Supporting Information For

Amphiphilic multi-charged cyclodextrins and vitamine K co-assembly as synergistic coagulant

Pei-yu Li^a, Yong chen^a, Chang-hui Chen^a and Yu Liu*^a

^a.Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China E-mail: yuliu@nankai.edu.cn

Content

1 Materials and Methods

2 Syntheses of AMCDs

Characterization of AMCD-y4C

Characterization of AMCD-y8C

Characterization of AMCD-β4C

Characterization of AMCD-β8C

3 Characterization of the binding behavior of AMCD

Binding constant of AMCD-HPTS

Job's plot for AMCD with HPTS

¹H NMR of AMCD-HPTS complex

2D Roesy of AMCD-HPTS complex

¹H NMR of AMCD-UFH complex

¹H NMR of AMCD-LMWM complex

Fluorescence spectra of AMCD-HPTS with the addition of LMWH, HYA, ALG

4 Characterization of coagulant effects of AMCD

aPTT clotting assay of LMWH blood

5 Characterization of AMCD-VK co-assembly

The UV-vis absorption spectra of VK.

TEM images of AMCD-VK co-assembly

TEM images of Heparin as comparison

1 Materials and Methods

Materials

All the reagents and solvents were commercially available and used as received unless otherwise specified purification. 8-Hydroxypyrene-1, 3, 6-trisulfonic acid, trisodium salt (HPTS), 1-buthylimidazole and 1-octylimidazole were purchased from Sigma-Aldrich. Heparin, hyaluronic acid and alginic acid were purchased from Macklin.

UV/Vis spectroscopy

UV-Vis spectra were recorded in a quartz cuvette (light path 10 mm) on a Shimadzu UV-2450 UV-Vis spectrophotometer equipped with a dual cuvette peltier accessory and a temperature controller (TCC-240A).

Fluorescence spectroscopy

Steady-state fluorescence measurements were recorded in a conventional quartz cuvette (light path 10 mm) on a Cary Eclipse equipped with a Cary single-cuvette peltier accessory.

TEM, measurements

TEM images were recorded on a Philips Tecnai G2 20S-TWIN microscope operating at an accelerating voltage of 200 keV. The sample for TEM measurements was prepared by dropping the solution onto a copper grid. The grid was then air-dried.

DLS measurements

The samples were examined on a laser light scattering spectrometer (BI-200SM) equipped with a digital correlator (TurboCorr) at 636 nm at a scattering angle of 90u. The hydrodynamic radius (R_h) was determined by dynamic light scattering

experiments.

Zeta potential measurements.

Zeta potential values were determined on a Brookheaven ZetaPALS (Brookheaven Instrument, USA) at 25 °C. The instrument utilizes phase analysis light scattering to provide an average over multiple particles. Doubly distilled water was used as the background electrolyte for zeta potential measurements.

The NMR spectra and mass spectra measurement

¹H and ¹³C NMR data were recorded on a Bruker AV400 spectrometer. Mass spectra were performed on a Varian 7.0T FTICR-MS (ESI-FTMS).

aPTT activity measurements

All of the aPTT activity measurements and samples incubation was carried out at 37 °C. 500 μ L test sample was taken from 2.5 mL of citrated plasma (plasma: sodium citrate 9:1) as control. UFH and LWMH were added to the remaining 2.0 mL of citrated blood, incubated for 2 min and fractioned into 400 μ L samples. Then the appropriate amount of AMCD solution was added to the remaining samples. The samples were incubated for 5 min and centrifuged at 2500 rpm for 10 min. The plasma (100 μ L) was added to 100 μ L of aPTT reagent solution, incubated for 4 min, and then 100 μ L of 0.02 M CaCl₂ solution was added. Once a clot formed the timer was stopped and the clotting time was recorded.

The preparation of AMCD-VK co-assembly and the VK release

The AMCD-VK co-assembly solutions were prepared by a film hydration method. In brief, AMCD and VK were dissolved in 2 mL chloroform. Chloroform was

evaporated using a rotary evaporator to create a thin lipid film. This film was resuspended in 2 mL water after 0.5 h of stirring at 55 °C and sonicated for another 0.5 h at the same temperature. The solution was then dialyzed for 3 hours to remove the unloaded VK.

The VK released experiment was carried out by adding heparin to the solution of AMCD-VK co-assembly and stirring for 5 mins. Then the solution was dialyzed for 3 hours to remove the released heparin.

2 Syntheses of AMCDs

Scheme S1. Synthetic routes of AMCDs. a) triarylphosphines, iodine and DMF; b) 1buthylimidazole or 1-octylimidazole.

The AMCD was synthesized according to the following general procedure. Octakis (6-deoxy-6-iodo)-γ-cyclodextrin (200 mg) was dissolved in 1-octylimidazole (20.0 mL). The reaction mixture was stirred at 80 °C under argon atmosphere for 2 days. After that the resultant solution was poured into acetone (100 mL) and the precipitate formed was collected by filtration. The filter was recrystallized from water to give a light yellow solid.

Synthesis AMCD-y4C

¹**H NMR (400 MHz, D2O) δ:** 7.53 (s, 2H), 5.02 (s, 1H), 4.51 – 4.28 (m, 2H), 4.11 (dd, J = 14.2, 5.5 Hz, 1H), 4.03 (t, J = 6.5 Hz, 2H), 3.94 (t, J = 9.1 Hz, 1H), 3.47 (d, J = 9.9 Hz, 1H), 3.26 (t, J = 8.9 Hz, 1H), 1.77 – 1.51 (m, 2H), 1.24 – 1.03 (m, 2H), 0.76 (t, J = 6.6 Hz, 3H).

¹³C NMR (100 MHz, D₂O) δ: 136.75, 123.22, 123.07, 101.92, 82.17, 71.90, 71.60,
69.06, 49.83, 49.52, 31.26, 18.77, 12.58.

ESI-FTMS m/z: [M - I] +, found 3042.52.

Figure S1. (a) ¹H NMR spectrum of **AMCD-** γ **4C** in D₂O, 400 MHz, 25 °C, and (b)¹³C NMR spectrum of **AMCD-** γ **4C** in D₂O, 100 MHz, 25 °C, and (c) ESI-FTMS of **AMCD-** γ **4C**.

Synthesis AMCD-₇8C

¹H NMR (400 MHz, D₂O) δ: 7.63 (s, 2H), 5.07 (s, 1H), 4.37 (m, 2H), 3.84 (m, 4H),
3.55 (d, 1H), 3.38 (t, 1H), 1.67 (m, 2H), 1.12 (m, 10H), 0.70 (t, 3H).

¹³C NMR (100 MHz, D₂O) δ: 137.69, 123.89, 122.56, 101.80, 82.42, 71.82, 69.29,
49.81, 49.11, 30.85, 29.96, 28.53, 22.47, 19.97, 13.74.

Figure S2. (a) ¹H NMR spectrum of AMCD- γ 8C in D₂O, 400 MHz, 25 °C, and (b)¹³C NMR spectrum of AMCD- γ 8C in D₂O, 100 MHz, 25 °C, and (c) ESI-FTMS of AMCD- γ 8C.

Synthesis AMCD-**β**4C

¹H NMR (400 MHz, D₂O) δ: 7.55 (s, 1H), 7.45 (s, 1H), 5.11 (s, 1H), 4.31 (m, 2H),
4.12 (dd, 1H), 4.05 (t, J = 6.8 Hz, 2H), 3.83 (t, 1H), 3.48 (d, J = 8.0 Hz, 1H), 3.28 (t, 1H), 1.80 - 1.55 (m, 2H), 1.15 (m, J = 14.9, 7.5 Hz, 2H), 0.77 (t, J = 7.4 Hz, 3H).
¹³C NMR (100 MHz, D₂O) δ: 136.75, 123.25, 122.85, 101.02, 81.36, 71.59, 68.58,
49.73, 49.46, 31.21, 18.73, 12.55.

ESI-FTMS m/z: [M - I] +, found 2646.48.

Figure S3. (a) ¹H NMR spectrum of AMCD- β 4C in D₂O, 400 MHz, 25 °C, and (b)¹³C NMR spectrum of AMCD- β 4C in D₂O, 100 MHz, 25 °C, and (c) ESI-FTMS of AMCD- β 4C.

Synthesis AMCD-β8C

¹**H NMR (400 MHz, D₂O) δ:** 7.51 (s, *J* = 5.8 Hz, 2H), 5.02 (s, 1H), 4.40 (m, 2H), 4.20 – 4.00 (m, 3H), 4.00 – 3.89 (t, 1H), 3.50 (d, 1H), 3.25 (t, 1H), 1.68 (m, 2H), 1.12 (m, 10H), 0.72 (t, 3H).

¹³C NMR (100 MHz, D₂O) δ: 137.69, 123.59, 122.53, 101.40, 82.48, 71.98, 71.23, 68.74, 50.13, 49.48, 31.56, 29.48, 28.85, 25.73, 22.28, 13.38.

Figure S4. (a) ¹H NMR spectrum of AMCD-β8C in D₂O, 400 MHz, 25 °C, and (b)¹³C NMR spectrum of AMCD-β8C in D₂O, 100 MHz, 25 °C, and (c) ESI-FTMS of AMCD-β8C.

3 Characterization of the binding affinity and selective between **AMCD** and Heparin

Figure S5. a) Direct fluorescence titration of HPTS (1.0 μ M) with AMCD (up to 10 μ M), $\lambda_{ex} = 450$ nm in 10mM Tris•HCl buffer PH=7.4. b) The associated titration curve at $\lambda_{em} = 515$ nm and the fit according to a 1:1 binding stoichiometry.

Figure S6. Job's plot for AMCD with HPTS ($\lambda ex = 450 \text{ nm}$, $\lambda em = 515 \text{ nm}$, [AMCD] + [HPTS] = 4.0 μ M) in 10mM Tris•HCl buffer PH=7.4.

Figure S7. (a) ¹H NMR spectrum of AMCD- γ 8C-HPTS in D₂O, 400 MHz, 25 °C; (b) Partial enlargement of (a).

Figure S8. 2D Roesy of AMCD-HPTS in D₂O, 400 MHz, 25 °C.

Figure S9. ¹H NMR spectrum of AMCD-heparin in D₂O, 400 MHz, 25 °C.

Figure S10. ¹H NMR spectrum of AMCD-LMWH in D₂O, 400 MHz, 25 °C.

Figure S11. Fluorescence spectra of **AMCD-HPTS** with the addition of **LMWH** in 10mM Tris•HCl buffer PH=7.4.

Figure S12. Fluorescence spectra of **AMCD-HPTS** with the addition of **ALG** in 10mM Tris•HCl buffer PH=7.4.

Figure S13. Fluorescence spectra of **AMCD-HPTS** with the addition of **HYA** in 10mM Tris•HCl buffer PH=7.4.

4 Characterization of coagulant effects

Figure S14. aPTT clotting assay of LMW heparinized plasma.

Figure S15. The UV-vis absorption spectra of variable concentration of vitamin K

(up to 25 µM).

Figure S16. TEM images of AMCD-VK co-assembly.

Figure S17. TEM images of Heparin.