SUPPORTING INFORMATION

Table of contents

General methods	S1
Synthesis of gold allyloxysulfonium complexes	S2–S3
Kinetics of elimination of gold allyloxysulfonium complexes	S4–S11
Sulfoxide Exchange Experiments	S11–S12
Synthesis of gold sulfide complexes	S12–S13
References	S13
Scans of NMR spectra	S14–S22

General Methods

Reactions were performed under a nitrogen atmosphere in flame dried glassware. Glassware and NMR tubes used for generation of gold allyloxysulfonium complexes were silanized before use.^{S1} NMR spectra were obtained on a Varian spectrometer operating at 400 or 500 MHz for ¹H, 125 MHz for ¹³C, and 202 MHz for ³¹P at 25 °C unless noted otherwise. ¹³C NMR spectra were referenced relative to CD_2CI_2 (δ 53.8) or $CDCI_3$ (δ 77.2), ¹H NMR spectra were referenced relative to residual CHCI₃ (δ 7.26) or CHDCI₂ (δ 5.32). ³¹P NMR spectra was referenced to an external solution of triphenylphosphine oxide in CD_2CI_2 (δ 26.9). Flash column chromatography was performed employing 200-400 mesh silica gel 60 (EM). Thin layer chromatography (TLC) was performed on silica gel 60 F254. CD_2CI_2 was dried over CaH₂ and degassed prior to use. Ether, methylene chloride, and THF were purified by passage through columns of activated alumina under nitrogen. Reagents and other materials were obtained through major chemical suppliers and were used as received unless noted otherwise. Room temperature is 25 °C.

Gold vinyl carbene complexes were prepared following published procedures.^{S2} Bis(4-chlorophenyl) sulfoxide^{S3} and bis(4-methoxyphenyl) sulfoxide^{S4} were prepared employing known procedures.

Synthesis of Gold Allyloxysulfonium Complexes

{(IPr)Au[n¹-C(H)(OSMe₂)C(H)=C(4-C₆H₄OMe)₂]}* OTf⁻ (3a). A solution of DMSO (2.1 mg, 2.27 × 10⁻² mmol) in CD₂Cl₂ (0.15 mL) was added dropwise to a freshly prepared solution of 1 (1.36 × 10⁻² mmol) in CD₂Cl₂ (0.55 mL) with constant agitation at –95 °C to give a pale yellow solution of **3a** in 96 ± 5 % yield (¹H NMR). The yield of **3a** was determined by integrating the vinylic H₂ resonance of **3a** at δ 5.65 relative to the resonance of CH₂Br₂ at δ 4.96 in the ¹H NMR spectrum. ¹H NMR (500 MHz; CD₂Cl₂; 0 °C): δ 7.54 (t, *J* = 7.8 Hz, 2H), 7.41-7.35 (m, 4H), 7.33 (s, 2H), 7.29 (d, *J* = 7.7 Hz, 2H), 6.92 (d, *J* = 8.7 Hz, 2H), 6.76 (d, *J* = 8.9 Hz, 2H), 6.71 (d, *J* = 8.6 Hz, 2H), 6.54 (d, *J* = 8.5 Hz, 2H), 5.65 (d, *J* = 11.4 Hz, 1H), 3.78 (s, 3H), 3.77 (s, 3H), 3.60 (d, *J* = 11.3 Hz, 1H), 3.05 (s, 3H), 2.80 (s, 3H), 2.46 (sept, *J* = 6.8 Hz, 4H), 1.28 – 1.17 (m, 24H). ¹³C{¹H} NMR (125 MHz; CD₂Cl₂; -80 °C): δ 183.9, 158.0, 157.6, 145.2, 145.2, 145.0, 139.34, 133.2, 132.9, 130.2, 129.8, 127.7, 123.6, 123.6, 123.0, 121.0, 118.4, 113.6, 113.2, 112.4, 61.8, 54.9, 39.9, 39.0 (Me, partial overlap with free DMSO), 28.2 (IPr), 24.5 (IPr), 24.1 (IPr), 23.2 (IPr), 23.0 (IPr). The solution also contained resonances corresponding to TMSOMe at δ 49.7 and –1.9, TMSOTf at δ 1.1, and CH₂Br₂ at δ 21.1.

{(IPr)Au[η^{1} -¹³C(H)(O-S(Me)₂)-¹³C(H)=C(4-C₆H₄OMe)₂]}⁺ OTf⁻ (3a-¹³C₂). ¹H NMR (-30 °C): δ 5.6 (dd, ¹J_{CH} = 156.8, ³J_{HH} = 10.3 Hz, 1H). ¹³C NMR (-95 °C): δ 113.6 (dd, ¹J_{CH} = 158.0, ¹J_{CC} = 42.3 Hz), 61.6 (dd, ¹J_{CH} = 139.8, ¹J_{CC} = 41.3 Hz).

{(IPr)Au[η^1 -C(H)(O-SCH₂CH₂CH₂CH₂)-C(H)=C(4-C₆H₄OMe)₂]}⁺ OTf⁻ (3b). A solution of tetrahydrothiophene 1-oxide (1.6 mg, 1.49 × 10⁻² mmol) in CD₂Cl₂ (0.15 mL) was added dropwise to a freshly prepared solution of 1 (1.24 × 10⁻² mmol) in CD₂Cl₂ (0.55 mL) with constant agitation at –95 °C to give a pale yellow solution of 3b in 95 ± 5 % yield (¹H NMR). The yield of 3b was determined by

integrating the vinylic H₂ resonance of **3b** at δ 5.63 relative to the resonance of CH₂Br₂ at δ 4.96 in the ¹H NMR spectrum. ¹H NMR (500 MHz; CD₂Cl₂; -50 °C): δ 7.53 (d, *J* = 7.7 Hz, 2H), 7.42 – 7.29 (m, 6H), 7.25 (d, *J* = 8.1 Hz, 2H), 6.91 (d, *J* = 8.4 Hz, 2H), 6.76 (d, *J* = 8.4 Hz, 2H), 6.69 (d, *J* = 8.2 Hz, 2H), 6.40 (d, *J* = 8.1 Hz, 2H), 5.63 (d, *J* = 11.5 Hz, 1H), 3.96 (d, *J* = 11.3 Hz, 1H), 3.76 (s, 3H), 3.75 (s, 3H), 3.32 – 3.22 (m, 1H), 3.12 – 3.00 (m, 2H), 2.89 – 2.78 (m, 1H), 2.46 (sept, *J* = 6.8 Hz, 4H), 2.34 – 2.22 (m, 1H), 2.18 (d, *J* = 7.8 Hz, 1H), 1.87 – 1.76 (m, 1H), 1.72 – 1.57 (m, 1H), 1.28 – 1.17 (m, 24H). ¹³C{¹H} NMR (125 MHz; CD₂Cl₂; -70 °C): δ 183.2, 158.3, 157.8, 145.3, 145.0, 133.0, 130.6, 130.0, 129.7, 128.0, 124.1, 123.9, 123.8, 123.4, 113.2, 112.6, 64.1, 55.0, 28.3, 28.2, 26.4, 26.0, 25.4, 24.9, 24.4, 24.2, 23.2, 23.1. The solution also contained resonances corresponding to TMSOMe at δ 49.7 and –1.9, TMSOTf at δ 1.1, and CH₂Br₂ at δ 21.1.

{(IPr)Au[n¹-C(H)(O-S(C₅H₆)₂)-C(H)=C(4-C₆H₄OMe)₂]}* OTf⁻ (3c). A solution of diphenylsulfoxide (3.0 mg, 1.48×10^{-2} mmol) in CD₂Cl₂ (0.15 mL) was added dropwise to a freshly prepared solution of vinylcarbene (1.18×10^{-2} mmol) in CD₂Cl₂ (0.55 mL) was added dropwise with constant agitation at –95 °C to give a pale yellow solution of **3c** in 95 ± 5 % yield (¹H NMR). The yield of **3c** was determined by integrating the vinylic H₂ resonance of **3c** at δ 5.57 relative to the resonance of CH₂Br₂ at δ 4.96 in the ¹H NMR spectrum. ¹H NMR (500 MHz; CD₂Cl₂; -40 °C): δ 7.71 (d, *J* = 7.6 Hz, 1H), 7.63 (d, *J* = 7.1 Hz, 2H), 7.56 (d, *J* = 7.2 Hz, 4H), 7.46 (d, *J* = 7.9 Hz, 2H), 7.42 (d, *J* = 7.1 Hz, 2H), 7.36 (d, *J* = 7.36, 2H), 7.32 (s, 2H), 7.19 (d, *J* = 7.5 Hz, 2H), 7.01 (d, *J* = 7.8 Hz, 2H), 6.96 (d, *J* = 8.2 Hz, 1H), 6.76 (d, *J* = 8.2 Hz, 2H), 6.69 (d, *J* = 8.9 Hz, 2H), 6.64 (d, *J* = 8.9 Hz, 2H), 6.37 (d, *J* = 7.9 Hz, 2H), 5.57 (d, *J* = 11.8 Hz, 1H), 4.32 (d, *J* = 11.8 Hz, 1H), 3.81 (s, 3H), 3.73 (s, 3H), 2.55 – 2.23 (m, 4H; overlap of two septets), 1.34 - 1.02 (m, 24H). ¹³C{¹H} NMR (125 MHz; CD₂Cl₂; -70 °C; aliphatic resonances only): δ 63.1, 55.0, 28.4, 28.2, 24.8, 24.5, 24.3, 23.5, 23.3, 23.3, 23.1. The solution also contained resonances corresponding to TMSOMe at δ 49.7 and –1.9, TMSOTf at δ 1.1, and CH₂Br₂ at δ 21.1.

{(IPr)Au[η^1 -C(H)(O-S(4-C₆H₄Me)₂)-C(H)=C(4-C₆H₄OMe)₂]}⁺ OTf⁻ (3d). A solution of *p*-tolyl sulfoxide (5.0 mg, 2.17 × 10⁻² mmol) in CD₂Cl₂ (0.10 mL) was added dropwise to a freshly prepared

solution of vinylcarbene (1.18×10^{-2} mmol) in CD₂Cl₂ (0.60 mL) was added dropwise with constant agitation at –95 °C to give a pale yellow solution of **3d** in 95 ± 5 % yield (¹H NMR). The yield of **3f** was determined by integrating the vinylic H₂ resonance of **3d** at δ 5.57 relative to the resonance of CH₂Br₂ at δ 4.96 in the ¹H NMR spectrum. ¹H NMR (500 MHz; CD₂Cl₂; –50 °C): δ 7.62 – 7.27 (m, 8H; aromatic peaks of IPr ligand, bound *p*-tolyl sulfoxide, and excess free *p*-tolyl sulfoxide overlap on top of each other), 7.19 (t, *J* = 7.9 Hz, 4H), 7.06 (dd, *J* = 7.7, 4.5 Hz, 4H), 6.83 (d, *J* = 8.5 Hz, 2H), 6.75 (d, *J* = 8.2 Hz, 2H), 6.67 (d, *J* = 8.6 Hz, 2H) 6.36 (d, *J* = 8.1 Hz, 2H), 5.57 (d, *J* = 11.7 Hz, 1H), 4.27 (d, *J* = 11.6 Hz, 1H), 3.80 (s, 3H), 3.73 (s, 3H), 2.42 (4H; overlaps with excess free *p*-tolyl sulfoxide), 2.37 (s, 3H), 2.35 (s, 3H), 1.32 - 1.02 (m, 24H). ¹³C{¹H} NMR (125 MHz; CD₂Cl₂; -60 °C): δ 65.7, 55.1, 28.5, 28.3, 24.5, 24.4, 23.5, 23.3, 21.4. The solution also contained resonances corresponding to TMSOMe at δ 49.8 and –1.7, TMSOTF at δ 1.4, and CH₂Br₂ at δ 21.4.

{(IPr)Au[n¹-C(H)(O-S(4-C₆H₄Cl)₂)-C(H)=C(4-C₆H₄OMe)₂]}⁺ OTf⁻ (3e). A solution of bis(4chlorophenyl) sulfoxide (5.0 mg, 1.83×10^{-2} mmol) in CD₂Cl₂ (0.10 mL) was added dropwise to a freshly prepared solution of vinylcarbene (1.18×10^{-2} mmol) in CD₂Cl₂ (0.60 mL) was added dropwise with constant agitation at –95 °C to give a pale yellow solution of **3e** in 98 ± 5 % yield (¹H NMR). The yield of **3e** was determined by integrating the vinylic H₂ resonance of **3** at δ 5.56 relative to the resonance of CH₂Br₂ at δ 4.96 in the ¹H NMR spectrum. ¹H NMR (500 MHz; CD₂Cl₂; -30 °C): δ 7.67 – 6.96 (aromatic peaks of IPr ligand, bound bis(4-chlorophenyl) sulfoxide, and excess of sulfoxide overlaps), 5.56 (d, *J* = 11.5 Hz, 1H), 4.34 (d, *J* = 11.6 Hz, 1H), 3.81 (s, 3H), 3.75 (s, 3H), 2.51 – 2.33 (m, 4H; overlap of two septets), 1.32 - 1.08 (m, 24H). ¹³C{¹H} NMR (125 MHz; CD₂Cl₂; -60 °C): δ 65.7, 55.0, 28.3, 28.1, 24.5, 24.3, 23.5, 23.2, 23.0. The solution also contained resonances corresponding to TMSOMe at δ 49.7 and -1.9, TMSOTf at δ 1.2, and CH₂Br₂ at δ 21.0.

{(IPr)Au[η^1 -C(H)(O-S(4-C₆H₄OMe)₂)-C(H)=C(4-C₆H₄OMe)₂]}⁺ OTf⁻ (3f). A solution of bis(4methoxyphenyl) (5.5 mg, 2.01 × 10⁻² mmol) in CD₂Cl₂ (0.10 mL) was added dropwise to a freshly prepared solution of vinylcarbene (1.18 × 10⁻² mmol) in CD₂Cl₂ (0.60 mL) was added dropwise with constant agitation at –95 °C to give a pale yellow solution of **3f** in 91 ± 5 % yield (¹H NMR). The yield of **3f** was determined by integrating the vinylic H₂ resonance of **3f** at δ 5.56 relative to the resonance of CH₂Br₂ at δ 4.96 in the ¹H NMR spectrum. ¹H NMR (500 MHz; CD₂Cl₂; –20 °C): δ 7.50 (d, *J* = 8.7 Hz, 5H), 7.41 (d, *J* = 7.9 Hz, 2H), 7.38 (d, *J* = 7.7 Hz, 2H), 7.31 (s, 2H), 7.25 (d, *J* = 8.5 Hz, 2H), 7.21 (d, *J* = 8.1 Hz, 1H), 7.16 (d, *J* = 8.8 Hz, 6H), 7.00 – 6.90 (m, 5H), 6.79 – 6.68 (m, 9H), 6.42 (d, *J* = 8.2 Hz, 2H), 5.56 (d, *J* = 11.7 Hz, 1H), 4.27 (d, *J* = 11.7 Hz, 1H), 3.83 (s, 3H), 3.81 (s, 3H), 3.77 (s, 3H), 3.15 (s, 3H), 2.55 – 2.35 (m, 4H; overlap of two septets), 1.33 - 1.07 (m, 24H). ¹³C{¹H} NMR (125 MHz; CD₂Cl₂; –60 °C): δ 65.8, 56.1, 55.6, 55.1, 28.5, 28.4, 24.6, 24.3, 23.6, 23.3. The solution also contained resonances corresponding to TMSOMe at δ –1.7, TMSOTf at δ 1.4, and CH₂Br₂ at δ 20.1.

Kinetics of the Elimination of Gold Allyloxysulfonium Complexes

A freshly prepared solution of **3a** (11.8 × 10⁻³ mmol, 17 mM) and CH₂Br₂ (4.1 µmol; internal standard) in CD₂Cl₂ (0.70 mL) at –95 °C was placed in the probe of an NMR spectrometer at 33 °C and monitored periodically by ¹H NMR spectroscopy. The concentration of **3a** was determined by integration the vinylic H₂ resonance of **3a** at δ 5.65 relative to the resonance for CH₂Br₂ at δ 4.96. A plot of ln[**3a**] versus time was linear to >2 half-lives with a first-order rate constant of 11.7 ± 0.6 × 10⁻⁴ s⁻¹ (ΔG^{\ddagger} = 22.0 kcal/mol) (Figure S1, Table 1). The kinetics of the thermal decomposition of gold allyloxysulfonium complexes **3b** and **3c** were analyzed employing similar procedures at the temperatures indicated in Table 1 (Figures S2 - S17). Hammett analyss of the first-order rate constants for the decomposition of gold allyloxydirarylsulfonium complexes **3c**-**3f** was achieved through a plot of log *k* versus $\Sigma\sigma$ gave acceptable fit (R² = 0.90) with a slope of ρ = 1.0 ± 0.2 (Figure 1). Eyring analysis of the first-order rate constants for the constants for the decomposition of **3b** (17 mM) as a function of temperature (–28 to –3 °C) were linear where ln(*k*/T) = (–10300 ± 280)/T + (26 ± 1) (Figure 1).

Figure S1 (Table 1, entry 1). First-order plot for the elimination of 3a (17mM) in CD₂Cl₂ at 33 °C.

Figure S2 (Table 1, entry 2). First-order plot for the elimination of 3b (17mM) in CD₂Cl₂ at -16 °C.

Figure S3 (Table 1, entry 3). First-order plot for the elimination of 3b (17mM) in CD_2Cl_2 at -16 °C.

Figure S4 (Table 1, entry 4). First-order plot for the elimination of 3b (17mM) in CD₂Cl₂ at -16 °C.

Figure S5 (Table 1, entry 5). First-order plot for the elimination of 3c (17mM) in CD₂Cl₂ at -28 °C.

Figure S6 (Table 1, entry 6). First-order plot for the elimination of 3d (17mM) in CD₂Cl₂ at -27 °C.

Figure S7 (Table 1, entry 7). First-order plot for the elimination of 3e (17mM) in CD₂Cl₂ at -27 °C.

Figure S8 (Table 1, entry 8). First-order plot for the elimination of 3f (17mM) in CD₂Cl₂ at -27 °C.

Figure S9 (Table 1, entry 9). First-order plot for the elimination of 3b (17mM) in CD₂Cl₂ at -9 °C.

Figure S10 (Table 1, entry 10). First-order plot for the elimination of 3b (17mM) in CD₂Cl₂ at -9 °C.

Figure S11 (Table 1, entry 11). First-order plot for the elimination of 3b (17mM) in CD₂Cl₂ at -3 °C.

Figure S12 (Table 1, entry 12). First-order plot for the elimination of 3b (18mM) in CD₂Cl₂ at -3 °C.

Figure S13 (Table 1, entry 13). First-order plot for the elimination of 3b (17mM) in CD₂Cl₂ at -20 °C.

Figure S14 (Table 1, entry 14). First-order plot for the elimination of 3b (17mM) in CD₂Cl₂ at -21 °C.

Figure S15 (Table 1, entry 15). First-order plot for the elimination of 3b (17mM) in CD₂Cl₂ at -28 °C.

Figure S16 (Table 1, entry 16). First-order plot for the elimination of **3b** (17mM) in CD_2CI_2 containing THTSO (51 mM) at -16 °C.

Figure S17 (Table 1, entry 17). First-order plot for the elimination of **3a** (23mM) in CD₂Cl₂/DMSO- d_6 (v/v = 3.7:1) at 33 °C.

Sulfoxide Exchange Experiments

Conversion of 3c to 3b in presence of THTSO. A solution of diphenylsulfoxide (2.6 mg, 1.29×10^{-2} mmol) in CD₂Cl₂ (0.15 mL) was added dropwise to a freshly prepared solution of **1** (1.18×10^{-2} mmol) in CD₂Cl₂ (0.50 mL) with constant agitation at –95 °C to give a pale yellow solution of **3c** in 82 % yield (¹H NMR). Then, THTSO (1.2μ L, 1.30×10^{-2} mmol) was added via syringe and washed with CD₂Cl₂ (0.05 mL) at –78 °C. The contents of the tube were mixed thoroughly and the tube was placed in the probe of an NMR spectrometer precooled at –80 °C and gradually warmed. The concentrations of **3b** and **3c** were determined by integrating the C2 proton of **3b** at δ 5.66 and the C2 proton of **3c** at δ 5.57 relative to the resonance for CH₂Br₂ at δ 4.96. ¹H NMR analysis of the solution at –32 °C (15 min.) revealed complete consumption of **3c** to form a mixture of **3b** (67%) and **2** (27%).

Conversion of 3b to 3a in presence of DMSO. A solution of DMSO (0.9 mg, 12 μ mol) in CD₂Cl₂ (0.10 mL) was added to an NMR tube containing a freshly prepared solution of **3b** (1.2 × 10⁻² mmol) in CD₂Cl₂ (0.7 mL) at –78 °C. The contents of the tube were mixed thoroughly and the tube was placed in the probe of an NMR spectrometer precooled at –80 °C. The probe was warmed at –21 °C and the

solution was monitored periodically by ¹H NMR spectroscopy. The concentrations of **3a** and **3b** were determined by integrating the C1 proton of **3a** at δ 3.60 and the C1 proton of **3b** at δ 3.96 relative to the resonance for CH₂Br₂ at δ 4.96. ¹H NMR analysis of the solution after 1 h revealed quantitative formation of **3a**.

Reaction of 3b with THT. Tetrahydrothiophene (1.0 mg, 11 μ mol) in 0.1 mL CD₂Cl₂ was added to a solution of **3b** (1.2×10^{-2} mmol, 0.6 mL CD₂Cl₂) at –78 °C, mixed thoroughly, and placed in the probe of an NMR spectrometer precooled at –80 °C. The probe was warmed at –24 °C and the solution was monitored periodically by ¹H NMR spectroscopy. The concentrations of **3b** and {(IPr)Au[η^{1} -C(H)(S(CH₂)₄)C(H)=C(4-C₆H₄OMe)₂]}⁺ OTf⁻ (**4**) were determined by integrating the C1 resonance of **3b** at δ 5.63 and the C1 resonance of **4** at δ 5.58 relative to the resonance for CH₂Br₂ at δ 4.96. A plot of In[**3b**] versus time was linear to 3 half-lives with a first order rate constant of $k = 7.22 \pm 0.01 \times 10^{-4} \text{ s}^{-1}$ (Figure S18). ¹H NMR analysis of the solution after 1 h revealed quantitative formation of **4**.

Figure S18. First-order (left) and second-order (right) plots of the disappearance of **3b** for the reaction of **3b** (16 mM) with THT (16 mM) to form **4** in CD_2Cl_2 at -24 °C.

Synthesis of gold sulfide complexes

{(IPr)Au(SMe₂)}⁺ OTf⁻. Dimethyl sulfide (7.1 μ L, 9.7 × 10⁻² mmol) and CH₂Cl₂ (3 mL) were added to a mixture of IPrAuCl (50 mg, 8.0 × 10⁻² mmol) and AuOTf (22 mg, 8.5 × 10⁻² mmol) at room temperature and stirred for 2 h. The crude mixture was filtered through Celite and concentrated under vacuum to give {(IPr)Au(SMe₂)}⁺ OTf⁻ (63 mg, 100 %) as a white solid. ¹H NMR (400 MHz; CD₂Cl₂): δ 7.59 (t, *J* = 7.8 Hz, 2H), 7.43 (s, 2H), 7.38 (d, *J* = 7.6 Hz, 4H), 2.48 (sept, *J* = 6.9 Hz, 4H), 2.27 (s, 6H), 1.29 (d, *J* = 6.8 Hz, 12H), 1.27 (d, *J* = 6.6 Hz, 12H).

Gold sulfide complexes {(IPr)Au(THT)}⁺ OTf⁻ and {(IPr)Au(SPh₂)}⁺ OTf⁻ were prepared employing a procedure similar to that used to synthesize {(IPr)Au(SMe₂)}⁺ OTf⁻.

{(**IPr**)**Au**(**THT**)}⁺ **OTf**⁻. ¹H NMR (400 MHz; CD₂Cl₂): δ 7.60 (t, J = 7.8 Hz, 2H), 7.43 (s, 2H), 7.38 (d, J = 7.8 Hz, 4H), 3.04 – 2.87 (m, 4H), 2.48 (sept, J = 6.9 Hz, 4H), 1.85 – 1.70 (m, 4H), 1.28 (d, J = 7.1 Hz, 12H), 1.26 (d, J = 7.2 Hz, 12H).

{(**IPr**)**Au**(**SPh**₂)}⁺ **OTf**⁻. ¹H NMR (400 MHz; CD₂Cl₂): δ 7.65 (t, *J* = 7.8 Hz, 2H), 7.46 (s, 2H), 7.43 (d, *J* = 7.5 Hz, 2H), 7.39 (d, *J* = 7.8 Hz, 4H), 7.31 (t, *J* = 7.8 Hz, 4H), 7.03 (d, *J* = 7.8 Hz, 4H), 2.49 (h, *J* = 7.3 Hz, 4H), 1.25 (d, *J* = 6.8 Hz, 12H), 1.15 (d, *J* = 6.9 Hz, 12H).

References

- S1) M. Hans, J. Lorkowski, A. Demonceau, L. Delaude, Beilstein. J. Org. Chem. 2015, 11, 2318–2325.
- S2) N. Kim and R. A. Widenhoefer, Chem. Sci., 2019, 10, 6149-6156.
- S3) L. L. Baldassari, A. C. Mantovani, S. Senoner, B. Maryasin, N. Maulide, D. S. Lüdtke, *Org. Lett*, **2018**, 20, 5881–5885.
- S4) G. A. Olah, E. R. Marinez, G. K. S. Prakash, *Synlett*, **1999**, *9*, 1397–1398.

Figure S19. ¹H NMR spectrum of **3a** (CD₂Cl₂, 0 °C). Additional peaks observed at δ 4.96 (s, CH₂Br₂; internal standard), δ 3.30 (s, TMSOMe), δ 2.66 (free DMSO), δ 0.43 (s, TMSOTf), δ 0.02 (s, TMSOMe).

Figure S21. ¹H NMR spectrum of **3b** (CD₂Cl₂, -50 °C). Additional peaks observed at δ 4.96 (s, CH₂Br₂; internal standard), δ 3.30 (s, TMSOMe), δ 0.43 (s, TMSOTf), δ 0.02 (s, TMSOMe).

Figure S22. ¹³C NMR spectrum of **3b** (CD₂Cl₂, -70 °C). Additional peaks observed at δ 49.7 (TMSOMe), δ 22.1 (CH₂Br₂; internal standard), δ 1.2 (TMSOTf), δ -1.8 (TMSOMe).

Figure S23. ¹H NMR spectrum of **3c** (CD₂Cl₂, -40 °C). Additional peaks observed at δ 4.96 (s, CH₂Br₂; internal standard), δ 3.30 (s, TMSOMe), δ 0.43 (s, TMSOTf), δ 0.02 (s, TMSOMe).

Figure S24. ¹³C NMR spectrum of **3c** (CD₂Cl₂, -70 °C). Additional peaks observed at δ 49.7 (TMSOMe), δ 23.1 (CH₂Br₂; internal standard), δ 1.3 (TMSOTf), δ -1.8 (TMSOMe).

Figure S25. ¹H NMR spectrum of $\{(IPr)Au(SMe_2)\}^+$ OTf⁻ (CD₂Cl₂).

Figure S26. ¹H NMR spectrum of $\{(IPr)Au(THT)\}^+$ OTf⁻ (CD₂Cl₂).

Figure S27. ¹H NMR spectrum of $\{(IPr)Au(SPh_2)\}^+$ OTf⁻ (CD₂Cl₂).