93, 125.95, 77.34, 77.02, 76.70, 64.90, 62.25, 52.95, 34.68.

HRMS (m/z): (ESI) calc'd for C₁₂H₁₁BrO₄ [M+H]⁺: 298.9913, found:298.9919.

methyl 4-bromo-2-(hydroxymethyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4f)

Prepared according to the general procedure with a reaction time of 24 h. After column chromatography (silica gel, petroleum ether/ether acetate = 5/1, Rf = 0.1) to give **4f** as white solid: 27.52 mg, 92% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.72 (dd, *J* = 32.2, 7.8 Hz, 1H), 7.27 (t, *J* = 7.8 Hz, 1H), 4.09 (d, *J* = 11.3 Hz, 1H), 3.86 (d, *J* = 11.3 Hz, 1H), 3.68 (s, 3H), 3.44 (d, *J* = 18.0 Hz, 1H), 3.30 (d, *J* = 18.0 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 199.98, 171.01, 154.81, 134.08, 131.65, 131.22, 129.93, 125.95, 77.34, 77.02, 76.70, 64.90, 62.25, 52.95, 34.68.

HRMS (m/z): (ESI) calc'd for C₁₂H₁₁BrO₄ [M+H]⁺: 298.9913, found: 298.9916.

4g

methyl 2-(hydroxymethyl)-6-methyl-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (4g)

Prepared according to the general procedure with a reaction time of 24 h. After column chromatography (silica gel, petroleum ether/ether acetate = 5/1, Rf = 0.2) to give **4g** as white solid: 21.08 mg, 90% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.56 (s, 1H), 7.45 (d, *J* = 7.8 Hz, 1H), 7.38 (d, *J* = 7.8 Hz, 1H), 4.11 (d, *J* = 11.3 Hz, 1H), 3.85 (d, *J* = 11.3 Hz, 1H), 3.70 (s, 3H), 3.49 (d, *J* = 17.3 Hz, 1H), 3.33 (d, *J* = 17.3 Hz, 1H), 2.40 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 201.41, 171.70, 150.70, 138.02, 136.98, 135.40, 126.26, 124.70, 65.18, 62.43, 52.78, 34.76, 21.07.

HRMS (m/z): (ESI) calc'd for $C_{13}H_{14}O_4 [M+H]^+$: 235.0965, found:235.0968.

4h

methyl 2-(hydroxymethyl)-5-methoxy-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (4h)

Prepared according to the general procedure with a reaction time of 24 h. After column chromatography (silica gel, petroleum ether/ether acetate = 4/1, Rf = 0.1) to give **4h** as white solid: 22.02 mg, 88% yield. **¹H NMR** (500 MHz, Chloroform-*d*) δ 7.70 (d, J = 9.2 Hz, 1H), 6.93 (d, J = 7.0 Hz, 2H), 4.13 (d, J = 11.2 Hz, 1H), 3.90 (s, 3H), 3.88 (d, J = 11.2 Hz, 1H), 3.71 (s, 3H), 3.51 (d, J = 17.5 Hz, 1H), 3.34 (d, J = 17.5 Hz, 1H), 2.72 (s, 1H).

¹³**C NMR** (126 MHz, CDCl₃) δ 199.26, 171.65, 166.09, 156.44, 128.37, 126.53, 116.14, 109.60, 65.20, 62.41, 55.77, 52.74, 35.01.

HRMS (m/z): (ESI) calc'd for $C_{13}H_{14}O_5 [M+H]^+$: 251.0914, found:251.0916.

4i

methyl 2-(hydroxymethyl)-4-methoxy-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (4i)

Prepared according to the general procedure with a reaction time of 24 h. After column chromatography (silica gel, petroleum ether/ether acetate = 4/1, Rf = 0.1) to give **4i** as white solid: 23.77 mg, 95% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.42 – 7.30 (m, 2H), 7.06 (dd, J = 6.8, 1.9 Hz, 1H), 4.09 (d, J = 11.3 Hz, 1H), 3.90 (s, 3H), 3.88 (d, J = 11.3 Hz, 1H), 3.69 (s, 3H), 3.43 (d, J = 17.9 Hz, 1H), 3.27 (d, J = 17.9 Hz, 1H), 2.60 (s, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 201.64, 171.62, 156.91, 142.24, 136.64, 129.57, 116.19, 115.75, 77.40, 77.08, 76.76, 65.11, 61.88, 55.55, 52.80, 32.06.

HRMS (m/z): (ESI) calc'd for $C_{13}H_{14}O_5 [M+H]^+$: 251.0914, found:251.0916.

4j

methyl 2-(hydroxymethyl)-5,6-dimethoxy-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (4j)

Prepared according to the general procedure with a reaction time of 24 h. After column chromatography (silica gel, petroleum ether/ether acetate = 4/1, Rf = 0.1) to give **4j** as white solid: 27.19mg, 97% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.16 (s, 1H), 6.92 (s, 1H), 4.14 (d, *J* = 11.2 Hz, 1H), 3.99 (s, 3H), 3.94 – 3.85 (m, 4H), 3.72 (s, 3H), 3.47 (d, *J* = 17.2 Hz, 1H), 3.31 (d, *J* = 17.2 Hz, 1H), 2.82 (s, 1H) ¹³**C NMR** (126 MHz, CDCl₃) δ 199.73, 171.67, 156.33, 149.86, 149.03, 127.89, 107.32, 104.89, 77.30, 77.05, 76.80, 65.20, 62.46, 56.34, 56.11, 52.72, 34.78.

HRMS (m/z): (ESI) calc'd for $C_{14}H_{16}O_6 [M+H]^+$: 281.1020, found:281.1022.

isopropyl 5-chloro-2-(hydroxymethyl)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (4k)

Prepared according to the general procedure with a reaction time of 24 h. After column chromatography (silica gel, petroleum ether/ether acetate = 3/1, Rf = 0.4) to give **4k** as white solid: 15.27mg, 54% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 8.3 Hz, 1H), 7.46 (s, 1H), 7.34 (d, *J* = 8.3 Hz, 1H), 5.02 (dq, *J* = 12.6, 6.4 Hz, 1H), 4.05 (d, *J* = 11.2 Hz, 1H), 3.78 (d, *J* = 11.2 Hz, 1H), 3.45 (d, *J* = 17.6 Hz, 1H), 3.32 (d, *J* = 17.6 Hz, 1H), 2.24 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 199.91, 170.31, 154.74, 142.15, 133.73, 128.75, 126.82, 125.85, 77.34, 77.02, 76.71, 69.71, 64.98, 62.47, 34.77, 21.53, 21.46. HRMS (m/z): (ESI) calc'd for C₁₄H₁₅ClO₄ [M+H]⁺: 283.0732, found:283.0736.

2-(hydroxymethyl)-1-oxo-*N*-phenyl-2,3-dihydro-1*H*-indene-2-carboxamide (41)

Prepared according to the general procedure with a reaction time of 12h. After column chromatography (silica gel, petroleum ether/ether acetate = 4/1, Rf = 0.2) to give 4I as white solid: 20.25mg, 72% yield.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.30 (s, 1H), 7.73 (d, *J* = 7.6 Hz, 1H), 7.62 (t, *J* = 7.3 Hz, 1H), 7.52 (d,

J = 7.9 Hz, 2H), 7.48 (d, *J* = 7.9 Hz, 1H), 7.36 (t, *J* = 7.3 Hz, 1H), 7.27 (t, *J* = 7.8 Hz, 3H), 7.06 (d, *J* = 7.6

Hz, 1H), 4.02 (d, *J* = 10.9 Hz, 1H), 3.90 (s, 1H), 3.87 (d, *J* = 10.9 Hz, 1H), 3.21 (d, *J* = 10.0 Hz, 1H), 1.55 (d, *J* = 10.0 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 204.93, 165.47, 152.71, 136.49, 135.36, 133.86, 127.95, 126.88, 125.65, 123.71, 123.67, 123.56, 119.09, 118.67, 67.22, 62.00, 32.81.

HRMS (m/z): (ESI) calc'd for C₁₇H₁₅NO₃ [M+H]⁺: 282.1125, found: 282.1127.

*N-(tert-*butyl)-2-(hydroxymethyl)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxamide (4m)

Prepared according to the general procedure with a reaction time of 24 h. After column chromatography (silica gel, petroleum ether/ether acetate = 3/1, Rf = 0.3) to give **4m** as white solid: 10.98 mg, 42% yield. **¹H NMR** (400 MHz, Chloroform-*d*) δ 7.65 (t, *J* = 7.5 Hz, 1H), 7.49 (d, *J* = 7.7 Hz, 1H), 7.41 (t, *J* = 7.5 Hz, 1H), 6.72 (s, 1H), 3.73 (d, *J* = 16.7 Hz, 1H), 3.10 (d, *J* = 16.7 Hz, 1H), 1.34 (s, 9H). **¹³C NMR** (101 MHz, CDCl₃) δ 203.84, 169.46, 153.12, 136.19, 134.01, 127.96, 126.33, 125.06, 82.28, 77.34, 77.03, 76.71, 51.41, 40.74, 28.55.

HRMS (m/z): (ESI) calc'd for $C_{15}H_{19}NO_3 [M+H]^+$: 262.1438, found:262.1437.

2-(hydroxymethyl)-6-methoxy-1-oxo-*N*-phenyl-2,3-dihydro-1*H*-indene-2-carboxamide (4n)

Prepared according to the general procedure with a reaction time of 24 h. After column chromatography (silica gel, petroleum ether/ether acetate = 3/1, Rf = 0.2) to give **4n** as white solid: 23.04mg, 74% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.25 (s, 1H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.25 (t, *J* = 7.4, 5.8 Hz, 3H), 7.21 – 7.16 (m, 2H), 7.04 (t, *J* = 7.4 Hz, 1H), 4.00 (d, *J* = 10.9 Hz, 1H), 3.87 (d, *J* = 10.9 Hz, 1H), 3.79 – 3.73 (m, 3H), 3.76 (s, 3H), 3.10 (d, *J* = 17.6 Hz, 1H), 2.47 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 204.80, 165.58, 158.68, 145.75, 136.51, 134.94, 127.95, 126.41, 126.37, 124.88, 123.54, 119.08, 118.93, 104.51, 67.29, 62.82, 54.63, 32.20. HRMS (m/z): (ESI) calc'd for C₁₈H₁₇NO₄ [M+H]⁺: 312.1230, found:312.1234.

2-(hydroxymethyl)-1-oxo-*N*-(*o*-tolyl)-2,3-dihydro-1*H*-indene-2-carboxamide (40)

Prepared according to the general procedure with a reaction time of 12h. After column chromatography (silica gel, petroleum ether/ether acetate = 3/1, Rf = 0.2) to give **4o** as white solid: 25.69mg, 87% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.23 (s, 1H), 7.90 (d, *J* = 7.6 Hz, 1H), 7.73 (d, *J* = 7.8 Hz, 1H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.47 (d, *J* = 7.8 Hz, 1H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.11 (d, *J* = 7.6 Hz, 1H), 6.98 (t, *J* = 7.6 Hz, 1H), 4.03 (d, *J* = 10.9 Hz, 1H), 3.96 – 3.81 (m, 2H), 3.20 (d, *J* = 10.9 Hz, 1H), 2.34 (s, 1H), 2.30 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 205.12, 165.50, 152.74, 135.34, 134.72, 133.87, 129.44, 127.55, 126.89, 125.69, 125.63, 123.89, 123.66, 120.93, 67.39, 62.09, 32.85, 16.84. HRMS (m/z): (ESI) calc'd for C₁₈H₁₇NO₃ [M+H]⁺: 296.1281, found:296.1284.

2-(hydroxymethyl)-1-oxo-N-(p-tolyl)-2,3-dihydro-1H-indene-2-carboxamide (4p)

Prepared according to the general procedure with a reaction time of 24 h. After column chromatography (silica gel, petroleum ether/ether acetate = 3/1, Rf = 0.2) to give **4m** as white solid: 24.51mg, 83% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 7.7 Hz, 1H), 7.66 – 7.57 (m, 1H), 7.47 (d, *J* = 7.7 Hz, 1H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 7.5 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 2H), 4.01 (d, *J* = 10.9 Hz, 1H), 3.93 – 3.81 (m, 2H), 3.22 (d, *J* = 17.9 Hz, 1H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 206.06, 166.38, 153.78, 136.37, 134.97, 134.25, 129.47, 127.89, 126.70,

126.38, 125.21, 124.69, 120.16, 119.70, 68.27, 62.99, 33.90, 20.90.

HRMS (m/z): (ESI) calc'd for $C_{18}H_{17}NO_3 [M+H]^+$: 296.1281, found:296.1283.

N-cyclohexyl-2-(hydroxymethyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxamide (4q)

Prepared according to the general procedure with a reaction time of 24 h. After column chromatography (silica gel, petroleum ether/ether acetate = 3/1, Rf = 0.2) to give **4q** as white solid: 25.57mg, 89% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (d, *J* = 7.7 Hz, 1H), 7.66 (t, *J* = 7.3 Hz, 1H), 7.52 (d, *J* = 7.7 Hz, 1H), 7.41 (d, *J* = 7.3 Hz, 1H), 7.28 (s, 1H), 3.94 (d, *J* = 11.0 Hz, 1H), 3.86 (d, *J* = 11.0 Hz, 1H), 3.82 (d, *J* = 18.0 Hz, 1H), 3.27 (d, *J* = 18.0 Hz, 1H), 2.81 (s, 1H), 1.99 – 1.92 (m, 1H), 1.82 (dd, *J* = 12.8, 4.0 Hz, 1H), 1.72 (dtd, *J* = 17.3, 8.2, 4.0 Hz, 1H), 1.60 (dt, *J* = 12.8, 4.0 Hz, 1H), 1.46 – 1.13 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 206.17, 167.71, 153.86, 136.09, 135.14, 127.71, 126.68, 124.50, 68.20, 62.35, 48.44, 33.98, 32.74, 32.60, 25.52, 24.59, 24.55. HRMS (m/z): (ESI) calc'd for C₁₇H₂₁NO₃ [M+H]⁺:288.1594, found:288.1596.

2-(hydroxymethyl)-2-(4-methylpiperazine-1-carbonyl)-2,3-dihydro-1*H*-inden-1-one (4r)

Prepared according to the general procedure with a reaction time of 24 h. After column chromatography (silica gel, $CH_2Cl_2/CH_3OH = 10/1$, Rf = 0.2) to give **4r** as white solid: 23.36mg, 81% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.67 (d, *J* = 7.7 Hz, 1H), 7.57 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.50 – 7.44 (m, 1H), 7.36 – 7.29 (m, 1H), 4.06 (dd, *J* = 7.9, 3.5 Hz, 1H), 4.03 – 3.94 (m, 1H), 3.81 (dd, *J* = 17.2, 3.5 Hz, 1H), 3.60 (dt, *J* = 12.7, 7.3, 5.3 Hz, 1H), 3.40 (ddd, *J* = 12.7, 7.3, 3.2 Hz, 1H), 3.21 (dd, *J* = 17.2, 7.9 Hz, 1H), 2.66 – 2.60 (m, 2H), 2.55 (dt, *J* = 12.7, 5.3, 3.2 Hz, 1H), 2.34 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 201.53, 166.06, 154.69, 135.36, 135.18, 127.55, 126.55, 124.30, 55.09, 54.42, 50.42, 46.01, 45.61, 41.98, 30.38.

HRMS (m/z): (ESI) calc'd for $C_{16}H_{20}N_2O_3$ [M+H]⁺: 289.1547, found: 289.1542.

methyl 3-(hydroxymethyl)-2,5-dioxo-1-phenylpyrrolidine-3-carboxylate (4s)

Prepared according to the general procedure with a reaction time of 24 h. After column chromatography (silica gel, petroleum ether/ether acetate = 3/1, Rf = 0.2) to give **4s** as white solid: 20.19mg, 77% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 – 7.54 (m, 2H), 7.37 (t, *J* = 8.0 Hz, 2H), 7.16 (t, *J* = 7.4 Hz, 1H), 4.02 – 3.92 (m, 1H), 3.80 (s, 3H), 3.66 (td, *J* = 8.0, 7.0, 3.0 Hz, 1H), 2.55 (dt, *J* = 13.2, 8.0, 7.0 Hz, 1H), 2.46 – 2.33 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.25, 168.74, 138.89, 128.88, 125.05, 120.10, 77.38, 77.07, 76.75, 52.77,

¹³C NMR (101 MHz, CDCl₃) δ 170.25, 168.74, 138.89, 128.88, 125.05, 120.10, 77.38, 77.07, 76.75, 52.77, 49.88, 47.25, 29.70, 22.18, 1.03.

HRMS (m/z): (ESI) calc'd for $C_{14}H_{14}O_5$ [M+H]⁺: 263.0914, found: 263.0916.

2-(hydroxymethyl)-2-phenyl-1H-indene-1,3(2H)-dione (4t)

Prepared according to the general procedure with a reaction time of 24 h. After column chromatography (silica gel, petroleum ether/ether acetate = 3/1, Rf = 0.2) to give **4t** as white solid: 21.44mg, 85% yield. ¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.15 – 8.00 (m, 1H), 7.98 – 7.84 (m, 2H), 7.81 – 7.71 (m, 1H), 7.44 (dd, *J* = 31.2, 7.6 Hz, 1H), 7.32 (d, *J* = 7.6 Hz, 1H), 7.25 (d, *J* = 7.6 Hz, 1H), 7.19 (d, *J* = 8.1 Hz, 1H), 5.12 (s, 1H), 2.96 (s, 1H), 2.89 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 136.69, 135.62, 133.52, 130.48, 130.13, 129.95, 129.05, 128.93, 128.76, 128.68, 128.65, 128.44, 127.56, 126.26, 124.34, 123.77, 64.46, 36.57, 31.52, 29.70.
HRMS (m/z): (ESI) calc'd for C₁₆H₁₂O₃ [M+H]⁺: 253.0859, found: 253.0856.

8 NMR Spectra

Compound **3a** ¹HNMR

0

OH ℃O₂Me CI 3a -7.75 -7.75 -7.50 -7.50 -7.44 -7.43 -7.43 -7.43 -7.43 -7.43 -7.43 -7.43 -7.43 -7.43 -7.43 -7.43 -7.41 -7.41 -7.41 -7.26 3.96 3.75 3.73 3.73 3.73 ~3.26 1:00 1:00 1:00 1:00 I.04 ⊣ ₩ 3.00 1.00 1.00 1.00 1.00 5.0 4.5 4.0 3.5 3.0 2.5 2.0 f1(ppm)).0 9.5 9.0 8.5 8.0 7.5 7.0 6.0 5.5 0.5 0.0 -0.5 -1.0 6.5 1.5 1.0

Figure S14. ¹HNMR Spectra of Compound 3a

Compound **3a**¹³CNMR

Figure S15. ¹³CNMR Spectra of Compound 3a

Compound **3b** ¹HNMR

Figure S16. ¹HNMR Spectra of Compound 3b

Compound **3b** ¹³CNMR

Figure S17. ¹³CNMR Spectra of Compound 3b

Compound **3c** ¹HNMR

Figure S18. ¹HNMR Spectra of Compound 3c

Compound **3c**¹³CNMR

Figure S19. ¹³CNMR Spectra of Compound 3c

Compound **3d** ¹HNMR

Figure S20. ¹HNMR Spectra of Compound 3d

Compound **3d** ¹³CNMR

Figure S21. ¹³CNMR Spectra of Compound 3d

Compound **3e** ¹HNMR

Figure S22. ¹HNMR Spectra of Compound 3e

Compound **3e**¹³CNMR

Figure S23 ¹³CNMR Spectra of Compound 3e

Compound **3f**¹HNMR

Figure S24. ¹HNMR Spectra of Compound 3f

Figure S25 ¹³CNMR Spectra of Compound 3f

Compound **3g** ¹HNMR

Figure S26. ¹HNMR Spectra of Compound 3g

Compound **3g**¹³CNMR

Figure S27 ¹³CNMR Spectra of Compound 3g

Compound **3h** ¹HNMR

Figure S28. ¹HNMR Spectra of Compound 3h

Compound **3h** ¹³CNMR

Figure S29 ¹³CNMR Spectra of Compound 3h

Compound **3i** ¹HNMR

Figure S30. ¹HNMR Spectra of Compound 3i

Compound **3i**¹³CNMR

Figure S31 ¹³CNMR Spectra of Compound 3i

Compound **3j** ¹HNMR

Figure S32. ¹HNMR Spectra of Compound 3j

Figure S33 ¹³CNMR Spectra of Compound 3j

Compound **3k** ¹HNMR

Figure S34. ¹HNMR Spectra of Compound 3k

Compound **3k** ¹³CNMR

Figure S35¹³CNMR Spectra of Compound 3k

Compound **31** ¹HNMR

Figure S36. ¹HNMR Spectra of Compound 31

Compound **31**¹³CNMR

Figure S37 ¹³CNMR Spectra of Compound 31

Compound **3m** ¹HNMR

Figure S38. ¹HNMR Spectra of Compound 3m

Compound **3m**¹³CNMR

Figure S39 ¹³CNMR Spectra of Compound 3m

Compound **3n** ¹HNMR

Figure S40. ¹HNMR Spectra of Compound 3n

Compound **3n** ¹³CNMR

Figure S41 ¹³CNMR Spectra of Compound 3n

Compound **30** ¹HNMR

Figure S42. ¹HNMR Spectra of Compound 30

Compound **30**¹³CNMR

Figure S43 ¹³CNMR Spectra of Compound 30

Compound **3p** ¹HNMR

Figure S44. ¹HNMR Spectra of Compound 3p

Compound **3p** ¹³CNMR

Figure S45¹³CNMR Spectra of Compound 3p

Compound **3q** ¹HNMR

Figure S46. ¹HNMR Spectra of Compound 3q

Compound **3q** ¹³CNMR

Figure S47 ¹³CNMR Spectra of Compound 3q

Compound **3r** ¹HNMR

Figure S48. ¹HNMR Spectra of Compound 3r

Compound **3r**¹³CNMR

Figure S49 ¹³CNMR Spectra of Compound 3r

Compound **3s** ¹HNMR

Figure S50. ¹HNMR Spectra of Compound 3s

Compound **3s**¹³CNMR

Figure S51 ¹³CNMR Spectra of Compound 3s

Compound **3t** ¹HNMR

3t

− 8.5 7.77 7.77 7.77 7.75 7.77 7.75 7.77 7.75 7.77 7.75 7.77 7.75 8.6 9.9 8.6 9.9 7.733 3.3 7.733 3.3 8.65 5.9 7.733 3.33 8.65 5.9 7.733 3.33 8.65 5.9 7.733 5.9 7.733 5.9 7.733 5.0 8.65 5.0 7.733 5.0 8.65 5.0 7.733 5.0 8.65 5.0 7.733 5.0 8.65 5.0 7.733 5.0 7.733 5.0 7.733 5.0 7.733 5.0 7.733 5.0 7.733 5.0 7.74 5.0</t

Figure S52. ¹HNMR Spectra of Compound 3t

Compound **3t** ¹³CNMR

Figure S53 ¹³CNMR Spectra of Compound 3t

Compound **3u** ¹HNMR

Figure S54. ¹HNMR Spectra of Compound 3u

Compound **3u** ¹³CNMR

Figure S55 ¹³CNMR Spectra of Compound 3u

Compound 4a ¹HNMR

Figure S56. ¹HNMR Spectra of Compound 4a

Compound 4a¹³CNMR

Compound **4b** ¹HNMR

Figure S58. ¹HNMR Spectra of Compound 4b

Compound **4b** ¹³CNMR

Figure S59. ¹³CNMR Spectra of Compound 4b

Compound **4c** ¹HNMR

Compound **4c**¹³CNMR

Figure S61. ¹³CNMR Spectra of Compound 4c

Compound 4d ¹HNMR

Figure S62. ¹HNMR Spectra of Compound 4d

Compound 4d ¹³CNMR

Figure S63. ¹³CNMR Spectra of Compound 4d

Compound 4e¹HNMR

Compound 4e¹³CNMR

Figure S65. ¹³CNMR Spectra of Compound 4e

Compound **4f** ¹HNMR

Figure S66. ¹HNMR Spectra of Compound 4f

Compound **4f**¹³CNMR

Figure S67. ¹³CNMR Spectra of Compound 4f

Compound 4g ¹HNMR

Figure S68. ¹HNMR Spectra of Compound 4g
Compound **4g**¹³CNMR

Figure S69. ¹³CNMR Spectra of Compound 4g

Compound **4h** ¹HNMR

Figure S70. ¹HNMR Spectra of Compound 4h

Compound **4h** ¹³CNMR

Figure S71. ¹³CNMR Spectra of Compound 4h

Compound 4i ¹HNMR

Figure S72. ¹HNMR Spectra of Compound 4i

Compound 4i¹³CNMR

Figure S73. ¹³CNMR Spectra of Compound 4i

Compound **4j** ¹HNMR

Figure S74. ¹HNMR Spectra of Compound 4j

Compound **4j** ¹³CNMR

Figure S75. ¹³CNMR Spectra of Compound 4j

Compound 4k ¹HNMR

Figure S76. ¹HNMR Spectra of Compound 4k

Compound 4k¹³CNMR

Figure S77. ¹³CNMR Spectra of Compound 4k

Compound **41** ¹HNMR

Figure S78. ¹HNMR Spectra of Compound 41

Compound **4l**¹³CNMR

Figure S79. ¹³CNMR Spectra of Compound 41

Compound **4m** ¹HNMR

 \cap

Figure S80. ¹HNMR Spectra of Compound 4m

Compound 4m¹³CNMR

Figure S81. ¹³CNMR Spectra of Compound 4m

Compound **4n** ¹HNMR

Figure S82. ¹HNMR Spectra of Compound 4n

Compound **4n** ¹³CNMR

Figure S83. ¹³CNMR Spectra of Compound 4n

Compound **40** ¹HNMR

Compound 40¹³CNMR

Figure S85. ¹³CNMR Spectra of Compound 40

Compound **4p** ¹HNMR

Figure S86. ¹HNMR Spectra of Compound 4p

Compound **4p** ¹³CNMR

Figure S87. ¹³CNMR Spectra of Compound 4p

Compound **4q** ¹HNMR

Compound **4q** ¹³CNMR

Figure S89. ¹³CNMR Spectra of Compound 4q

Compound 4r ¹HNMR

Figure S90. ¹HNMR Spectra of Compound 4r

Compound **4r**¹³CNMR

Figure S91. ¹³CNMR Spectra of Compound 4r

Compound 4s ¹HNMR

Figure S92. ¹HNMR Spectra of Compound 4s

Compound 4s ¹³CNMR

Figure S93. ¹³CNMR Spectra of Compound 4s

Compound 4t ¹HNMR

Compound 4t ¹³CNMR

Figure S95. ¹³CNMR Spectra of Compound 4t