SUPPLEMENTARY INFORMATION

A safe, convenient liquid phase pre-sodiation method for titanium-based SIB materials

Yang Cao,^{‡a} Tianqi Zhang,^{‡a} Xingguo Zhong, ^a Tianyou Zhai, ^a Huiqiao Li*^a

^a State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China. E-mail: <u>hqli@hust.edu.cn</u>

‡ Y. Cao and T. Q. Zhang contributed equally to this work

Materials synthesis:

 $Na_2Ti_6O_{13}$ were synthesized via a hydrothermal method. 20 ml 2.5 M sodium hydroxide was slowly dropped in a mixture solution of 0.68 g tetrabutyl titanate and 20 ml ethylene glycol and stirred for 1.5 h. Then the solution was transferred in a Teflon vessel and placed in autoclave at 200 °C for 10 h. The sample was washed and calcinated at 400 °C for 5 h.

 $Na_2Ti_3O_7$ was synthesized through a simple solid-state reaction. The precursors of 6 mmol TiO₂ (P25, Acros) and 0.222 g anhydrous Na_2CO_3 (>99.995%, Aldrich) was mixtured with 10 g NaCl. These mixtures were calcinated at 800 °C for 24 h. Then the as-prepared sample was washed with deionized water and dried at 80 °C.

TiO2: P25, purchased from Acros.

Figure S1. The chemical process of the dissolution of sodium metal and its sodiation mechanism.

Figure S2. (a) Cycle performance at a current of 100 mAg⁻¹. (b) Rate discharge capabilities of the pristine and pre-sodiated electrode at the current density of 100, 200, 400, 600, 800, 1000 mAg⁻¹ respectively. (c) Galvanostatic discharge and charge profiles of full cell before and after pre-sodiation. (d) Cycle performance of full cell before and after pre-sodiation with 4M Na-Naph-DME solution.

Figure S3. XRD pattern and crystal structure of as prepared TiO_2 (a, c) and $Na_2Ti_3O_7$ (b, d) powder. The first galvanostatic discharge and charge profiles of TiO_2 (e) and $Na_2Ti_6O_{13}$ (f) before and after pre-sodiation.

