Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

List of Contents

1)	General information and Materials	S2
2)	Optimization of the Iron-Catalyzed Oxygenation of Amine 1a and Isochro	oman
	1b	S3
3)	Synthesis and Characterization data of substrates	S5
4)	General procedure for the oxygenation reaction	.S15
5)	Characterization data of products	.S15
6)	Radical Inhibtion Experiments	S26
7)	Isotope Labeling Experiments	.S28
8)	References	.S31
9)	Copies of ¹ H NMR, and ¹³ C NMR spectra of Substrates	S32
10)	Copies of ¹ H NMR, and ¹³ C NMR spectra of Products	.S61

General information: ¹H NMR and ¹³C NMR spectra were recorded on an Agilent 400 MHz or 600 MHz DD2 spectrometer at ambient temperature. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. NMR yield was determined by ¹H NMR using mesitylene as an internal standard before working up the reaction.

Materials: All reagents were obtained from commercial suppliers, unless noted otherwise. MeCN, DCM and Toluene were distilled under reduced pressure with CaH₂. 1,4-Dioxane and THF were distilled with sodium and benzophenone before used.

		a N ^{-Ph} -	Fe RS O ₂ , 80 °C	N ⁻ Ph 1aa	Fe NMe	≥2
Entry	[Fe]	[Additive	Temperature	Base	Solvent (0.5	Yield
		10 mol%]			mL)	$(\%)^{b}$
1	Fe1	S1	80 °C		1,4-dioxane	17
2	Fe2	S1	80 °C		1,4-dioxane	21
3	Fe3	S 1	80 °C		1,4-dioxane	15
4	Fe4	S1	80 °C		1,4-dioxane	25
5	Fe5	S 1	80 °C		1,4-dioxane	43
6	Fe5	S2	80 °C		1,4-dioxane	31
7	Fe5	S3	80 °C		1,4-dioxane	35
8	Fe5	S4	80 °C		1,4-dioxane	39
9	Fe5	S 1	80 °C	Na ₂ CO ₃ (0.1 eq.)	1,4-dioxane	47
10	Fe5	S 1	80 °C	K ₂ CO ₃ (0.1 eq.)	1,4-dioxane	54
11	Fe5	S 1	80 °C	K ₃ PO ₄ (0.1 eq.)	1,4-dioxane	57
12	Fe5	<i>S1</i>	80°C	Na ₃ PO ₄ (0.1 eq.)	1,4-dioxane	(66%)
13	Fe5	S 1	80 °C	Na ₃ PO ₄ (0.05 eq.)	1,4-dioxane	53%
14	Fe5	S 1	80 °C	Na ₃ PO ₄ (0.2 eq.)	1,4-dioxane	50%
15	Fe5	S1	90 °C	$Na_3PO_4(0.1 eq.)$	1,4-dioxane	65
16	Fe5	S 1	60 °C	$Na_3PO_4(0.1 eq.)$	1,4-dioxane	41
17	Fe5	S 1	40 °C	$Na_{3}PO_{4}(0.1 \text{ eq.})$	1,4-dioxane	16
18	Fe5	S 1	rt	Na ₃ PO ₄ (0.1 eq.)	1,4-dioxane	trace
19	Fe5	S1	80 °C	$Na_{3}PO_{4}(0.1 \text{ eq.})$	toluene	20
20	Fe5	S 1	80 °C	Na ₃ PO ₄ (0.1 eq.)	MeCN	<5
21	Fe5	S 1	80 °C	Na ₃ PO ₄ (0.1 eq.)	DCE	<5
22	Fe5	S1	80 °C	$Na_{3}PO_{4}(0.1 \text{ eq.})$	THF	<10

Optimization of the Iron-catalyzed Oxygenation of amine.^a

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.3 mmol, 1.0 equiv), O_2 (1 atm), [Fe] (0.03 mmol, 0.1 equiv), disulfide (0.03 mmol, 0.1 equiv), dioxane (0.5 mL), 80 °C, 15 h. ^{*b*}Determined by ¹H NMR using mesitylene as an internal standard. The isolated yield is shown in parentheses.

Ĺ		- O ₂	Fe RS 80 °C	→	
	1b			1	bb
Entry	[Fe]	[Additive 10	Temperature	Solvent (0.5	Yield $(\%)^b$
		mol%]		mL)	
1	Fe1		80 °C	MeCN	trace
2	Fe1	S5	80 °C	MeCN	trace
3	Fe1	S6	80 °C	MeCN	< 5
4	Fe1	S 7	80 °C	MeCN	< 5
5	Fe1	S 1	80 °C	MeCN	7
6	Fe1	S1	80 °C	DCE	trace
7	Fe1	S1	80 °C	Toluene	13
8	Fe1	S 1	80 °C	THF	16
9	Fe1	S1	80°C	DMSO	17
10	Fe1	S1	80 °C	Acetone	19
11	Fe1	S 1	80 °C	MeOH	8
12	Fe1	<i>S1</i>	80 °C	1,4-dioxane	74% (75%)
13	Fe1	S 1	80 °C	<i>i</i> Pr ₂ O	66%
14	Fe1	S 1	80°C	diglyme	65%
15	Fe2	S 1	80 °C	1,4-dioxane	66
16	Fe3	S 1	80 °C	1,4-dioxane	56
17	Fe4	S 1	80 °C	1,4-dioxane	57
18	Fe1		80 °C	1,4-dioxane	trace
19	Fe(ClO ₄) ₂	S 1	80 °C	1,4-dioxane	trace
20	Fe(ClO ₄) ₂		80 °C	1,4-dioxane	11

Optimization of the Iron-Catalyzed Oxygenation of Isochroman.^a

^{*a*}Reaction conditions (unless otherwise specified): **1b** (0.3 mmol, 1.0 equiv), O_2 (1 atm), [Fe] (0.03 mmol, 0.1 equiv), additive (0.03 mmol, 0.1 equiv), 1,4-dioxane (0.5 mL), 80 °C, 15 h. ^{*b*}Determined by ¹H NMR using mesitylene as an internal standard. The isolated yield is shown in parentheses.

Synthesis and Characterization data of amine derivatives

General procedure 1:

To a 25 ml of Schlenk tube was added CuI (1.0 mmol) and K_3PO_4 (20.0 mmol), then 2-propanol (10 mL), ethylene glycol (20.0 mmol), 1,2,3,4-tetrahydroisoquinoline (15.0 mmol), iodobenzene (15.0 mmol) were added under argon atmosphere. The reaction mixture was heated to 90 °C and allowed to react for 24 h. The reaction was quenched with water, and the mixture was extracted with Et_2O for three times. The combined organic phase was washed with brine, dried over Na_2SO_4 , filtered and concentrated to give a crude product, and the residue was purified with silica gel chromatography to give product.

General procedure 2:

To a solution of DMAP (0.5 mmol) in DCM (20 mL) at room temperature under argon atmosphere, was successively added 1,2,3,4-tetrahydroisoquinoline (5.0 mmol), triethylamine (12.5 mmol) and corresponding acyl chloride (5.0 mmol). After stirring for 10 h at room temperature, the reaction was quenched with water, and the mixture was extracted with DCM for three times. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated to give a crude product, and the residue was purified with silica gel chromatography to give product.

General procedure 3:

To a solution of condensation agent HATU (7.5 mmol), carboxylic acid (5.0 mmol) in DCM (20 mL) at room temperature under argon atmosphere, was successively added

N,*N*-diisopropylethylamine (15.0 mmol), 1,2,3,4-tetrahydroisoquinoline (5.0 mmol), triethylamine (12.5 mmol) and corresponding carboxylic acid (5.0 mmol). After stirring for 10 h at room temperature, the reaction was quenched with water, and the mixture was extracted with DCM for three times. The combined organic phase was washed with brine, dried over Na_2SO_4 , filtered and concentrated to give a crude product, and the residue was purified with silica gel chromatography to give product.

2-Phenyl-1,2,3,4-tetrahydroisoquinoline (1a) The title compound was prepared according to general procedure 1. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (t, *J* = 8.4 Hz, 2 H), 7.24-7.18 (m, 4 H), 7.03 (d, *J* = 8.4 Hz, 2 H), 6.88 (t, *J* = 7.6 Hz, 1H), 4.46 (s, 2 H), 3.61 (t, *J* = 6.0 Hz, 2 H), 3.03 (t, *J* = 6.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 150.5, 134.9, 134.5, 129.2, 128.5, 126.5, 126.3, 126.0, 118.6, 115.1, 50.7, 46.5, 29.1.

2-(4-Methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (2a) The title compound was prepared according to general procedure 1. ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.13 (m, 4 H), 7.00 (d, *J* = 8.8 Hz, 2 H), 6.88 (d, *J* = 8.8 Hz, 2 H), 4.31 (s, 2 H), 3.79 (s, 3 H), 3.46 (t, *J* = 6.0 Hz, 2 H), 3.00 (t, *J* = 6.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 145.3, 134.5, 134.5, 128.7, 126.5, 126.2, 125.9, 118.0, 114.5, 55.6, 52.6, 48.4, 29.1.

2-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinoline (3a) The title compound was prepared according to general procedure 1. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.13 (m, 6 H), 6.87 (d, *J* = 8.8 Hz, 2 H), 4.37 (s, 2 H), 3.52 (t, *J* = 6.0 Hz, 2 H), 2.97 (t, *J* = 6.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 134.7, 134.1, 129.0, 128.5, 126.5, 126.5, 126.1, 123.3, 116.1, 50.6, 46.5, 28.9.

2-(4-Bromophenyl)-1,2,3,4-tetrahydroisoquinoline (4a) The title compound was prepared according to general procedure 1. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 7.2 Hz, 2 H), 7.21-7.14 (m, 4 H), 6.83 (d, *J* = 7.2 Hz, 2 H), 4.38 (s, 2 H), 3.53 (t, *J* = 5.6 Hz, 2 H), 2.98 (t, *J* = 5.6 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 149.4, 134.7, 134.0, 131.9, 128.5, 126.5, 126.1, 116.4, 110.4, 50.4, 46.3, 28.9.

2-(4-Nitrophenyl)-1,2,3,4-tetrahydroisoquinoline (5a) The title compound was prepared according to general procedure 1. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.0 Hz, 2 H), 7.25-7.20 (m, 4 H), 6.18 (d, J = 8.0 Hz, 2 H), 4.56 (s, 2 H), 3.69 (t, J = 5.6 Hz, 2 H), 3.02 (t, J = 5.6 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 153.7, 137.4, 134.8, 133.0, 128.0, 127.1, 126.6, 126.4, 126.1, 111.1, 48.7, 44.7, 28.9.

4-(3,4-Dihydroisoquinolin-2(1*H***)-yl)benzonitrile (6a)** The title compound was prepared according to general procedure 1. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.8 Hz, 2 H), 7.25-7.17 (m, 4 H), 6.85 (d, *J* = 8.8 Hz, 2 H), 4.49 (s, 2 H), 3.62 (t, *J* = 6.0 Hz, 2 H), 2.99 (t, *J* = 6.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 152.1, 134.8, 133.4, 133.3, 128.1, 126.8, 126.4, 126.4, 120.3, 112.5, 98.5, 48.7, 44.5, 28.8.

2-Acetyl-1,2,3,4-tetrahydroisoquinolin-6-yl acetate (7a) The title compound was prepared according to general procedure 2. ¹H NMR (400 MHz, $CDCl_{3}$, rotomers seen) δ 7.11 (dd, J = 16.0, 8.0 Hz, 1 H), 6.92-6.87 (m, 2 H), 4.69 (s, 1.2 H), 4.58 (s, 0.8 H), 3.79 (t, J = 5.6 Hz, 0.8 H), 3.65 (t, J = 5.6 Hz, 1.2 H), 2.88 (t, J = 5.6 Hz, 1.2 H), 2.82

(t, J = 5.6 Hz, 0.8 H), 2.27 (s, 3.0 H), 2.15 (s, 3.0 H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 169.6, 169.5, 169.3, 149.2, 149.0, 136.5, 135.3, 131.1, 130.1, 127.7, 127.0, 121.8, 121.2, 119.9, 119.7, 47.7, 43.7, 43.6, 39.1, 29.4, 28.5, 21.8, 21.6, 21.0.

Benzyl 3,4-dihydroisoquinoline-2(1*H***)-carboxylate (8a)** The title compound was prepared according to general procedure 2. ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.32 (m, 5 H), 7.20-7.10 (m, 4 H), 5.21 (s, 2 H), 4.67 (s, 2 H), 3.74 (s (br), 2 H), 2.87 (s (br), 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 136.7, 134.5, 134.4, 133.3, 132.9, 128.7, 128.4, 127.9, 127.9, 126.4, 126.2, 67.1, 45.7, 41.5, 41.3, 28.9, 28.7.

Benzyl 7-nitro-3,4-dihydroisoquinoline-2(1*H***)-carboxylate (9a)** The title compound was prepared according to general procedure 2. ¹H NMR (400 MHz, CDCl₃) δ 8.02-7.97 (m, 2 H), 7.38-7.25 (m, 6 H), 5.18 (s, 2 H), 4.73 (s, 2 H), 3.76 (t, *J* = 6.0 Hz, 2 H), 2.94 (s (br), 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 146.5, 142.1, 136.3, 134.6, 129.8, 128.5, 128.2, 128.0, 121.5, 67.5, 45.5, 40.7, 29.0.

Allyl 3,4-dihydroisoquinoline-2(1*H*)-carboxylate (10a) The title compound was prepared according to general procedure 2. ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.11 (m, 4 H), 6.03-6.93 (m, 1 H), 5.33 (d, *J* = 17.2 Hz, 1 H), 5.23 (d, *J* = 10.4 Hz, 1 H), 4.65 (s, 4 H), 3.72 (t, *J* = 6.0 Hz, 2 H), 2.86 (t, *J* = 6.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 134.5, 133.4, 133.0, 128.7, 128.5, 126.4, 126.2, 117.4, 66.0, 45.6, 41.5, 28.9.

tert-Butyl 3,4-dihydroisoquinoline-2(1*H*)-carboxylate (11a) The title compound was prepared according to general procedure 2. ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.10 (m, 4 H), 4.58 (s, 2 H), 3.65 (t, *J* = 5.6 Hz, 2 H), 2.84 (t, *J* = 5.6 Hz, 2 H), 1.50 (s, 9 H).

¹³C NMR (100 MHz, CDCl₃) δ 154.8, 134.7, 133.7, 128.6, 126.2, 126.1, 79.7, 45.8, 40.6, 28.9, 28.4.

N-(2-(3,4-Dihydroisoquinolin-2(1*H*)-yl)-2-oxoethyl)benzamide (12a) The title compound was prepared according to general procedure 3. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.85 (d, *J* = 7.6 Hz, 2.0 H), 7.50 (t, *J* = 7.2 Hz, 1.0 H), 7.43 (t, *J* = 7.2 Hz, 3.0 H), 7.25-7.11 (m, 4.0 H), 4.77 (s, 1.1 H), 4.62 (s, 0.9 H), 4.35-4.32 (m, 2.0 H), 3.88 (t, *J* = 6.0 Hz, 0.9 H), 3.68 (t, *J* = 6.0 Hz, 1.1 H), 2.94 (t, *J* = 6.0 Hz, 1.1 H), 2.90 (t, *J* = 6.0 Hz, 0.9 H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 167.1, 166.9, 134.5, 133.8, 133.7, 132.6, 131.5, 131.5, 128.8, 128.5, 128.3, 127.2, 127.0, 126.8, 126.7, 126.6, 126.5, 126.1, 45.9, 44.4, 42.1, 41.9, 40.1, 29.0, 28.2.

tert-Butyl (*S*)-(1-(3,4-dihydroisoquinolin-2(1*H*)-yl)-4-methyl-1-oxopentan-2-yl) carbamate (13a) The title compound was prepared according to general procedure 3. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.22-7.08 (m, 4.0 H), 5.33 (t, *J* = 9.2 Hz, 1.0 H), 4.79-4.71 (m, 3.0 H), 3.97- 3.79 (m, 1.0 H), 3.74-3.66 (m, 1.0 H), 3.01-2.90 (m, 1.0 H), 2.86 (t, *J* = 6.0 Hz, 1.0 H), 1.77-1.69 (m, 1.0 H), 1.59-1.47 (m, 1.0 H), 1.42 (s, 9.0 H), 1.40-1.31 (m, 1.0 H), 1.02 (d, *J* = 3.6 Hz, 1.8 H), 1.00 (d, *J* = 3.6 Hz, 1.2 H), 0.93 (d, *J* = 6.8 Hz, 1.8 H), 0.89 (d, *J* = 6.8 Hz, 1.2 H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 172.0, 171.8, 155.6, 134.8, 133.9, 133.0, 132.1, 128.8, 128.3, 127.0, 126.6, 126.4, 126.1, 79.5, 49.0, 48.8, 47.0, 44.5, 43.0, 43.0, 42.9, 40.3, 29.4, 28.3, 24.6, 23.4, 21.9, 21.8.

(*S*)-1-(3,4-Dihydroisoquinolin-2(1*H*)-yl)-2-(6-methoxynaphthalen-2-yl)propan-1one (14a) The title compound was prepared according to general procedure 3. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.71-7.64 (m, 3 H), 7.39 (d, J = 8.4 Hz, 1 H), 7.15-7.09 (m, 5 H), 6.98 (d, J = 7.6 Hz, 0.6 H), 6.86 (d, J = 7.6 Hz, 0.4 H), 4.79 (dd, J = 29.2, 17.2 Hz, 1.2 H), 4.69 (d, J = 16.0 Hz, 0.4 H), 4.35 (d, J = 16.0 Hz, 0.4 H), 4.13-4.01 (m, 1.4 H), 3.90 (s, 3 H), 3.73-3.55 (m, 1.6 H), 2.89-2.77 (m, 0.8 H), 2.68-2.61 (m, 0.6 H), 2.38-2.31 (m, 0.6 H), 1.55 (d, J = 6.8 Hz, 3.0 H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 172.7, 172.6, 157.5, 137.1, 136.8, 135.0, 134.1, 133.4, 132.6, 129.1, 129.0, 128.6, 128.2, 127.5, 126.7, 126.6, 126.4, 126.3, 126.1, 125.9, 125.5, 119.0, 118.9, 105.6, 55.3, 47.3, 44.6, 43.6, 43.0, 40.2, 29.1, 28.5, 20.8, 20.7.

(*S*)-1-(3,4-Dihydroisoquinolin-2(1*H*)-yl)-2-(4-isobutylphenyl)propan-1-one (16a) The title compound was prepared according to general procedure 3. ¹H NMR (400 MHz, CDCl₃, rotomers seen) δ 7.18-7.13 (m, 7 H), 7.00 (d, *J* = 7.6 Hz, 0.6 H), 6.87 (d, *J* = 7.6 Hz, 0.4 H), 4.86 (d, *J* = 17.2 Hz, 0.6 H), 4.68 (d, *J* = 17.2 Hz, 0.6 H), 4.62 (d, *J* = 16.0 Hz, 0.4 H), 4.37 (d, *J* = 16.0 Hz, 0.4 H), 3.98-3.90 (m, 1.4 H), 3.76-3.70 (m, 0.4 H), 3.63-3.53 (m, 1.4 H), 2.85-2.80 (m, 0.6 H), 2.66-2.60 (m, 0.6 H), 2.45-2.40 (m, 2.0 H), 2.35-2.27 (m, 0.6 H), 1.89-1.75 (m, 1.0 H), 1.47 (d, *J* = 6.0 Hz, 3.0 H), 0.88 (d, *J* = 6.4 Hz, 3.0 H). ¹³C NMR (100 MHz, CDCl₃, rotomers seen) δ 172.7, 140.1, 139.2, 138.9, 135.0, 134.1, 133.5, 132.7, 129.6, 129.5, 128.6, 128.2, 126.9, 126.8, 126.6, 126.3, 126.3, 126.1, 125.8, 47.2, 44.9, 44.6, 43.3, 43.0, 40.2, 30.1, 30.1, 29.0, 28.4, 22.3, 20.7.

Synthesis and Characterization data of isochroman derivatives

Isochroman derivatives were synthesized according to the methods reported in the literature.¹⁻⁶

4-Methylisochromane (2b)^{1 1}H NMR (400 MHz, CDCl₃) δ 7.26-7.16 (m, 3 H), 6.99 (d, *J* = 7.6 Hz, 1 H), 4.80 (dd, *J* = 20.8, 15.2 Hz, 2 H), 3.99 (dd, *J* = 11.2, 4.4 Hz, 1 H),

3.69 (dd, *J* = 11.2, 5.6 Hz, 1 H), 2.99-2.92 (m, 1 H), 1.33 (d, *J* = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 134.2, 127.7, 126.5, 125.8, 124.1, 71.3, 68.3, 31.8, 19.2.

3-Methylisochromane (3b) ¹ ¹H NMR (400 MHz, CDCl₃) δ 7.19-7.16 (m, 2 H), 7.13-7.09 (m, 1 H), 7.01 (t, *J* = 4.4 Hz, 2 H), 4.89-4.81 (m, 2 H), 3.88-3.79 (m, 1 H), 2.73 (d, *J* = 6.8 Hz, 2 H), 1.38 (d, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 134.6, 133.4, 128.6, 126.3, 125.9, 124.1, 70.9, 68.1, 35.7, 21.6.

7-Methylisochromane (4b)^{1 1}H NMR (400 MHz, CDCl₃) δ 7.05 (d, *J* = 8.0 Hz, 1 H), 7.02 (d, *J* = 8.0 Hz, 1 H), 6.83 (s, 1 H), 4.78 (s, 2 H), 4.00 (t, *J* = 6.0 Hz, 2 H), 2.85 (t, *J* = 6.0 Hz, 2 H), 2.34 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 135.4, 134.6, 130.0, 128.7, 127.1, 124.8, 67.9, 65.4, 27.9, 21.0.

7-(*tert***-Butyl)isochromane (5b)**² ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.0 Hz, 1 H), 7.09 (d, *J* = 8.0 Hz, 1 H), 7.02 (s, 1 H), 4.80 (s, 2 H), 3.99 (t, *J* = 5.6 Hz, 2 H), 2.84 (t, *J* = 5.6 Hz, 2 H), 1.33 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 134.4, 130.2, 128.5, 123.5, 121.0, 68.2, 65.5, 34.4, 31.3, 27.9.

7-Methoxyisochromane (6b) ¹ ¹H NMR (400 MHz, CDCl₃) δ 7.04 (d, *J* = 8.0 Hz, 1 H), 6.75 (d, *J* = 8.0 Hz, 1 H), 6.53 (s, 1 H), 4.75 (s, 2 H), 3.96 (t, *J* = 5.6 Hz, 2 H), 3.78 (s, 3 H), 2.80 (t, *J* = 5.6 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 135.8, 129.7, 125.1, 112.6, 109.0, 68.0, 65.6, 55.2, 27.5.

6,7-Dimethoxyisochromane (**7b**)³ ¹H NMR (400 MHz, CDCl₃) δ 6.61 (s, 1 H), 6.47 (s, 1 H), 4.70 (s, 2 H), 3.95 (t, *J* = 5.6 Hz, 2 H), 3.85 (s, 3 H), 3.83 (s, 3 H), 2.77 (t, *J* = 5.6 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 147.5, 126.6, 125.0, 111.7, 107.3, 67.6, 65.4, 55.9, 27.8.

To a 25 mL two neck round bottom flask was added **8** (200 mg, 1.3 mmol), TBSCl (292 mg, 1.95 mmol), imidazole (176 mg, 2.6 mmol) and 6 mL CH₂Cl₂ at 0 °C under N₂, the mixture was stirred for 3 h at room temperature, then the mixture was poured into water and extracted with CH₂Cl₂, the combined organic phases were dried over Na₂SO₄, concentrated in vacuo, and the residue was purified by silica gel chromatography to give **8b** with a quantitative yield.

tert-Butyl(isochroman-7-yloxy)dimethylsilane (8b) ¹H NMR (400 MHz, CDCl₃) δ 6.97 (d, *J* = 8.0 Hz, 1 H), 6.66 (d, *J* = 8.0 Hz, 1 H), 6.47 (s, 1 H), 4.71 (s, 2 H), 3.95 (t, *J* = 5.6 Hz, 2 H), 2.78 (t, *J* = 5.6 Hz, 2 H), 0.98 (s, 9 H), 0.18 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 153.6, 135.8, 129.7, 125.7, 118.4, 115.5, 67.9, 65.6, 27.6, 25.7, 18.2, -4.4.

a) A mixture of 4-(2-hydroxyethyl)phenyl acetate (known compound)¹ (2.5 g, 13.9 mmol), DIPEA (4.6 mL, 27.8 mmol), MOMCl (1.6 mL, 20.9 mmol) in dry 30 mL CH_2Cl_2 was allowed react for 10 h under N_2 at room temperature, then the mixture was poured into water and extracted with CH_2Cl_2 , the combined organic phases were

washed with 30 mL 1 N HCl, dried over Na_2SO_4 , concentrated in vacuo, the crude product can move forward without purification.

b) The residue was dissolved in 30 mL MeCN, then TMSOTf (13.9 mmol, 1.0 equiv) was added at 0 °C and the mixture was stirred at room temperature for 16 h, then the reaction was quenched by saturated NaHCO₃ solution and extracted with ethyl acetate, dried over Na₂SO₄, concentrated in vacuo, the reaction crude was purified with silica gel chromatography to provide the product **9b** (1.3 g, 50% yield) and byproduct **8** (416 mg, 20% yield).

Isochroman-7-yl acetate (9b)^{1 1}H NMR (400 MHz, CDCl₃) δ 7.11 (d, J = 8.0 Hz, 1 H), 6.87 (d, J = 8.0 Hz, 1 H), 6.71 (s, 1 H), 4.74 (s, 2 H), 3.94 (t, J = 5.2 Hz, 2 H), 2.82 (t, J = 5.2 Hz, 2 H), 2.27 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 148.5, 136.0, 130.7, 129.8, 119.6, 117.2, 67.6, 65.2, 27.7, 21.0.

Isochroman-7-ol (8) ¹H NMR (400 MHz, CDCl₃) δ 6.96 (d, J = 8.0 Hz, 1 H), 6.66 (d, J = 8.0 Hz, 1 H), 6.43 (s, 1 H), 6.27 (s, 1 H), 4.71 (s, 2 H), 3.98 (t, J = 5.6 Hz, 2 H), 2.78 (t, J = 5.6 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 135.5, 130.0, 124.7, 114.0, 110.7, 67.8, 65.7, 27.4.

2-(Isochroman-7-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (10b) This compound was synthesized via cross-coupling from **14b** according to the literature.⁴ ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.6 Hz, 1 H), 7.44 (s, 1 H), 7.12 (d, *J* = 7.6 Hz, 1 H), 4.78 (s, 2 H), 3.96 (t, *J* = 5.6 Hz, 2 H), 2.86 (t, *J* = 5.6 Hz, 2 H), 1.33 (s, 12 H). ¹³C NMR (100 MHz, CDCl₃) δ 136.6, 134.3, 132.6, 130.9, 128.3, 83.7, 67.9, 65.2, 28.6, 24.8. HRMS: Calculated for (M+Na)+:283.1478; Found: 283.1466.

7-Allylisochromane (11b) This compound was synthesized via cross-coupling from **14b** according to the literature.⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.06 (d, *J* = 7.6 Hz, 1

H), 7.00 (d, J = 7.6 Hz, 1 H), 6.82 (s, 1 H), 6.00-5.90 (m, 1 H), 5.10-5.05 (m, 2 H), 4.76 (s, 2 H), 3.97 (t, J = 5.6 Hz, 2 H), 3.34 (d, J = 6.8 Hz, 2 H), 2.83 (t, J = 5.6 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 137.8, 137.4, 134.9, 130.9, 128.9, 126.7, 124.4, 115.8, 68.0, 65.5, 39.9, 28.0.

7-Fluoroisochromane (12b)^{1 1}H NMR (400 MHz, CDCl₃) δ 7.06 (t, J = 7.2 Hz, 1 H), 6.85 (t, J = 8.4 Hz, 1 H), 6.67 (d, J = 9.2 Hz, 1 H), 4.72 (s, 2 H), 3.95 (t, J = 6.0 Hz, 2 H), 2.80 (t, J = 6.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 161.0 (d, J = 243.0 Hz), 136.6 (d, J = 6.7 Hz), 130.3 (d, J = 7.8 Hz), 128.7 (d, J = 3.1 Hz), 113.4 (d, J = 21.2Hz), 110.9 (d, J = 21.5 Hz), 67.7, 65.3, 27.6.

7-Chloroisochromane (13b)^{1 1}H NMR (400 MHz, CDCl₃) δ 7.11 (d, *J* = 8.0 Hz, 1 H), 7.03 (t, *J* = 8.0 Hz, 1 H), 6.96 (s, 1 H), 4.71 (s, 2 H), 3.94 (t, *J* = 6.0 Hz, 2 H), 2.80 (t, *J* = 6.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 136.6, 131.6, 131.5, 130.2, 126.5, 124.4, 67.5, 65.2, 27.7.

7-Bromoisochromane (14b)^{3 1}H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 8.0 Hz, 1 H), 7.12 (s, 1 H), 6.98 (d, *J* = 8.0 Hz, 1 H), 4.71 (s, 2 H), 3.94 (t, *J* = 5.6 Hz, 2 H), 2.78 (t, *J* = 5.6 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 137.0, 132.1, 130.5, 129.4, 127.3, 119.5, 67.4, 65.1, 27.8.

1,4-Dihydro-2*H***-benzo[***f***]isochromene (15b)⁶ ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d,** *J* **= 8.0 Hz, 1 H), 7.85 (d,** *J* **= 8.0 Hz, 1 H), 7.70 (d,** *J* **= 8.4 Hz, 1 H), 7.56 (t,** *J* **= 8.0 Hz, 1 H), 7.50 (t,** *J* **= 8.0 Hz, 1 H), 7.11 (d,** *J* **= 8.4 Hz, 1 H), 4.93 (s, 2 H), 4.16 (t,** *J* **= 5.6** Hz, 2 H), 3.18 (t, *J* = 5.6 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 132.2, 132.0, 132.0, 128.5, 128.2, 126.3, 126.2, 125.3, 122.8, 122.4, 68.2, 65.2, 25.1.

4,7-Dihydro-5*H***-thieno[2,3-***c***]pyran (16b)¹ ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d,** *J* **= 5.2 Hz, 1 H), 6.83 (d,** *J* **= 5.2 Hz, 1 H), 4.83 (s, 2 H), 3.96 (t,** *J* **= 5.6 Hz, 2 H), 2.76 (t,** *J* **= 5.6 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 132.7, 126.9, 122.4, 65.6, 65.0, 26.1.**

7-Benzylisochromane (22b) ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.27 (m, 2 H), 7.21-7.18 (m, 3 H), 7.07-6.99 (m, 2 H), 6.81 (s, 1 H), 4.73 (s, 2 H), 3.99-3.93 (m, 4 H), 2.83 (t, *J* = 5.6 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 138.9, 134.9, 130.9, 129.0, 128.8, 128.4, 127.0, 126.1, 124.7, 68.0, 65.4, 41.6, 28.0. HRMS: Calculated for (M+H) +:225.1273; Found: 225.1268.

General procedure for the oxygenation reaction

To a 25 ml of Schlenk tube was added **Fe1** or **Fe5** (0.03 mmol, 0.1 equiv) and phenyl disulfide (6.5 mg, 0.03 mmol, 0.1 equiv) under air. The reaction tube was degassed with O_2 (1 atm, 3 times), then substrates (0.30 mmol, 1.0 equiv) and freshly distilled 1,4-dioxane (0.5 mL) were added. The reaction mixture was heated to 80 °C and allowed to react for 15 h. The mixture was concentrated, and the residue was purified with silica gel chromatography to give product.

Characterization data of products

2-Phenyl-3,4-dihydroisoquinolin-1(2*H***)-one (1aa)** The product (44 mg, 66% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 7.6 Hz, 2 H), 7.46 (td, *J* = 7.6, 1.6 Hz, 1 H), 7.43-7.35 (m, 5 H), 7.27-7.23 (m, 2 H), 3.99 (t, *J* = 6.4 Hz, 2 H), 3.14 (t, *J* = 6.4 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 143.1, 138.3, 132.0, 129.7, 128.9, 128.7, 127.2, 126.9, 126.2, 125.3, 49.4, 28.6. HRMS: Calculated for (M+H)⁺: 224.1069; Found: 224.1073.

2-(4-Methoxyphenyl)-3,4-dihydroisoquinolin-1(2*H***)-one (2aa) The product (37 mg, 50% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) \delta 8.15 (d,** *J* **= 7.6 Hz, 1 H), 7.46 (t,** *J* **= 7.6 Hz, 1 H), 7.37 (t,** *J* **= 7.6 Hz, 1 H), 7.30 (d,** *J* **= 8.8 Hz, 2 H), 7.24 (d,** *J* **= 7.6 Hz, 1 H), 6.94 (d,** *J* **= 8.8 Hz, 2 H), 3.95 (t,** *J* **= 6.4 Hz, 2 H), 3.83 (s, 3 H), 3.14 (t,** *J* **= 6.4 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) \delta 164.4, 157.8, 138.3, 136.1, 131.9, 129.8, 128.7, 127.1, 126.9, 126.7, 114.2, 55.5, 49.7, 28.7. HRMS: Calculated for (M+H)⁺: 254.1175; Found: 254.1178.**

2-(4-Chlorophenyl)-3,4-dihydroisoquinolin-1(2*H***)-one (3aa) The product (49 mg, 63% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400**

MHz, CDCl₃) δ 8.06 (d, J = 8.0 Hz, 1 H), 7.39 (t, J = 7.6 Hz, 1 H), 7.31-7.23 (m, 5 H), 7.16 (d, J = 7.6 Hz, 1 H), 3.88 (t, J = 6.4 Hz, 2 H), 3.05 (t, J = 6.4 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 141.5, 138.2, 132.2, 131.4, 129.3, 128.9, 128.7, 127.2, 127.0, 126.5, 49.2, 28.5. HRMS: Calculated for (M+Na)⁺: 280.0499; Found: 280.0502.

2-(4-Bromophenyl)-3,4-dihydroisoquinolin-1(2*H*)-one (4aa) The product (56 mg, 62% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 7.6 Hz, 1 H), 7.53 (d, *J* = 8.8 Hz, 2 H), 7.49 (t, *J* = 7.6 Hz, 1 H), 7.39 (t, *J* = 7.6 Hz, 1 H), 7.29 (d, *J* = 8.8 Hz, 2 H), 7.25 (d, *J* = 7.6 Hz, 1 H), 3.97 (t, *J* = 6.4 Hz, 2 H), 3.15 (t, *J* = 6.4 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 142.0, 138.2, 132.2, 131.8, 129.3, 128.7, 127.2, 127.0, 126.8, 119.3, 49.2, 28.5. HRMS: Calculated for (M+H)⁺: 302.0175; Found: 302.0179.

2-(4-Nitrophenyl)-3,4-dihydroisoquinolin-1(2*H***)-one (5aa) The product (38 mg, 47% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) \delta 8.27 (d,** *J* **= 9.2 Hz, 2 H), 8.16 (d,** *J* **= 7.6 Hz, 1 H), 7.61 (d,** *J* **= 9.2 Hz, 2 H), 7.51 (td,** *J* **= 7.6, 1.2 Hz, 1 H), 7.41 (t,** *J* **= 7.6 Hz, 1 H), 7.28 (d,** *J* **= 7.6 Hz, 1 H), 4.08 (t,** *J* **= 6.4 Hz, 2 H), 3.19 (t,** *J* **= 6.4 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) \delta 164.2, 148.6, 144.7, 138.2, 132.8, 129.0, 128.9, 127.5, 127.1, 124.8, 124.2, 49.0, 28.4.**

4-(1-Oxo-3,4-dihydroisoquinolin-2(1*H***)-yl)benzonitrile (6aa)** The product (56 mg, 75% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 7.6 Hz, 1 H), 7.67 (d, *J* = 8.4 Hz, 2 H), 7.53 (d, *J* = 8.4 Hz, 2 H), 7.49 (t, *J* = 7.6 Hz, 1 H), 7.38 (t, *J* = 7.6 Hz, 1 H), 7.25 (d, *J* = 7.6 Hz, 1 H), 4.02 (t, *J* = 6.4 Hz, 2 H), 3.16 (t, *J* = 6.4 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 146.8, 138.1, 132.6, 128.9, 128.8, 127.3, 127.0, 125.0, 118.6, 108.8, 48.8, 28.3. HRMS: Calculated for (M+H)⁺: 249.1022; Found: 249.1027.

2-Acetyl-1-oxo-1,2,3,4-tetrahydroisoquinolin-6-yl acetate (7aa) The product (49 mg, 66% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.8 Hz, 1 H), 7.08 (dd, *J* = 8.8 Hz, *J* = 2.4 Hz, 1 H), 7.00 (s, 1 H), 4.09 (t, *J* = 6.0 Hz, 2 H), 2.96 (t, *J* = 6.0 Hz, 2 H), 2.63 (s, 3 H), 2.30 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 168.7, 164.9, 154.3, 142.0, 131.4, 126.5, 120.7, 120.3, 41.5, 28.1, 27.5, 21.1.

Benzyl 1-oxo-3,4-dihydroisoquinoline-2(1*H***)-carboxylate (8aa)** The product (55 mg, 65% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 7.6 Hz, 1 H), 7.49 (t, *J* = 7.6 Hz, 2 H), 7.41-7.31 (m, 5 H), 7.22 (d, *J* = 7.6 Hz, 1 H), 5.37 (s, 2 H), 4.09 (t, *J* = 6.0 Hz, 2 H), 3.02 (t, *J* = 6.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 154.5, 139.5, 135.4, 133.1, 129.7, 129.0, 128.6, 128.3, 128.1, 127.3, 127.2, 68.7, 44.8, 28.2. HRMS: Calculated for (M+Na)⁺: 304.0944; Found: 304.0947.

Benzyl 7-nitro-1-oxo-3,4-dihydroisoquinoline-2(1*H*)-carboxylate (9aa) The product (60 mg, 61% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 9.00 (d, *J* = 2.8 Hz, 1 H), 8.32 (dd, *J* = 8.4 Hz, *J* = 2.4 Hz, 1 H), 7.50-7.47 (m, 2 H), 7.44-7.34 (m, 4 H), 5.38 (s, 2 H), 4.13 (t, *J* = 6.0 Hz, 2 H), 3.13 (t, *J* = 6.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 154.0, 147.6, 145.9, 135.0, 130.4, 128.7, 128.6, 128.5, 128.1, 127.3, 125.0, 69.2, 44.0, 28.3.

Allyl 1-oxo-3,4-dihydroisoquinoline-2(1*H*)-carboxylate (10aa) The product (42 mg, 60% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 7.6 Hz, 1 H), 7.49 (t, *J* = 7.6 Hz, 1 H), 7.37 (t, J = 7.6 Hz, 1 H), 7.49 (t, J = 7.6 Hz, 1 H), 7.37 (t, J = 7.6 Hz, 1 H), 7.49 (t, J = 7.6 Hz, 1 H), 7.37 (t, J = 7.6 Hz, 1 H), 7.49 (t, J = 7.6 Hz, 1 H), 7.49 (t, J = 7.6 Hz, 1 H), 7.49 (t, J = 7.6 Hz, 1 H), 7.37 (t, J = 7.6 Hz, 1 H), 7.49 (t, J = 7.6

1 H), 7.23 (d, J = 7.6 Hz, 1 H), 6.07-5.98 (m, 1 H), 5.49 (d, J = 17.2 Hz, 1 H), 5.31 (d, J = 10.4 Hz, 1 H), 4.82 (d, J = 5.2 Hz, 2 H), 4.09 (t, J = 6.0 Hz, 2 H), 3.03 (t, J = 6.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl3) δ 163.7, 154.4, 139.5, 133.1, 131.5, 129.8, 129.0, 127.3, 127.2, 118.9, 67.7, 44.7, 28.3. HRMS: Calculated for (M+Na)⁺: 254.0787; Found: 254.0793.

tert-Butyl 1-oxo-3,4-dihydroisoquinoline-2(1*H*)-carboxylate (11aa) The product (52 mg, 70% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 7.6 Hz, 1 H), 7.46 (t, *J* = 7.6 Hz, 1 H), 7.34 (t, *J* = 7.6 Hz, 1 H), 7.20 (d, *J* = 7.6 Hz, 1 H), 3.98 (t, *J* = 6.0 Hz, 2 H), 3.00 (t, *J* = 6.0 Hz, 2 H), 1.58 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 153.1, 139.5, 132.8, 129.6, 129.3, 127.2, 127.1, 83.2, 44.4, 28.3, 28.1. HRMS: Calculated for (M+Na)⁺: 270.1100; Found: 270.1105.

N-(2-Oxo-2-(1-oxo-3,4-dihydroisoquinolin-2(1*H*)-yl)ethyl)benzamide (12aa) The product (58 mg, 63% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.0 Hz, 1 H), 7.86 (d, *J* = 7.6 Hz, 2 H), 7.56-7.49 (m, 2 H), 7.46-7.39 (m, 3 H), 7.27 (d, *J* = 7.6 Hz, 1 H), 7.17 (t, *J* = 5.2 Hz, 1 H), 4.95 (d, *J* = 5.2 Hz, 2 H), 4.16 (t, *J* = 6.8 Hz, 2 H), 3.04 (t, *J* = 6.8 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 167.4, 165.4, 139.9, 134.1, 133.7, 131.5, 129.6, 128.6, 128.5, 127.5, 127.3, 127.1, 47.4, 42.1, 27.9. HRMS: Calculated for (M+Na)+: 331.1053; Found: 331.1057.

tert-Butyl(*S*)-(4-Methyl-1-oxo-1-(1-oxo-3,4-dihydroisoquinolin-2(1*H*)-yl)pentan-2-yl)carbamate (13aa) The product (71 mg, 71% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.08 (m, 4 H), 5.33 (t, *J* = 9.2 Hz, 1 H), 4.79-4.62 (m, 3 H), 7.31 (d, *J* = 5.2 Hz, 1 H), 4.82 (t, *J* = 1.2 Hz, 2 H), 4.48 (t, *J* = 1.2 Hz, 2 H), 4.19 (s, 5 H), 4.04 (t, *J* = 4.0 Hz, 2 H), 3.18 (t, *J* = 4.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 177.6, 165.7, 139.9, 133.3, 129.6, 128.7, 127.7, 127.4, 75.9, 71.6, 71.5, 70.4, 45.0, 29.0. HRMS: Calculated for (M+H)⁺: 361.2121; Found: 361.2124.

(*S*)-2-(2-(6-Methoxynaphthalen-2-yl)propanoyl)-3,4-dihydroisoquinolin-1(2*H*)one (14aa) The product (54 mg, 50% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 7.6 Hz, 1 H), 7.71 (s, 1 H), 7.68 (dd, *J* = 8.4, 3.2 Hz, 2 H), 7.49 (dd, *J* = 8.4, 2.0 Hz, 1 H), 7.44 (td, *J* = 7.6, 1.6 Hz, 1 H), 7.33 (t, *J* = 7.6 Hz, 1 H), 7.16 (d, *J* = 7.6 Hz, 1 H), 7.11-7.07 (m, 2 H), 5.33 (q, *J* = 6.8 Hz, 1 H), 4.18-4.12 (m, 1 H), 4.04-3.98 (m, 1 H), 3.88 (s, 3 H), 2.93-2.80 (m, 2 H), 1.62 (d, *J* = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 178.9, 165.4, 157.4, 140.1, 136.8, 133.5, 133.2, 129.6, 129.3, 129.0, 128.9, 127.2, 127.0, 126.9, 126.3, 118.6, 105.5, 55.2, 46.8, 42.8, 28.2, 20.0.

(*S*)-2-(2-(4-Isobutylphenyl)propanoyl)-3,4-dihydroisoquinolin-1(2*H*)-one (16aa) The product (46 mg, 46% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.0 Hz, 1 H), 7.46 (t, *J* = 7.6 Hz, 1 H), 7.34 (t, *J* = 7.6 Hz, 1 H), 7.25 (d, *J* = 7.6 Hz, 2 H), 7.19 (d, *J* = 7.6 Hz, 1 H), 7.05 (d, *J* = 8.0 Hz, 2 H), 5.15 (q, *J* = 6.8 Hz, 1 H), 4.16-4.10 (m, 1 H), 4.01-3.94 (m, 1 H), 2.89-2.85 (m, 2 H), 2.40 (d, *J* = 7.2 Hz, 2 H), 1.86-1.76 (m, 1 H), 1.54 (d, *J* = 6.8 Hz, 3 H), 0.85 (d, *J* = 6.4 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 179.1, 165.4, 140.1, 138.7, 133.2, 129.5, 129.1, 129.0, 127.6, 127.2, 46.4, 45.0, 42.9, 30.0, 28.2, 22.3, 19.9.

Isochroman-1-one (1bb) The product (33 mg, 75% yield) as a white solid was purified with silica gel chromatography. This compound is known.¹¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 7.6 Hz, 1 H), 7.52 (t, *J* = 7.6 Hz, 1 H), 7.38 (t, *J* = 7.6 Hz, 1 H), 7.25 (d, *J* = 7.6 Hz, 1 H), 4.52 (t, *J* = 6.0 Hz, 2 H), 3.05 (t, *J* = 6.0 Hz, 2 H). ¹³C NMR (100

MHz, CDCl₃) δ 165.1, 139.5, 133.6, 130.4, 127.6, 127.2, 125.3, 67.3, 27.8. HRMS: Calculated for C₉H₈O₂ (M+Na)⁺: 171.0416; Found: 171.0419.

4-Methylisochroman-1-one (2bb) The product (38 mg, 79% yield) as a colorless liquid was purified with silica gel chromatography. This compound is known.¹ ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 7.6 Hz, 1 H), 7.56 (t, *J* = 7.6 Hz, 1 H), 7.37 (t, *J* = 7.6 Hz, 1 H), 7.28 (d, *J* = 7.6 Hz, 1 H), 4.49 (dd, *J* = 10.8, 4.0 Hz, 1 H), 4.22 (dd, *J* = 10.8, 6.8 Hz, 1 H), 3.18-3.10 (m, 1 H), 1.35 (d, *J* = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 144.5, 133.8, 130.4, 127.5, 125.6, 124.3, 72.4, 31.7, 16.6. HRMS: Calculated for C₁₀H₁₀O₂ (M+Na)⁺: 185.0573; Found: 185.0575.

3-**Methylisochroman-1-one (3bb)** The product (39 mg, 80% yield) as a white solid was purified with silica gel chromatography. This compound is known.¹ ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 7.6 Hz, 1 H), 7.51 (t, *J* = 7.6 Hz, 1 H), 7.36 (t, *J* = 7.6 Hz, 1 H), 7.21 (d, *J* = 7.6 Hz, 1 H), 4.70-4.61 (m, 1 H), 2.98-2.88 (m, 2 H), 1.49 (d, *J* = 6.0 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 139.0, 133.6, 130.1, 127.5, 127.2, 124.9, 75.0, 34.8, 20.8. HRMS: Calculated for C₁₀H₁₀O₂ (M+Na)⁺: 185.0573; Found: 185.0575.

7-Methylisochroman-1-one (4bb) The product (39 mg, 80% yield) as a colorless liquid was purified with silica gel chromatography. This compound is known.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1 H), 7.32 (d, *J* = 7.6 Hz, 1 H), 7.13 (d, *J* = 7.6 Hz, 1 H), 4.49 (t, *J* = 6.0 Hz, 1 H), 2.99 (t, *J* = 6.0 Hz, 1 H), 2.36 (s, 3 H). ¹³C NMR (100 MHz,

CDCl₃) δ 165.3, 137.5, 136.5, 134.5, 130.5, 127.0, 125.0, 67.4, 27.4, 20.9. HRMS: Calculated for C₁₀H₁₀O₂ (M+Na)⁺: 185.0573; Found: 185.0575.

7-(*tert***-Butyl)isochroman-1-one (5bb)** The product (45 mg, 74% yield) as a colorless liquid was purified with silica gel chromatography. This compound is known.² ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 2.0 Hz, 1 H), 7.57 (dd, *J* = 8.0, *J* = 2.0 Hz, 1 H), 7.20 (d, *J* = 8.0 Hz, 1 H), 4.51 (t, *J* = 6.0 Hz, 2 H), 3.02 (t, *J* = 6.0 Hz, 2 H), 1.33(s, 9 H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 150.9, 136.6, 130.9, 127.04, 127.0, 124.8, 67.3, 34.7, 31.1, 27.3. HRMS: Calculated for C₁₃H₁₆O₂ (M+Na)⁺: 227.1042; Found: 227.1044.

7-Methoxyisochroman-1-one (6bb) The product (40 mg, 75% yield) as a colorless liquid was purified with silica gel chromatography. This compound is known.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 2.8 Hz, 1 H), 7.15 (d, *J* = 8.4 Hz, 1 H), 7.15 (dd, *J* = 8.4, *J* = 2.8 Hz, 1 H), 4.50 (t, *J* = 6.0 Hz, 2 H), 3.82 (s, 3 H), 2.97 (t, *J* = 6.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 158.9, 131.8, 128.4, 126.0, 121.5, 113.0, 67.6, 55.6, 27.0. HRMS: Calculated for C₁₀H₁₀O₃ (M+Na)⁺: 201.0522; Found: 201.0524.

6,7-Dimethoxyisochroman-1-one (7bb) The product (41 mg, 66% yield) as a white solid was purified with silica gel chromatography. This compound is known.⁷ ¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 1 H), 6.67 (s, 1 H), 4.50 (t, *J* = 6.0 Hz, 2 H), 3.93 (s, 3 H), 3.90 (s, 3 H), 2.97 (t, *J* = 6.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 153.5, 148.4, 133.9, 117.3, 111.7, 109.0, 67.3, 56.16, 56.12, 27.4. HRMS: Calculated for C₁₁H₁₂O₄Na (M+Na)⁺: 231.0627; Found: 231.0630.

7-((*tert***-Butyldimethylsilyl)oxy)isochroman-1-one (8bb)** The product (52 mg, 62% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 2.4 Hz, 1 H), 7.11 (d, *J* = 8.4 Hz, 1 H), 6.99 (dd, *J* = 8.4, 2.4 Hz, 1 H), 4.48 (t, *J* = 6.0 Hz, 2 H), 2.96 (t, *J* = 6.0 Hz, 2 H), 0.96 (s, 9 H), 0.19 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 155.0, 132.2, 128.3, 126.1, 126.0, 120.9, 67.5, 27.0, 25.6, 25.5, 18.1, -4.5. HRMS: Calculated for (M+NH₄)⁺: 296.1676; Found: 296.1666.

1-Oxoisochroman-7-yl acetate (9bb) The product (43 mg, 70% yield) as a colorless crystal was purified with silica gel chromatography. This compound is known.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1 H), 7.28-7.23 (m, 2 H), 4.51 (t, *J* = 6.0 Hz, 2 H), 3.02 (t, *J* = 6.0 Hz, 2 H), 2.29 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 164.2, 149.8, 136.9, 128.4, 127.2, 126.3, 123.1, 67.3, 27.2, 20.9. HRMS: Calculated for C₁₁H₁₀O₄Na (M+Na)⁺: 229.0471; Found: 229.0462.

7-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)isochroman-1-one (10bb) The product (49 mg, 60% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1 H), 7.92 (d, *J* = 7.6 Hz, 1 H), 7.24 (d, *J* = 7.6 Hz, 1 H), 4.50 (t, *J* = 6.0 Hz, 2 H), 3.05 (t, *J* = 6.0 Hz, 2 H), 1.32 (s, 12 H). ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 142.2, 139.6, 137.0, 126.6, 124.6, 84.1, 67.1, 28.0, 24.8. HRMS: Calculated for (M+H)⁺: 275.1451; Found: 275.1440.

7-Allylisochroman-1-one (11bb) The product (23 mg, 40% yield) as a colorless liquid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1 H), 7.37 (d, *J* = 8.0 Hz, 1 H), 7.19 (d, *J* = 8.0 Hz, 1 H), 5.99-5.89 (m, 1 H), 5.11 (s, 1 H), 5.07 (m, 1 H), 4.52 (t, *J* = 6.0 Hz, 2 H), 3.42 (d, *J* = 6.4 Hz, 2 H), 3.03 (t, *J* = 6.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 139.8, 137.3, 136.4, 134.0, 130.2, 127.3, 125.2, 116.6, 67.4, 39.6, 27.5. HRMS: Calculated for (M+Na)⁺: 211.0729; Found: 211.0721.

7-Fluoroisochroman-1-one (12bb) The product (35 mg, 71% yield) as a colorless crystal was purified with silica gel chromatography. This compound is known.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.4 Hz, 1 H), 7.25-7.22 (m, 2 H), 4.52 (t, *J* = 6.0 Hz, 2 H), 3.02 (t, *J* = 6.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 162.0 (d, *J* = 245.7 Hz), 135.3 (d, *J* = 3.3 Hz), 129.1 (d, *J* = 7.4 Hz), 126.9 (d, *J* = 7.5 Hz), 121.0 (d, *J* = 21.8 Hz), 116.7 (d, *J* = 23.1 Hz), 67.4, 27.1. HRMS: Calculated for C₉H₇FO₂ (M+Na)⁺: 189.0322; Found: 189.0324.

7-Chloroisochroman-1-one (13bb) The product (43mg, 79% yield) as a white solid was purified with silica gel chromatography. This compound is known.¹ ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1 H), 7.48 (d, *J* = 8.0 Hz, 1 H), 7.21 (d, *J* = 8.0 Hz, 1 H), 4.52 (t, *J* = 6.0 Hz, 2 H), 3.02 (t, *J* = 6.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 137.7, 133.7, 130.1, 128.7, 126.7, 67.2, 27.2. HRMS: Calculated for C₉H₇ClO₂ (M+Na)⁺: 205.0026; Found: 205.0028.

7-Bromoisochroman-1-one (14bb) The product (54 mg, 80% yield) as a white solid was purified with silica gel chromatography. This compound is known.⁸ ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1 H), 7.64 (d, *J* = 8.0 Hz, 1 H), 7.15 (d, *J* = 8.0 Hz, 1 H), 4.52 (t, *J* = 6.0 Hz, 2 H), 3.01 (t, *J* = 6.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 138.2, 136.5, 133.0, 128.9, 126.9, 121.3, 67.2, 27.3. HRMS: Calculated for C₉H₇BrO₂ (M+Na)⁺: 248.9521; Found: 248.9523.

1,2-Dihydro-4*H***-benzo[***f***]isochromen-4-one (15bb)** The product (36 mg, 61% yield) as a white solid was purified with silica gel chromatography. This compound is known.⁹ ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.4 Hz, 1 H), 8.02-8.00 (m, 1 H), 7.91-7.88 (m, 1 H), 7.82 (d, *J* = 8.4 Hz, 1 H), 7.66-7.59 (m, 2 H), 4.66 (t, *J* = 6.0 Hz, 2 H), 3.42 (t, *J* = 6.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 138.5, 135.5, 129.7, 128.8, 128.6, 127.7, 127.1, 125.1, 124.3, 122.3, 66.6, 24.1. HRMS: Calculated for C₁₃H₁₀O₂ (M+Na)⁺: 221.0573; Found: 221.0575.

4,5-Dihydro-7*H***-thieno[2,3-***c***]pyran-7-one (16bb)** The product (21 mg, 46% yield) as a white solid was purified with silica gel chromatography. This compound is known.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 5.2 Hz, 1 H), 6.98 (d, *J* = 5.2 Hz, 1 H), 4.57 (t, *J* = 6.0 Hz, 1 H), 3.00 (t, *J* = 6.0 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃) δ 161.2, 147.4, 134.4, 126.6, 126.5, 68.3, 25.1. HRMS: Calculated for C₇H₆O₂S (M+Na)⁺: 176.9980; Found: 176.9983.

1-(4-Fluorophenyl)-3-oxo-1,3-dihydroisobenzofuran-5-carbonitrile (17bb) The product (38 mg, 50% yield) as a light yellow solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 9.98 (s, 1 H), 8.30 (s, 1 H), 7.98 (d, *J* = 8.0 Hz, 1 H), 7.79 (dd, *J* = 7.6, 5.6 Hz, 2 H), 7.61 (d, *J* = 7.6 Hz, 1 H), 7.16 (t, *J* = 8.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 193.0, 188.2, 166.3 (d, *J* = 256.4 Hz), 144.4, 136.3, 135.6, 133.8, 132.5 (d, *J* = 9.7 Hz), 132.4 (d, *J* = 2.9 Hz), 129.3, 116.8, 116.3(d, *J* = 22.0 Hz), 114.9. HRMS: Calculated for (M-H)^{-:} 252.0466; Found: 252.0465.

Isobenzofuran-1(3*H***)-one (18bb)** The product (21 mg, 52% yield) as a white solid was purified with silica gel chromatography. This compound is known.¹ ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.6 Hz, 1 H), 7.68 (t, *J* = 7.6 Hz, 1 H), 7.54 (t, *J* = 7.6 Hz, 1 H), 7.51 (d, *J* = 7.6 Hz, 1 H), 5.32 (s, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 146.5, 134.0, 129.0, 125.7, 122.1, 69.6.

7-Benzylisochroman-1-one (22bb) The product (31 mg, 44% yield) as a light yellow liquid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1 H), 7.35 (d, *J* = 7.6 Hz, 1 H), 7.29 (t, *J* = 7.6 Hz, 2 H), 7.23-7.17 (m, 4 H), 4.51 (t, *J* = 6.0 Hz, 2 H), 4.01 (s, 2 H), 3.01 (t, *J* = 6.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 141.0, 140.2, 137.3, 134.2, 130.5, 128.8, 128.6, 127.4, 126.3, 125.2, 67.3, 41.4, 27.4. HRMS: Calculated for (M+Na)⁺: 261.0886; Found: 261.0881.

Radical Inhibtion Experiments

NBoc + O ₂	Fe5 (10 mol%) S1 (10 mol%) Na ₃ PO ₄ (10 mol%) 1,4-dioxane, 80 °C	O NBoc
Entry	Additive	Yield
1	None	70%
2	TEMPO (10 mol%)	39%
3	BHT (10 mol%)	28%
4	TEMPO (100 mol%)	37%
5	BHT (100 mol%)	19%

To a 25 mL of Schlenk tube were added **Fe5** (7.3 mg, 0.03 mmol, 0.1 equiv), phenyl disulfide (6.5 mg, 0.03 mmol, 0.1 equiv), additive (0.1-1.0 equiv) under air. The mixture was then evacuated and backfilled with O_2 (3 times), then amine (0.30 mmol, 1 equiv) and freshly distilled 1,4-dioxane (0.5 mL) were added subsequently. The reaction mixture was heated to 80 °C and allowed to react for 15 h. The reaction was cooled to room temperature and mesitylene (0.3 mmol) was added. The yield was determined by ¹H NMR.

<u>о</u>	+ O ₂ -	Fe1 (10 mol%) S1 (10 mol%)	
	. 02	1,4-dioxane, 80 °C	

Entry	Additive	Yield
1	None	75%
2	TEMPO (10 mol%)	60%
3	BHT (10 mol%)	18%
4	TEMPO (100 mol%)	trace
5	BHT (100 mol%)	trace

To a 25 mL of Schlenk tube were added **Fe1** (16.6 mg, 0.03 mmol, 0.1 equiv), phenyl disulfide (6.5 mg, 0.03 mmol, 0.1 equiv), additive (0.1-1.0 equiv) under air. The mixture was then evacuated and backfilled with O_2 (3 times), then isochroman (0.30 mmol, 1 equiv) and freshly distilled 1,4-dioxane (0.5 mL) were added subsequently. The reaction mixture was heated to 80 °C and allowed to react for 15 h. The reaction

was cooled to room temperature and mesitylene (0.3 mmol) was added. The yield was determined by 1 H NMR.

Isotope Labeling Experiments

To a 25 mL of Schlenk tube were added Fe5 (7.3 mg, 0.03 mmol, 0.1 equiv), phenyl disulfide (6.5 mg, 0.03 mmol, 0.1 equiv) under air. The mixture was then evacuated and backfilled with Ar (3 times), then amine (0.30 mmol, 1 equiv), H₂O¹⁸ (0.05 mL) and freshly distilled 1,4-dioxane (0.5 mL) were added subsequently. The reaction mixture was heated to 80 °C and allowed to react for 15 h. The reaction was cooled to room temperature and mesitylene (0.3 mmol) was added. No desired product was detected.

2) To a 25 mL of Schlenk tube were added **Fe5** (7.3 mg, 0.03 mmol, 0.1 equiv), phenyl disulfide (6.5 mg, 0.03 mmol, 0.1 equiv) under air. The mixture was then evacuated and backfilled with O_2 (3 times), then amine (0.30 mmol, 1 equiv), H_2O^{18} (0.05 mL) and freshly distilled 1,4-dioxane (0.5 mL) were added subsequently. The reaction mixture was heated to 80 °C and allowed to react for 15 h. The reaction was cooled to room temperature and mesitylene (0.3 mmol) was added. The yield was determined by ¹H NMR. The ratio of the product was determined by HRMS.

1) To a 25 mL of Schlenk tube were added dppf (16.6 mg, 0.03 mmol, 0.1 equiv), phenyl disulfide (6.5 mg, 0.03 mmol, 0.1 equiv) under air. The mixture was then

evacuated and backfilled with Ar (3 times), then isochroman (0.30 mmol, 1 equiv), H_2O^{18} (0.05 mL) and freshly distilled 1,4-dioxane (0.5 mL) were added subsequently. The reaction mixture was heated to 80 °C and allowed to react for 15 h. The reaction was cooled to room temperature and mesitylene (0.3 mmol) was added. No desired product was detected.

2) To a 25 mL of Schlenk tube were added dppf (16.6 mg, 0.03 mmol, 0.1 equiv), phenyl disulfide (6.5 mg, 0.03 mmol, 0.1 equiv) under air. The mixture was then evacuated and backfilled with O_2 (3 times), then isochroman (0.30 mmol, 1 equiv), H_2O^{18} (0.05 mL) and freshly distilled 1,4-dioxane (0.5 mL) were added subsequently. The reaction mixture was heated to 80 °C and allowed to react for 15 h. The reaction was cooled to room temperature and mesitylene (0.3 mmol) was added. The yield was determined by ¹H NMR. The ratio of the product was determined by HRMS.

Analysis Info								7/4/2018 11:26:54	AM
Analysis Name D:\Data\201807\XBJ-180704_00001.d Method 4_17_Mass_range_pos_7T Sample Name XBJ-180704 Comment XBJ-180704			.d			Operator Instrument	solariX		
Acquisition Para	amete	r					1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
Polarity n/a Broadband Low Ma Broadband High M Acquisition Mode Pulse Program Source Accumulation Ion Accumulation	ass ass on	Positive n/a 53.8 m/z 1100.0 m/z Single MS basic 0.015 sec 0.015 sec	n/a No. of Cell Fills n/a n/a n/a n/a n/a		n/a 1 n/a n/a n/a n/a n/a		No. of Laser Shots Laser Power n/a n/a Calibration Date Data Acquisition Size Apodization	200 20.0 lp n/a n/a Sun Apr 8 02:39 524288 Sine-Bell Multiol	:02 2018
Flight Time to Acq.	Cell	0.001 sec							
Intens. ×107 0.6- 0.4- 0.2- 0.2- 0.2-					171.04128	172.0446	8 173.04554		
10	66	16	8 1	70		172	174	176	m/z
m/z 2 171.03730 171.04128 171.04528 171.04746 172.04468 173.04554	53 759 53 24 93 126	MS I Res. 5391 100509 1248 49979 1311 116998 4012 119211 1120 52260 6455 50957							

Mass Spectrum List Report

Some results on iron-catalyzed oxygenation of Sp³ C-H bonds

References:

- A. Gonzalez-de-Castro, C. M. Robertson and J. Xiao, J. Am. Chem. Soc., 2014, 136, 8350–8360.
- Z. Zhang, Y. Gao, Y. Liu, J. Li, H. Xie, H. Li and W. Wang, Org. Lett., 2015, 17, 5492–5495.
- M.-Y. Zhou, S.-S. Kong, L.-Q. Zhang, M. Zhao, J.-A. Duan, Z. Ou-yang and M. Wang, *Tetrahedron Lett.*, 2013, 54, 3962–3964.
- 4) T. Ishiyama, M. Murata and N. Miyaura, J. Org. Chem., 1995, 60, 7508-7510.
- K. T. Tarantino, P. Liu and R. R. Knowles, J. Am. Chem. Soc., 2013, 135, 10022– 10025.
- Q. Xia, Q. Wang, C. Yan, J. Dong, H. Song, L. Li, Y. Liu, Q. Wang, X. Liu and H. Song, *Chem. Eur. J.*, 2017, 23, 10871–10877.
- 7) A.-R. Song, J. Yu and C. Zhang, Synthesis 2012, 44, 2903–2909.
- C. Hong, J. Ma, M. Li, L. Jin, X. Hu, W. Mo, B. Hu, N. Sun and Z. Shen, *Tetrahedron*, 2017, 73, 3002–3009.
- 9) M. A. Kinder, J. Kopf and P. Margaretha, *Tetrahedron*, 2017, 56, 6763–6767.

2-Phenyl-1,2,3,4-tetrahydroisoquinoline (1a)

2-(4-Methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (2a)

2-Acetyl-1,2,3,4-tetrahydroisoquinolin-6-yl acetate (7a)

Benzyl 3,4-dihydroisoquinoline-2(1*H*)-carboxylate (8a)

Allyl 3,4-dihydroisoquinoline-2(1*H*)-carboxylate (10a)

N-(2-(3,4-dihydroisoquinolin-2(1*H*)-yl)-2-oxoethyl)benzamide (12a)

tert-Butyl (*S*)-(1-(3,4-dihydroisoquinolin-2(1*H*)-yl)-4-methyl-1-oxopentan-2-yl) carbamate (13a)

(S)-1-(3,4-dihydroisoquinolin-2(1H)-yl)-2-(6-methoxynaphthalen-2-yl)propan-1one (14a)

4-Methylisochromane (2b)

3-Methylisochromane (3b)

7-Methylisochromane (4b)

7-(tert-Butyl)isochromane (5b)

7-Methoxyisochromane (6b)

6,7-Dimethoxyisochromane (7b)

tert-Butyl(isochroman-7-yloxy)dimethylsilane (8b)

Isochroman-7-yl acetate (9b)

2-(Isochroman-7-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (10b)

7-Allylisochromane (11b)

7-Fluoroisochromane (12b)

7-Chloroisochromane (13b)

7-Bromoisochromane (14b)

3,4-Dihydro-1*H*-benzo[*h*]isochromene (15b)

4,7-Dihydro-5*H*-thieno[2,3-*c*]pyran (16b)

7-Benzylisochromane (22b)

tert-Butyl 1-oxo-3,4-dihydroisoquinoline-2(1H)-carboxylate (11aa)

tert-Butyl(*S*)-(4-Methyl-1-oxo-1-(1-oxo-3,4-dihydroisoquinolin-2(1*H*)-yl)pentan-2-yl)carbamate (13aa)

(S)-2-(2-(6-Methoxynaphthalen-2-yl)propanoyl)-3,4-dihydroisoquinolin-1(2H)one (14aa)

(S)-2-(2-(4-Isobutylphenyl)propanoyl)-3,4-dihydroisoquinolin-1(2H)-one (15aa)

Isochroman-1-one (1bb)

76

4-Methylisochroman-1-one (2bb)

3-Methylisochroman-1-one (3bb)

7-Methylisochroman-1-one (4bb)

7-(tert-Butyl)isochroman-1-one (5bb)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 f1 (ppm)

7-Methoxyisochroman-1-one (6bb)

6,7-Dimethoxyisochroman-1-one (7bb)

7-((*tert*-Butyldimethylsilyl)oxy)isochroman-1-one (8bb)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1(f1 (ppm)

1-Oxoisochroman-7-yl acetate (9bb)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

7-Allylisochroman-1-one (11bb)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

7-Fluoroisochroman-1-one (12bb)

87

7-Chloroisochroman-1-one (13bb)

7-Bromoisochroman-1-one (14bb)

3,4-Dihydro-1*H*-benzo[*h*]isochromen-1-one (15bb)

4,5-Dihydro-7*H*-thieno[2,3-*c*]pyran-7-one (16bb)

1-(4-Fluorophenyl)-3-oxo-1,3-dihydroisobenzofuran-5-carbonitrile (17bb)

Isobenzofuran-1(3H)-one (18bb)

7-Benzylisochroman-1-one (22bb)

