Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

A gold(I)-catalysed three-component reaction via trapping oxonium

ylides with allenamides

Gengxin Liu,⁺ Sifan Yu,⁺ Wenhao Hu^{*,+} and Huang Qiu^{*,+}

⁺ Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China

E-mail: huwh9@mail.sysu.edu.cn qiuhuang@mail.sysu.edu.cn

Table of Contents

1. General Information	S2
2. General Procedure for the Three-Component Reaction	S2-S11
3. Condition Optimization	S11-S14
4. Procedure for Synthesis of 7a and 7b	S13-S15
5. General Procedure for the Scale-Up Reaction	S16
6. Futher Transformation of 4i	S16-S18
7. Control Experiments	S18-S21
8. References	S21
9. Single Crystal X-ray Diffraction Data of 4a	S22
10. NMR Spectra of Products	S23-S56

General Information

All reactions were carried out in oven dried Schlenk tubes. Extra dry solvents and alcohols 1 were purchased from Energy Chemical and JohnphosAu(MeCN)SbF₆ was purchased from Laajoo. Diazo compounds 2^1 , allenamides 3^2 were prepared according to the reported literature procedures. Dimerization products of allenamides 5a³, O-H insertion product $6a^4$ and three-compound product $13a^5$ have been reported. Analytical thin-layer chromatography (TLC) was performed using glass plates pre-coated with 200-300 mesh silica gel impregnated with a fluorescent indicator (254 nm). Flash column chromatography was performed using silica gel (300-400 mesh). Melting points were determined on an Electrothermo Mel-Temp DLX 104 device and were uncorrected. All NMR spectra were recorded in CDCl₃ on a Bruker spectrometer at 400 or 500 MHz (¹H NMR), 101 or 126 MHz (¹³C NMR) and 376 or 471 MHz (¹⁹F NMR). Chemical shifts (δ value) were reported in ppm down field from internal tetramethylsilane (TMS). X-ray diffraction data (4a) were recorded on Oxford Diffraction Xcalibur Nova. HRMS (ESI) and LC-MS (ESI) Mass Spectra were recorded on SHIMADZU LCMS-IT-TOF mass spectrometer and Thermo TSQ QUANTUM LC-MS spectrometer, respectively.

General Procedure for the Three-Component Reaction

To a Schlenk tube charged with 5.0 mol% JohnphosAu(MeCN)SbF₆, alcohol **1** (0.40 mmol), and 100 mg 4 Å MS in 4.0 mL 1,2-dichloroethane (DCE), aryldiazoacetate **2** (0.48 mmol) and allenamides **3** (0.48 mmol) in DCE (4.0 mL) were slowly introduced by syringe pump over 0.5 h at 25 °C under nitrogen atmosphere and the reaction solution was stirred for another 1.5 h. After the completion of the reaction (monitored by TLC), the reaction mixture was filtrated and the filtrate was evaporated in vacuum to give the crude product. And then the crude product was purified by flash chromatography on silica gel (EtOAc : light petroleum ether = $1:10 \sim 1:2$) to give the pure product **4**.

Methyl (*E*)-2-(benzyloxy)-5-(2-oxooxazolidin-3-yl)-2-phenylpent-4-enoate (4a). 132.6 mg, 85% yield. White solid, mp = 129-130 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, *J* = 7.5 Hz, 2H), 7.34 - 7.43 (m, 7H), 7.30 (dd, *J* = 13.8, 6.6 Hz, 1H), 6.72 (d, *J* = 14.4 Hz, 1H), 4.68 (dt, *J* = 14.4, 7.2 Hz, 1H), 4.60 (d, *J* = 11.1 Hz, 1H), 4.36 (dd, *J* = 18.1, 9.7 Hz, 3H), 3.76 (s, 3H), 3.63 – 3.46 (m, 2H), 3.18 – 3.06 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 172.6, 155.3, 139.0, 138.3, 128.5, 128.3, 128.2, 127.5, 127.4, 126.7, 126.4, 104.0, 84.6, 66.6, 62.1, 52.4, 42.4, 36.7; HRMS (ESI⁺) calculated for C₂₂H₂₃NO₅Na [M+Na]⁺: 404.1468, found 404.1467.

Methyl (*E*)-2-((4-fluorobenzyl)oxy)-5-(2-oxooxazolidin-3-yl)-2-phenylpent-4enoate (4b). 121.4 mg, 76% yield. White solid, mp = 111-112 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 7.3 Hz, 2H), 7.41 – 7.28 (m, 5H), 7.03 - 6.95 (m, 2H), 6.69 (d, *J* = 14.4 Hz, 1H), 4.65 (dt, *J* = 14.4 Hz, 7.2 Hz, 1H), 4.52 (d, *J* = 11.0 Hz, 1H), 4.38 – 4.22 (m, 3H), 3.73 (s, 3H), 3.54 (dq, *J* = 17.1, 8.8 Hz, 2H), 3.07 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 172.5, 163.3 (d, *J* = 245.4 Hz), 155.2, 138.9, 134.1 (d, *J* = 3.1 Hz), 129.2 (d, *J* = 8.0 Hz), 128.5, 128.2, 126.8, 126.4, 115.1 (d, *J* = 21.4 Hz), 104.0, 84.8, 66.0, 62.1, 52.3, 42.4, 37.0; ¹⁹F NMR (471 MHz, CDCl₃) δ -115.10; HRMS (ESI⁺) calculated for C₂₂H₂₂FNO₅Na [M+Na]⁺: 422.1374, found 422.1375.

Methyl (*E*)-2-((4-chlorobenzyl)oxy)-5-(2-oxooxazolidin-3-yl)-2-phenylpent-4enoate (4c). 153.1 mg, 92% yield. Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 7.4 Hz, 2H), 7.38 - 7.33 (m, 2H), 7.33 - 7.27 (m, 5H), 6.69 (d, *J* = 14.4 Hz, 1H), 4.65 (dt, *J* = 14.4, 7.3 Hz, 1H), 4.53 (d, *J* = 11.3 Hz, 1H), 4.34 (t, *J* = 8.1 Hz, 2H), 4.29 (d, *J* = 11.3 Hz, 1H), 3.74 (s, 3H), 3.61 - 3.47 (m, 2H), 3.06 (d, *J* = 7.3 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 172.4, 155.2, 138.8, 136.9, 133.2, 128.8, 128.5, 128.4, 128.3, 126.9, 126.4, 103.9, 84.9, 66.0, 62.1, 52.3, 42.4, 37.1; HRMS (ESI⁺) calculated for C₂₂H₂₂ClNO₅Na [M+Na]⁺: 438.1079, found 438.1079.

Methyl (*E*)-2-((4-bromobenzyl)oxy)-5-(2-oxooxazolidin-3-yl)-2-phenylpent-4enoate (4d). 138.1 mg, 75% yield. Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.48 -7.43 (m, 4H), 7.40 - 7.32 (m, 3H), 7.26 (d, *J* = 8.1 Hz, 2H), 6.71 (d, *J* = 14.4 Hz, 1H), 4.65 (dt, *J* = 14.4, 7.3 Hz, 1H), 4.51 (d, *J* = 11.4 Hz, 1H), 4.36 (t, *J* = 8.1 Hz, 2H), 4.27 (d, *J* = 11.4 Hz, 1H), 3.74 (s, 3H), 3.63 – 3.51 (m, 2H), 3.07 (d, *J* = 7.3 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 172.5, 155.3, 138.7, 137.3, 131.4, 129.2, 128.6, 128.4, 126.8, 126.4, 121.3, 103.9, 84.8, 65.9, 62.2, 52.5, 42.4, 37.0; HRMS (ESI⁺) calculated for C₂₂H₂₂BrNO₅Na [M+Na]⁺: 482.0574, found 482.0571.

Methyl (*E*)-2-([1,1'-biphenyl]-4-ylmethoxy)-5-(2-oxooxazolidin-3-yl)-2phenylpent-4-enoate (4e). 155.6 mg, 85% yield. Colorless oil ; ¹H NMR (500 MHz, CDCl₃) δ 7.60 - 7.54 (m, 4H), 7.51 (d, *J* = 7.6 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.44 - 7.29 (m, 6H), 6.71 (d, *J* = 14.4 Hz, 1H), 4.66 (dt, *J* = 14.4, 7.2 Hz, 1H), 4.60 (d, *J* = 11.1 Hz, 1H), 4.37 (d, *J* = 11.1 Hz, 1H), 4.28 (t, *J* = 8.2 Hz, 2H), 3.73 (s, 3H), 3.56 - 3.42 (m, 2H), 3.15 - 3.03 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 172.7, 155.3, 140.9, 140.5, 139.0, 137.4, 128.9, 128.6, 128.3, 128.0, 127.3, 127.1, 127.1, 126.7, 126.4, 104.1, 84.7, 66.4, 62.2, 52.5, 42.4, 36.8; HRMS (ESI⁺) calculated for C₂₈H₂₇NO₅Na [M+Na]⁺: 480.1781, found 480.1782.

Methyl (*E*)-2-((4-methylbenzyl)oxy)-5-(2-oxooxazolidin-3-yl)-2-phenylpent-4enoate (4f). 145.5 mg, 92% yield. Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 7.6 Hz, 2H), 7.39 - 7.25 (m, 5H), 7.15 (d, *J* = 7.8 Hz, 2H), 6.68 (d, *J* = 14.4 Hz, 1H), 4.64 (dt, *J* = 14.4, 7.3 Hz, 1H), 4.52 (d, *J* = 10.8 Hz, 1H), 4.35 (t, *J* = 8.1 Hz, 2H), 4.29 (d, *J* = 10.8 Hz, 1H), 3.74 (s, 3H), 3.61 – 3.49 (m, 2H), 3.15 – 3.01 (m, 2H), 2.34 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.7, 155.3, 139.0, 137.2, 135.2, 129.0, 128.4, 128.2, 127.6, 126.6, 126.3, 104.1, 84.6, 66.5, 62.1, 52.4, 42.4, 36.7, 21.2; HRMS (ESI⁺) calculated for C₂₃H₂₅NO₅Na [M+Na]⁺: 418.1625, found 418.1628.

Methyl (*E*)-2-((4-methoxybenzyl)oxy)-5-(2-oxooxazolidin-3-yl)-2-phenylpent-4enoate (4g). 138.3 mg, 84% yield. Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, *J* = 7.5 Hz, 2H), 7.38 - 7.26 (m, 5H), 6.86 (d, *J* = 8.5 Hz, 2H), 6.67 (d, *J* = 14.4 Hz, 1H), 4.64 (dt, *J* = 14.4, 7.2 Hz, 1H), 4.49 (d, *J* = 10.6 Hz, 1H), 4.33 (t, *J* = 8.1 Hz, 2H), 4.27 (d, *J* = 10.6 Hz, 1H), 3.79 (s, 3H), 3.73 (s, 3H), 3.60 - 3.45 (m, 2H), 3.13 - 2.98 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 172.6, 159.2, 155.2, 139.2, 130.5, 129.1, 128.4, 128.1, 126.7, 126.4, 113.8, 104.2, 84.6, 66.4, 62.1, 55.3, 52.3, 42.5, 36.8; HRMS (ESI⁺) calculated for C₂₃H₂₅NO₆Na [M+Na]⁺: 434.1629, found 434.1627.

Methyl (*E*)-5-(2-oxooxazolidin-3-yl)-2-phenyl-2-((2,4,6-trimethylbenzyl)oxy)pent-4-enoate (4h). 152.5 mg, 90% yield. White solid, mp = 142-143 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 7.4 Hz, 2H), 7.42 - 7.32 (m, 3H), 6.87 (s, 2H), 6.71 (d, *J* = 14.4 Hz, 1H), 4.75 - 4.68 (m, 1H), 4.67 (d, *J* = 9.5 Hz, 1H), 4.44 - 4.34 (m, 2H), 4.24 (d, *J* = 9.5 Hz, 1H), 3.79 (s, 3H), 3.62 - 3.51 (m, 2H), 3.17 - 3.05 (m, 2H), 2.32 (s, 6H), 2.29 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.8, 155.2, 139.2, 138.1, 137.7, 131.2, 129.0, 128.3, 128.2, 126.5, 126.5, 104.6, 84.5, 62.1, 61.0, 52.2, 42.4, 37.1, 21.0, 19.7; HRMS (ESI⁺) calculated for C₂₅H₂₉NO₅Na [M+Na]⁺: 446.1938, found 446.1936.

Methyl (*E*)-2-(naphthalen-2-ylmethoxy)-5-(2-oxooxazolidin-3-yl)-2-phenylpent-4enoate (4i). 136.4 mg, 79% yield. White solid, mp = 97-98 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, *J* = 7.8 Hz, 1H), 7.86 (dd, *J* = 27.6, 7.6 Hz, 2H), 7.59 – 7.44 (m, 6H), 7.44 - 7.38 (m, 2H), 7.37 – 7.32 (m, 1H), 6.70 (d, *J* = 14.4 Hz, 1H), 5.08 (d, *J* = 11.2 Hz, 1H), 4.80 (d, *J* = 11.2 Hz, 1H), 4.65 (dt, *J* = 14.4, 7.3 Hz, 1H), 4.39 – 4.26 (m, 2H), 3.81 (s, 3H), 3.54 – 3.37 (m, 2H), 3.16 (qd, *J* = 14.9, 7.3 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 172.7, 155.2, 139.0, 134.0, 133.7, 131.7, 128.5, 128.4, 128.3, 126.6, 126.4, 126.0, 125.7, 125.4, 124.2, 104.2, 84.9, 65.0, 62.1, 52.5, 42.3, 37.0; HRMS (ESI⁺) calculated for C₂₆H₂₅NO₅Na [M+Na]⁺: 454.1625, found 454.1628.

Methyl (*E*)-2-((9H-fluoren-9-yl)oxy)-5-(2-oxooxazolidin-3-yl)-2-phenylpent-4enoate (4j). 109.3 mg, 60% yield. White solid, mp = 149-150 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, *J* = 7.5 Hz, 1H), 7.58 (d, *J* = 7.4 Hz, 1H), 7.55 – 7.51 (m, 3H), 7.50 – 7.43 (m, 3H), 7.37 - 7.32 (m, 1H), 7.30 - 7.25 (m, 1H), 7.24 - 7.18 (m, 1H), 7.00 - 6.90 (m, 1H), 6.71 (d, *J* = 14.5 Hz, 1H), 6.00 (d, *J* = 7.6 Hz, 1H), 5.89 (s, 1H), 4.91 (ddd, *J* = 14.5, 9.0, 5.6 Hz, 1H), 4.46 – 4.29 (m, 2H), 3.78 (s, 3H), 3.59 (dd, *J* = 16.1, 9.1 Hz, 1H), 3.52 (dd, *J* = 16.0, 9.1 Hz, 1H), 3.34 (dd, *J* = 14.3, 4.7 Hz, 1H), 3.05 (dd, *J* = 14.3, 9.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 173.3, 155.3, 144.7, 144.2, 140.5, 140.4, 139.7, 129.1, 128.8, 128.6, 127.5, 127.5, 127.3, 126.7, 126.5, 125.7, 119.6, 119.5, 105.1, 86.0, 78.1, 62.2, 52.3, 42.5, 38.7; HRMS (ESI⁺) calculated for C₂₈H₂₅NO₅Na [M+Na]⁺: 478.1625, found 478.1629.

Methyl (E)-2-ethoxy-5-(2-oxooxazolidin-3-yl)-2-phenylpent-4-enoate (4k). 35.8 mg, 28% yield. Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 7.6 Hz, 2H), 7.38 – 7.27 (m, 3H), 6.67 (d, *J* = 14.3 Hz, 1H), 4.61 (dt, *J* = 14.1, 7.0 Hz, 1H), 4.39 (t, *J* = 8.0 Hz, 2H), 3.71 (s, 3H), 3.66 – 3.56 (m, 2H), 3.52 – 3.43 (m, 1H), 3.37 – 3.28 (m, 1H), 3.00 (ddd, *J* = 21.1, 14.9, 7.2 Hz, 2H), 1.24 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.8, 155.3, 139.3, 128.4, 128.0, 126.6, 126.2, 104.1, 84.1, 62.1, 59.9, 52.4, 42.5, 35.8, 15.5; HRMS (ESI⁺) calculated for C₁₇H₂₃NO₅Na [M+Na]⁺: 342.1312, found 342.1307.

Methyl (E)-2-isopropoxy-5-(2-oxooxazolidin-3-yl)-2-phenylpent-4-enoate (4l). 105.3 mg, 79% yield. Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.24 (m, 5H), 6.63 (d, *J* = 14.4 Hz, 1H), 4.65 (dt, *J* = 14.2, 7.0 Hz, 1H), 4.36 (t, *J* = 8.1 Hz, 2H), 3.78 (dt, *J* = 11.8, 5.9 Hz, 1H), 3.69 (s, 3H), 3.65 – 3.51 (m, 2H), 3.00 (ddd, *J* = 22.7, 14.9, 7.1 Hz, 2H), 1.16 (d, *J* = 5.9 Hz, 3H), 1.07 (d, *J* = 5.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 173.4, 155.3, 139.9, 128.2, 128.0, 126.4, 126.4, 104.7, 84.3, 67.8, 62.1, 52.2, 42.4, 36.4, 24.2, 23.6; HRMS (ESI⁺) calculated for C₁₈H₂₃NO₅Na [M+Na]⁺: 356.1468, found 356.1466.

Methyl (E)-2-butoxy-5-(2-oxooxazolidin-3-yl)-2-phenylpent-4-enoate (4m). 116.6 mg, 84% yield. **Colorless oil**; ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 7.6 Hz, 2H), 7.39 – 7.26 (m, 3H), 6.65 (d, *J* = 14.4 Hz, 1H), 4.58 (dt, *J* = 14.3, 7.1 Hz, 1H), 4.37 (t, *J* = 8.1 Hz, 2H), 3.70 (s, 3H), 3.66 – 3.52 (m, 2H), 3.43 (dd, *J* = 14.2, 7.1 Hz, 1H), 3.25 (dd, *J* = 14.0, 6.9 Hz, 1H), 3.00 (ddd, *J* = 21.3, 15.0, 7.2 Hz, 2H), 1.65 – 1.56 (m, 2H), 1.45 – 1.35 (m, 2H), 0.91 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.9, 155.3, 139.5, 128.3, 127.9, 126.5, 126.1, 104.1, 83.8 63.9, 62.1, 52.3, 42.4, 35.7, 32.1, 19.3, 13.9; HRMS (ESI⁺) calculated for C₁₉H₂₅NO₅Na [M+Na]⁺: 370.1625, found 370.1628.

Methyl (*E*)-2-(tert-butoxy)-5-(2-oxooxazolidin-3-yl)-2-phenylpent-4-enoate (4n). 62.5 mg, 45% yield. White solid, mp = 203-204 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, *J* = 8.1 Hz, 2H), 7.32 - 7.20 (m, 3H), 6.49 (d, *J* = 14.4 Hz, 1H), 4.52 (dt, *J* = 14.2, 7.1 Hz, 1H), 4.33 (t, *J* = 8.1 Hz, 2H), 3.69 (d, *J* = 1.3 Hz, 3H), 3.53 (dd, *J* = 16.9, 8.3 Hz, 1H), 3.46 (dd, *J* = 17.0, 8.2 Hz, 1H), 3.11 (dd, *J* = 15.1, 7.3 Hz, 1H), 2.94 (dd, *J* = 15.1, 6.8 Hz, 1H), 1.30 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 174.7, 155.2, 142.0, 128.0, 127.4, 126.0, 125.9, 105.5, 82.6, 77.1, 62.0, 52.1, 42.4, 39.4, 30.4; HRMS (ESI⁺) calculated for C₁₉H₂₅NO₅Na [M+Na]⁺: 370.1625, found 370.1626.

Methyl (*E*)-2-(2-oxo-2-phenylethoxy)-5-(2-oxooxazolidin-3-yl)-2-phenylpent-4enoate (4o). 127.7 mg, 78% yield. Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 8.0 Hz, 2H), 7.55 - 7.49 (m, 1H), 7.46 - 7.38 (m, 4H), 7.37 - 7.33 (m, 2H), 7.31 (d, *J* = 6.9 Hz, 1H), 6.65 (d, *J* = 14.4 Hz, 1H), 4.89 - 4.77 (m, 2H), 4.51 (d, *J* = 16.1 Hz, 1H), 4.33 (t, *J* = 8.1 Hz, 2H), 3.75 (s, 3H), 3.60 - 3.50 (m, 2H), 3.00 (qd, *J* = 14.7, 7.4 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 195.5, 172.1, 155.3, 138.1, 135.2, 133.3, 128.7, 128.6, 128.5, 128.1, 126.8, 126.6, 104.2, 85.9, 68.7, 62.2, 52.4, 42.4, 38.7; HRMS (ESI⁺) calculated for C₂₃H₂₃NO₆Na [M+Na]⁺: 432.1418, found 432.1417.

Methyl (*E*)-2-(((*E*)-3,7-dimethylocta-2,6-dien-1-yl)oxy)-5-(2-oxooxazolidin-3-yl)-2-phenylpent-4-enoate (4p). 138.5 mg, 81% yield. Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 7.7 Hz, 2H), 7.38 - 7.27 (m, 3H), 6.68 (d, *J* = 14.4 Hz, 1H), 5.40 (t, *J* = 6.6 Hz, 1H), 5.06 - 5.00 (m, 1H), 4.65 (dt, *J* = 14.4, 7.3 Hz, 1H), 4.38 (t, *J* = 8.1 Hz, 2H), 3.95 (dd, *J* = 10.7, 6.9 Hz, 1H), 3.77 (dd, *J* = 10.5, 7.1 Hz, 1H), 3.72 (s, 3H), 3.66 - 3.55 (m, 2H), 3.01 (qd, *J* = 14.9, 7.3 Hz, 2H), 2.01 - 1.96 (m, 4H), 1.74 (s, 3H), 1.65 (s, 3H), 1.55 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.7, 155.3, 140.2, 139.1, 131.9, 128.4, 128.1, 126.6, 126.3, 123.9, 121.5, 104.2, 84.2, 62.1, 61.1, 52.4, 42.5, 36.3, 32.3, 26.7, 25.7, 23.6, 17.7; HRMS (ESI⁺) calculated for C₂₅H₃₃NO₅Na [M+Na]⁺: 450.2251, found 450.2253.

MeO₂C Ph

Methyl (*E***)-2-hydroxy-5-(2-oxooxazolidin-3-yl)-2-phenylpent-4-enoate (4q).** To a Schlenk tube charged with 5.0 mol% JohnphosAu(MeCN)SbF₆ and H₂O (40 mmol) in 4.0 mL DCE, aryldiazoacetate **2** (0.4 mmol), allenamide **3**(0.48 mmol) in DCE (4.0 mL) were introduced by syringe pump over 0.5 h at 25 °C under nitrogen atmosphere and the reaction solution was stirred for another 1.5 h. After the completion of the reaction, the reaction mixture was filtrated and the filtrate was evaporated in vacuum to give the crude product. And then the crude product was purified by flash chromatography on silica gel (EtOAc : light petroleum ether = $1:10 \sim 1:2$) to give 4n (61.7 mg, 53% yield); **White solid**, mp = 87-88 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.7 Hz, 2H), 7.41 - 7.29 (m, 3H), 6.77 (d, *J* = 14.4 Hz, 1H), 4.82 (ddd, *J* = 14.6, 8.2, 6.7 Hz, 1H), 4.41 (t, *J* = 8.1 Hz, 2H), 3.84 (br, 1H), 3.80 (s, 3H), 3.70 - 3.61 (m, 2H), 2.98 (dd, *J* = 14.2, 8.4 Hz, 1H), 2.78 (dd, *J* = 14.2, 6.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 155.3, 141.0, 128.4, 128.0, 127.2, 125.5, 104.0, 78.6, 62.2, 53.4, 42.5, 40.3; HRMS (ESI⁺) calculated for C₁₅H₁₇NO₅Na [M+Na]⁺: 314.0999, found 314.1002.

Methyl (*E*)-2-(benzyloxy)-2-(4-fluorophenyl)-5-(2-oxooxazolidin-3-yl)pent-4enoate (4r). 103.8 mg, 65% yield. White solid, mp = 105-106 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.40 – 7.32 (m, 4H), 7.31 - 7.27 (m, 1H), 7.07 - 7.02 (m, 2H), 6.69 (d, *J* = 14.4 Hz, 1H), 4.65 – 4.52 (m, 2H), 4.39 – 4.32 (m, 3H), 3.74 (s, 3H), 3.61 – 3.48 (m, 2H), 3.15 – 3.00 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 162.4 (d, *J* = 247.3 Hz), 155.3, 138.0, 134.8 (d, *J* = 3.1 Hz), 128.4, 128.2 (d, *J* = 8.2 Hz), 127.7, 127.5, 126.8, 115.4 (d, *J* = 21.4 Hz), 103.7, 84.1, 66.6, 62.1, 52.6, 42.4, 36.6; ¹⁹F NMR (471 MHz, CDCl₃) δ -113.95. HRMS (ESI⁺) calculated for C₂₂H₂₂FNO₅Na [M+Na]⁺: 422.1374, found 422.1379.

Methyl (*E*)-2-(benzyloxy)-2-(4-chlorophenyl)-5-(2-oxooxazolidin-3-yl)pent-4enoate (4s). 119.8 mg, 72% yield. White solid, mp = 112-113 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 8.6 Hz, 2H), 7.41 - 7.37 (m, 2H), 7.37 - 7.32 (m, 4H), 7.32 - 7.27 (m, 1H), 6.70 (d, *J* = 14.4 Hz, 1H), 4.61 - 4.53 (m, 2H), 4.39 - 4.33 (m, 3H), 3.74 (s, 3H), 3.61 - 3.47 (m, 2H), 3.07 (qd, *J* = 15.2, 7.2 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 172.3, 155.3, 137.9, 137.6, 134.1, 128.7, 128.4, 127.8, 127.7, 127.5, 126.9, 103.5, 84.1, 66.7, 62.1, 52.6, 42.4, 36.4; HRMS (ESI⁺) calculated for C₂₂H₂₂ClNO₅Na [M+Na]⁺: 438.1079, found 438.1079.

Methyl (*E*)-2-(benzyloxy)-2-(4-bromophenyl)-5-(2-oxooxazolidin-3-yl)pent-4enoate (4t). 149.1 mg, 81% yield. White solid, mp = 117-118 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, *J* = 8.5 Hz, 2H), 7.38 (d, *J* = 8.3 Hz, 4H), 7.37 - 7.32 (m, 2H), 7.32 - 7.26 (m, 1H), 6.69 (d, *J* = 14.4 Hz, 1H), 4.62 - 4.52 (m, 2H), 4.35 (dd, *J* = 17.0, 9.3 Hz, 3H), 3.73 (s, 3H), 3.58 - 3.47 (m, 2H), 3.06 (qd, *J* = 15.1, 7.2 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 172.2, 155.3, 138.2, 137.9, 131.6, 128.4, 128.1, 127.7, 127.5, 126.9, 122.3, 103.4, 84.2, 66.7, 62.2, 52.6, 42.4, 36.4; HRMS (ESI⁺) calculated for C₂₂H₂₂BrNO₅Na [M+Na]⁺: 482.0574, found 482.0573.

Methyl (*E*)-2-(benzyloxy)-5-(2-oxooxazolidin-3-yl)-2-(p-tolyl)pent-4-enoate (4u). 118.7 mg, 75% yield. White solid, mp = 107-108 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.36 (d, *J* = 7.9 Hz, 4H), 7.34 - 7.29 (m, 2H), 7.28 - 7.22 (m, 1H), 7.16 (d, *J* = 8.1 Hz, 2H), 6.68 (d, *J* = 14.4 Hz, 1H), 4.67 (dt, *J* = 14.4, 7.3 Hz, 1H), 4.54 (d, *J* = 11.2 Hz, 1H), 4.31 (dd, *J* = 9.9, 5.8 Hz, 3H), 3.72 (s, 3H), 3.60 – 3.44 (m, 2H), 3.12 – 2.99 (m, 2H), 2.33 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.7, 155.2, 138.5, 138.0, 136.0, 129.1, 128.2, 127.4, 127.3, 126.7, 126.4, 104.3, 84.7, 66.5, 62.1, 52.2, 42.5, 36.9, 21.0; HRMS (ESI⁺) calculated for C₂₃H₂₅NO₅Na [M+Na]⁺: 418.1625, found 418.1622.

Methyl (*E*)-2-(benzyloxy)-2-(3-methoxyphenyl)-5-(2-oxooxazolidin-3-yl)pent-4enoate (4v). 121.8 mg, 74% yield. White solid, mp = 93-94 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, *J* = 7.4 Hz, 2H), 7.36 - 7.26 (m, 4H), 7.08 - 7.04 (m, 2H), 6.85 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.70 (d, *J* = 14.4 Hz, 1H), 4.66 (dt, *J* = 14.4, 7.3 Hz, 1H), 4.56 (d, *J* = 11.2 Hz, 1H), 4.35 (d, *J* = 7.3 Hz, 2H), 4.33 (d, *J* = 3.7 Hz, 1H), 3.78 (s, 3H), 3.73 (s, 3H), 3.60 - 3.50 (m, 2H), 3.12 - 3.02 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 172.5, 159.7, 155.3, 140.6, 138.3, 129.5, 128.3, 127.5, 127.4, 126.7, 118.7, 113.3, 112.5, 104.0, 84.6, 66.5, 62.1, 55.3, 52.5, 42.4, 36.7; HRMS (ESI⁺) calculated for C₂₃H₂₅NO₆Na [M+Na]⁺: 434.1574, found 434.1579.

Methyl (*E*)-2-(benzyloxy)-2-(naphthalen-1-yl)-5-(2-oxooxazolidin-3-yl)pent-4enoate (4w). 120.8 mg, 70% yield. White solid, mp = 143-144 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.98 (s, 1H), 7.88 – 7.78 (m, 3H), 7.60 (dd, *J* = 8.7, 0.9 Hz, 1H), 7.51 - 7.46 (m, 2H), 7.44 - 7.39 (m, 2H), 7.37 - 7.32 (m, 2H), 7.30 - 7.25 (m, 1H), 6.74 (d, *J* = 14.4 Hz, 1H), 4.65 (dt, *J* = 14.4, 7.2 Hz, 1H), 4.59 (d, *J* = 11.1 Hz, 1H), 4.38 (d, *J* = 11.1 Hz, 1H), 4.32 – 4.24 (m, 2H), 3.74 (s, 3H), 3.51 (dd, *J* = 16.4, 8.8 Hz, 1H), 3.45 (dd, *J* = 16.6, 8.7 Hz, 1H), 3.21 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 172.6, 155.3, 138.2, 136.4, 133.0, 128.5, 128.4, 127.6, 126.7, 126.6, 126.4, 125.8, 124.0, 104.0, 84.8, 77.4, 77.2, 76.9, 66.7, 62.1, 52.6, 42.4, 36.5, 29.7; HRMS (ESI⁺) calculated for C₂₆H₂₅NO₅Na [M+Na]⁺: 454.1625, found 454.1628.

Ethyl (*E*)-2-(benzyloxy)-2-(4-chlorophenyl)-5-(2-oxooxazolidin-3-yl)pent-4-enoate (4x). 67.1 mg, 39% yield. Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, *J* = 8.5 Hz, 2H), 7.42 (d, *J* = 7.4 Hz, 2H), 7.40 – 7.34 (m, 4H), 7.34 – 7.29 (m, 1H), 6.72 (d, *J* = 14.3 Hz, 1H), 4.65 – 4.54 (m, 2H), 4.39 (t, *J* = 8.4 Hz, 3H), 4.29 – 4.19 (m, 2H), 3.62 – 3.52 (m, 2H), 3.14 – 3.00 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.7, 155.2, 138.0, 137.8, 134.0, 128.6, 128.4, 127.8, 127.7, 127.5, 126.9, 103.5, 84.0, 66.7, 62.1, 61.7, 42.4, 36.5, 14.2; HRMS (ESI⁺) calculated for C₂₃H₂₄NO₅ClNa [M+Na]⁺: 452.1235, found 452.1235.

Benzyl (*E*)-2-(benzyloxy)-2-(4-chlorophenyl)-5-(2-oxooxazolidin-3-yl)pent-4enoate (4y). 94.5 mg, 48% yield. Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, J = 7.8 Hz, 2H), 7.35 – 7.26 (m, 10H), 7.25 – 7.22 (m, 2H), 6.65 (d, J = 14.3 Hz, 1H), 5.16 (dd, J = 33.5, 12.1 Hz, 2H), 4.57 – 4.48 (m, 2H), 4.36 – 4.27 (m, 3H), 3.47 – 3.35 (m, 2H), 3.12 – 2.97 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 171.5, 155.2, 138.0, 137.6, 135.3, 134.1, 128.7, 128.6, 128.6, 128.5, 128.4, 127.9, 127.6, 127.5, 127.0, 103.4, 84.1, 67.3, 66.7, 62.1, 42.3, 36.5; HRMS (ESI⁺) calculated for C₂₈H₂₆NO₅ClNa [M+Na]⁺: 514.1392, found 514.1392.

Methyl (E)-2-(benzyloxy)-5-(2-oxothiazolidin-3-yl)-2-phenylpent-4-enoate (4z). 50.9 mg, 32% yield. Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, *J* = 7.6 Hz, 2H), 7.42 – 7.27 (m, 8H), 6.84 (d, *J* = 14.5 Hz, 1H), 4.74 (dt, *J* = 14.5, 7.0 Hz, 1H), 4.56 (d, *J* = 11.1 Hz, 1H), 4.34 (d, *J* = 11.0 Hz, 1H), 3.74 (s, 3H), 3.64 (dt, *J* = 17.2, 8.9 Hz, 2H), 3.28 (t, *J* = 7.4 Hz, 2H), 3.09 (d, *J* = 7.1 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 172.6, 170.3, 139.0, 138.3, 128.5, 128.3, 128.2, 127.5, 127.5, 126.9, 126.4, 105.1, 84.6, 77.3, 77.0, 76.8, 66.6, 52.4, 46.1, 37.0, 24.9; HRMS (ESI⁺) calculated for C₂₂H₂₃NO₄SNa [M+Na]⁺: 420.1240, found 420.1243.

Methyl (E)-2-(benzyloxy)-5-((4-methyl-N-phenylphenyl)sulfonamido)-2phenylpent-4-enoate (4A). 86.6 mg, 40% yield. Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.23 (m, 13H), 7.21 (d, *J* = 6.7 Hz, 2H), 7.15 (d, *J* = 7.7 Hz, 2H), 6.90 (d, *J* = 14.1 Hz, 1H), 6.83 (d, *J* = 7.6 Hz, 2H), 4.45 (d, *J* = 11.0 Hz, 1H), 4.31 – 4.20 (m, 2H), 3.69 (s, 3H), 2.98 (dd, *J* = 14.7, 7.7 Hz, 1H), 2.88 (dd, *J* = 14.6, 7.3 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.6, 143.7, 139.2, 138.2, 136.5, 135.8, 131.8, 130.2, 129.5, 129.3, 128.8, 128.3, 127.9, 127.4, 127.4, 126.2, 105.4, 84.8, 66.6, 52.3, 37.0, 21.6; HRMS (ESI⁺) calculated for C₃₂H₃₁NO₅SNa [M+Na]⁺: 564.1815, found 564.1817.

Condition Optimization:

Initially, the alcohol 1a, aryldiazoacetate 2a and allenamide 3a were used as the model substrates (Table S1). A variety of gold-complexes were evaluated for the model reaction in DCE at 25 °C (entries 1-8). To our delight, the three-component product 4a was obtained in moderate yield (62%) combined with the allenamide dimer product 5a in 5% yield and the O-H inserted product 6a in 13% when the reaction was catalyzed by JohnphosAuSbF₆ (entry 4). It should be noted that the cyclopropane product 7a was obtained in good yield (60%) when the reaction was catalyzed by Au4 and $AgSbF_6$ (entry 2). To further improve the yield of three-component product 4a, we also tried commercially available gold catalyst - JohnphosAu(MeCN)SbF₆. Fortunately, when JohnphosAu(MeCN)SbF₆ was used as catalyst, the yield of 4a reached 87%. After further optimizing solvent and temperature conditions, the conditions of DCE and 25 °C were still the best reaction conditions (entry 10-14). When the equivalent of JohnphosAu(MeCN)SbF₆ was reduced to 2.0 mol%, a considerable yield of 4a (65%) still can be achieved (entry 15). The other transition metal catalysts, which have been reported to decompose the diazo compounds, were then screened under similar conditions, such as silver, palladium, copper, rhodium and boron catalysts (entries 16-21). Unfortunately, these reactions failed to gave the product 4a. Instead, the O-H inserted product 6a was obtained as major product (entries 16-20). While the byproduct **8a** was obtained in moderate yield (66%) by addition of **1a** to **3a** when the reaction was promoted by TPFPB (entries 21). Changing the addition sequences or methods gave no better results (entries 22 and 23). In addition, a relatively good yield (84%) of **4a** also can be contained when the reaction was carried out under open air (entry 24).

Table S1. Condition Optimization^a

	$Ph \rightarrow OH + Ph + CO_2Me + OH + O$	cat. (x mol%), [Ag]/[Na] (x m 4 Å MS, solvent, temp.	^{51%)} Ph	Ph CO ₂ Me N	\$ ≡	je se				
By-products	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	Ph_0_N_ 8a	[Au]	Au Au Cl	Hau	Çi "Au			'Bi	
entry	cat. (x mol%)	[Ag]/[Na] (x mol%)	solvent	temp. (°C)	time (h)	yield 4a	(%) ^b 5a	6a	7a	8a
1°	Au1 (5.0)	$AgSbF_6(5.0)$	DCE	25	5	19	< 5	< 5	23	< 5
2 ^{<i>c</i>, <i>d</i>}	Au2 (5.0)	$AgSbF_6(5.0)$	DCE	25	4	< 5	6	< 5	60	< 5
3 ^c	Au3 (5.0)	$AgSbF_6(5.0)$	DCE	25	6	< 5	11	< 5	< 5	< 5
4 ^{<i>c</i>}	Au4 (5.0)	$AgSbF_6(5.0)$	DCE	25	2	62	5	13	< 5	< 5
5 ^c	Au4 (5.0)	$AgNTf_2(5.0)$	DCE	25	2	58	6	13	< 5	< 5
6 ^c	Au4 (5.0)	AgOTf(5.0)	DCE	25	5	54	< 5	< 5	< 5	< 5
7 ^c	Au4 (5.0)	NaBArF (5.0)	DCE	25	8	26	< 5	58	< 5	< 5
8 ^e	Au4 (5.0)	_	DCE	25	24	< 5	< 5	< 5	< 5	< 5
9 c, f	JohnphosAu(MeCN)SbF ₆ (5.0)	_	DCE	25	2	87	6	6	< 5	< 5
10 ^c	JohnphosAu(MeCN)SbF ₆ (5.0)		DCM	25	2	74	8	12	< 5	< 5
11 ^c	JohnphosAu(MeCN)SbF ₆ (5.0)	_	Toluene	25	2	32	13	26	< 5	< 5
12 ^{c, e}	JohnphosAu(MeCN)SbF ₆ (5.0)		THF	25	12	< 5	< 5	< 5	< 5	< 5
13 ^c	JohnphosAu(MeCN)SbF ₆ (5.0)		DCE	0	7	46	< 5	12	8	< 5
14 ^c	JohnphosAu(MeCN)SbF ₆ (5.0)		DCE	40	1.5	72	24	< 5	< 5	< 5
15 ^c	JohnphosAu(MeCN)SbF ₆ (2.0)	_	DCE	25	3	65	< 5	23	< 5	< 5

16	_	$AgSbF_6(5.0)$	DCE	25	24	< 5	< 5	72	< 5	< 5
17	$(\eta^3 - C_3 H_5)_2 P d_2 C l_2 (5.0)$	—	DCE	25	1	< 5	< 5	95	< 5	< 5
18	$Cu(OTf)_2(5.0)$	—	DCE	25	4	< 5	< 5	75	< 5	< 5
19	[Rh(COD)Cl] ₂ (2.0)	—	DCE	65	3	< 5	< 5	43	< 5	< 5
20	$Rh_2(OAc)_4(2.0)$	—	DCE	25	1	< 5	< 5	95	< 5	< 5
21	(C ₆ F ₅) ₃ B (5.0)	—	DCE	25	2	< 5	< 5	5	< 5	66
22 ^g	JohnphosAu(MeCN)SbF ₆ (5.0)	—	DCE	25	2	72	< 5	< 5	< 5	< 5
23 ^h	JohnphosAu(MeCN)SbF ₆ (5.0)	—	DCE	25	2	73	< 5	< 5	< 5	< 5
24 ^{<i>i</i>}	JohnphosAu(MeCN)SbF ₆ (5.0)	_	DCE	25	2	84	< 5	5	< 5	< 5

^{*a*}Unless other noted, all reactions were carried out (1a/2a/3a = 0.2/0.24/0.24 mmol) in 4.0 mL solvent under nitrogen atmosphere until 2a was consumed completely. ^{*b*}Determined by ¹H NMR spectroscopy analyses using 1,3,5-trimethoxybenzene as an internal standard. ^{*c*}The reaction was quenched by addition of pyridine (10 mol%). ^{*d*}Z-7a : *E*-7a = 1:2, the rate was determined by crude ¹H NMR. ^{*e*}All components were unconverted. ^{*f*}The isolated yield of 4a was 85%. ^{*g*}Three components added once. ^{*h*}Three components added together for 0.5 h. ^{*i*}Under air condition.

(*E*)-3-(3-(benzyloxy)prop-1-en-1-yl)oxazolidin-2-one (8a). Colorless oil; The product was identified as *E*-configuration by the ¹H NMR coupling constant (*J*); ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.32 (m, 4H), 7.32 – 7.27 (m, 1H), 6.91 (d, *J* = 14.3 Hz, 1H), 4.98 (dt, *J* = 14.0, 6.9 Hz, 1H), 4.51 (s, 2H), 4.44 (t, *J* = 8.0 Hz, 2H), 4.05 (d, *J* = 6.9 Hz, 2H), 3.71 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 155.3, 138.1, 128.5, 127.8, 127.7, 106.5, 72.0, 68.7, 62.2, 42.4; HRMS (ESI⁺) calculated for C₁₃H₁₅NO₃Na [M+Na]⁺: 256.0944, found 256.0944.

Procedure for Synthesis of 7a and 7b

Synthesis of 7a: To a flame-dried 25-mL Schlenk flask charged with a magnetic stirring bar, 5.0 mol% JohnphosAu(MeCN)SbF₆ and 100 mg 4 Å MS, 2.0 mL of DCM were added under nitrogen atmosphere at 25 °C. methyl phenyldiazoacetate **2a** (0.10 mmol) and allenamide **3a** (0.15 mmol) dissolved in DCM (2.0 mL) were added by syringe pump over 1.0 h. The mixture was stirred for 4.0 h at 25 °C. Pyridine was used for quenching reaction before the reaction mixture was filtrated, and then the

filtrate was evaporated in vacuum to give the crude product. The crude product was purified by column chromatography (10:1 to 1:1 gradient of hexanes: ethyl acetate as eluents) to afford *Z*-7**a** : *E*-7**a** in total yield of 52% (*Z*-7**a** : *E*-7**a** = 1:2).

Methyl (*Z*)-2-((2-oxooxazolidin-3-yl)methylene)-1-phenylcyclopropane-1carboxylate (*Z*-7a).

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.30 (m, 1H), 7.29 – 7.22 (m, 2H), 4.40 – 4.29 (m, 1H), 3.92 – 3.83 (m, 1H), 3.80 – 3.69 (m, 2H), 2.57 (dd, *J* = 7.9, 2.1 Hz, 1H), 1.60 (dd, *J* = 7.9, 2.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 155.7, 137.4, 129.2, 128.3, 127.7, 116.5, 108.2, 62.5, 52.8, 42.9, 31.3, 20.2. HRMS (ESI⁺) calculated for C₁₅H₁₅NO₄Na [M+Na]⁺: 296.0893, found 296.0892.

Methyl (*E*)-2-((2-oxooxazolidin-3-yl)methylene)-1-phenylcyclopropane-1carboxylate (*E*-7a). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.35 (m, 3H), 7.34 – 7.27 (m, 3H), 4.49 – 4.37 (m, 2H), 4.06 – 3.97 (m, 1H), 3.94 – 3.85 (m, 1H), 3.66 (s, 3H), 2.57 (dd, *J* = 7.8, 2.4 Hz, 1H), 1.87 (dd, *J* = 7.8, 2.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 155.6, 139.1, 128.6, 127.4, 127.3, 116.8, 107.2, 62.4, 52.8, 43.3, 33.4, 21.5. HRMS (ESI⁺) calculated for C₁₅H₁₅NO₄Na [M+Na]⁺: 296.0893, found 296.0891.

Synthesis of 7b: The *Z*-7b and *E*-7b were obtained in the same procedure in total yield of 27% (*Z*-7a : *E*-7a = 5:22).

Methyl (*Z*)-1-(4-bromophenyl)-2-((2-oxooxazolidin-3-yl)methylene)cyclopropane-1-carboxylate (*Z*-7b). ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 7.9 Hz, 2H), 7.23 (s, 1H), 7.16 (d, *J* = 7.8 Hz, 2H), 4.43 – 4.27 (m, 2H), 3.81 (dd, *J* = 16.2, 8.5 Hz, 1H), 3.76 (s, 3H), 3.70 (dd, *J* = 17.5, 8.7 Hz, 1H), 2.59 (d, *J* = 8.0 Hz, 1H), 1.59 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 155.5, 138.1, 131.7, 131.7, 129.2, 128.3, 121.2, 117.0, 106.9, 62.4, 52.9, 43.2, 21.8. HRMS (ESI⁺) calculated for C₁₅H₁₄NO₄Br [M+Na]⁺: 373.9999, found 373.9999.

Methyl (*E*)-1-(4-bromophenyl)-2-((2-oxooxazolidin-3-yl)methylene)cyclopropane-1-carboxylate (*E*-7b). ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 7.5 Hz, 2H), 7.38 (s, 1H), 7.24 (d, *J* = 7.3 Hz, 2H), 4.46 (dd, *J* = 14.3, 7.5 Hz, 2H), 4.03 (q, *J* = 8.3 Hz, 1H), 3.91 (q, *J* = 8.4 Hz, 1H), 3.67 (s, 3H), 2.58 (d, *J* = 7.8 Hz, 1H), 1.83 (d, *J* = 7.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 171.8, 155.6, 136.4, 131.4, 130.9, 121.8, 116.9, 107.6, 62.4, 52.9, 42.9, 30.8, 20.3. HRMS (ESI⁺) calculated for C₁₅H₁₄NO₄Br [M+Na]⁺: 373.9999, found 373.9999.

Figure S1. 1D NOE analysis of compound Z-7b.

Figure S2. 1D NOE analysis of compound E-7b.

General Procedure for the Scale-Up Reaction

To a Schlenk tube charged with 5.0 mol% JohnphosAu(MeCN)SbF₆, alcohol **1i** (4.0 mmol), 500 mg 4 Å MS in 40 mL DCE, diazoacetate **2a** (4.8 mmol), allenamide **3a** (4.8 mmol) in DCE (40 mL) were introduced by syringe pump over 0.5 h under nitrogen atmosphere at 25 °C and the reaction solution was stirred for another 2.0 h. After the completion of the reaction, the reaction mixture was filtrated and the filtrate was evaporated in vacuum to give the crude product. And then the crude product was purified by flash chromatography on silica gel (EtOAc : light petroleum ether = 1:10 ~ 1:2) to give **4i** (0.95g, 55% yield).

Further Transformations of 4i

Synthesis of 9: To a solution of 4i (43.1 mg, 0.10 mmol) in THF (4.0 mL) was added

HCl (6N) (1 mL, 6.0 mmol), the mixture was stirred at 25 °C for 0.5 h. Saturated NaHCO₃ was added until neutralization, the reaction mixture was extracted with EtOAc (2×10 mL), the combined organic layers was dried over anhydrous Na₂SO₄. After filtration and concentration, the residue was purified by column chromatography on silica gel (EtOAc : light petroleum ether = 1:10 ~ 1:5) to give product **9** (27.3 mg, 75% yield, **colorless oil**); ¹H NMR (400 MHz, CDCl₃) δ 9.68 (t, *J* = 1.1 Hz, 1H), 7.83 (d, *J* = 8.1 Hz, 4H), 7.55 – 7.45 (m, 5H), 7.40 – 7.30 (m, 3H), 4.66 (d, *J* = 11.2 Hz, 1H), 4.51 (d, *J* = 11.2 Hz, 1H), 3.77 (s, 3H), 2.77 – 2.61 (m, 2H), 2.50 – 2.36 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 201.2, 172.7, 138.8, 135.5, 133.3, 133.0, 128.6, 128.3, 128.1, 128.0, 127.7, 126.1, 126.0, 125.9, 125.6, 83.9, 66.9, 52.6, 38.3, 28.2; HRMS (ESI⁺) calculated for C₂₃H₂₂O₄Na [M+Na]⁺: 385.1410, found 385.1411.

Synthesis of 10: To a 25mL flask with a magnetic stirring bar, **4i** (86.2 mg, 0.2 mmol) in anhydrous THF (2.0 mL) was added LiBH₄ (22 mg, 1 mmol, 5 equiv.) at 25 °C, and the reaction mixture was stirred at 65 °C for 0.5 h until the reaction was completed (monitored by TLC). And then H₂O (3.0 mL) was added to quench the reaction, and the aqueous layer was extracted with EtOAc (3×10 mL), the combined organic layer was dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuum after filtration, and the residue was purified by column chromatography on silica gel (EtOAc : light petroleum ether = 1:3 ~ 1:1) to give product **10** (72.2 mg, 87% yield, **colorless oil**); ¹H NMR (500 MHz, CDCl₃) δ 7.85 – 7.78 (m, 4H), 7.49 – 7.38 (m, 7H), 7.34 – 7.29 (m, 1H), 6.73 (d, *J* = 14.4 Hz, 1H), 4.70 (dt, *J* = 14.5, 7.4 Hz, 1H), 4.51 (q, *J* = 11.6 Hz, 2H), 4.36 – 4.28 (m, 2H), 3.97 (qd, *J* = 11.5, 5.0 Hz, 2H), 3.58 – 3.48 (m, 2H), 2.90 – 2.80 (m, 2H), 1.86 (br, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 155.3, 141.0, 136.1, 133.4, 132.9, 128.6, 128.2, 127.9, 127.8, 127.7, 126.6, 126.5, 126.2, 125.9, 125.9, 125.5, 105.1, 81.6, 65.7, 64.8, 62.1, 42.5, 35.9; HRMS (ESI⁺) calculated for C₂₅H₂₅NO₄Na [M+Na]⁺: 426.1676, found 426.1675.

Synthesis of 11: After **4i** (86.2 mg, 0.20 mmol) was dissolved in MeOH (1 mL) and THF (1 mL), ozone was bubbled through the solution for 1.0 h until **4a** consumed completely monitored by TLC. Then, Me₂S (1.25 mL, 17.0 mmol) was added and stirred overnight. The solvent was evaporated and the resulting crude residue was chromatographed (EtOAc : light petroleum ether = $1:10 \sim 1:5$) to give product **11** (60.6 mg, 90% yield, **colorless oil**); ¹H NMR (400 MHz, CDCl₃) δ 9.63 (t, J = 2.5 Hz, 1H), 7.85 – 7.77 (m, 4H), 7.56 – 7.51 (m, 2H), 7.50 – 7.45 (m, 3H), 7.44 – 7.36 (m, 3H), 4.82 (d, J = 11.1 Hz, 1H), 4.56 (d, J = 11.1 Hz, 1H), 3.82 (s, 3H), 3.40 – 3.29 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 199.7, 172.0, 138.1, 135.1, 133.3, 133.0, 128.9, 128.8, 128.2, 128.0, 127.7, 126.4, 126.2, 126.1, 126.0, 125.7, 82.4, 67.6, 52.9, 50.1; HRMS (ESI⁺) calculated for C₂₂H₂₀O₄Na [M+Na]⁺: 371.1254, found 371.1259.

Synthesis of 12: A flask was charged with **4i** (43.1 mg, 0.10 mmol), Pd(OH)₂ (10.0 mol%) in 4.0 mL MeOH. The reaction mixture was stirred under a hydrogen atmosphere at 40 °C for 24 h. The reaction mixture was filtered, and the filtrate were concentrated. Then the crude product was purified by flash chromatography on silica gel (EtOAc : light petroleum ether = 1:5 ~ 1:2) to give the pure product **12** (40.3 mg, 93%, **colorless oil**); ¹H NMR (400 MHz, CDCl₃) δ 7.87 - 7.79 (m, 4H), 7.58 - 7.42 (m, 6H), 7.41 - 7.29 (m, 4H), 4.66 (d, *J* = 11.4 Hz, 1H), 4.51 (d, *J* = 11.4 Hz, 1H), 4.19 (ddd, *J* = 8.6, 7.3, 2.5 Hz, 2H), 3.78 (s, 3H), 3.33 - 3.20 (m, 4H), 2.50 - 2.36 (m, 1H), 2.33 - 2.25 (m, 1H), 1.50 (td, *J* = 14.4, 7.2 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 173.0, 158.6, 139.3, 135.7, 133.3, 132.9, 128.5, 128.2, 128.1, 127.9, 127.7, 126.1, 126.1, 126.0, 125.9, 125.7, 84.5, 66.8, 61.6, 52.5, 44.1, 44.0, 32.7, 21.3; HRMS (ESI⁺) calculated for C₂₆H₂₇NO₅Na [M+Na]⁺: 456.1781, found 456.1784.

Control Experiments

To a Schlenk tube charged with 5.0 mol% JohnphosAu(MeCN)SbF₆, **1a** (0.4 mmol) and 100 mg 4 Å MS in 4.0 mL DCE, methyl phenyldiazoacetate **2a** (0.48 mmol) in DCE (4.0 mL) were introduced by syringe pump over 0.5 h at 25 °C under nitrogen atmosphere and the reaction solution was stirred for another 1.5 h. After the completion of the reaction, the reaction mixture was filtrated and the filtrate was evaporated in vacuum to give the crude product. And then the crude product was purified by flash chromatography on silica gel (EtOAc : light petroleum ether = $1:20 \sim 1:10$) to give **6a** in 89% yield.

To a Schlenk tube charged with 5.0 mol% JohnphosAu(MeCN)SbF₆, **6a** (0.2 mmol), and 50 mg 4 Å MS in 2.0 mL DCE, **3a** (0.24 mmol) in DCE (1.0 mL) were introduced by syringe pump over 0.5 h under nitrogen atmosphere at 25 °C and the reaction solution was stirred for another 1.5 h. The reaction mixture was detected by ¹H NMR spectroscopy analyses and LC-MS. Product **4a** was not detected, and 74% of the allenamide dimer product **5a** was detected.

To a Schlenk tube charged with 5.0 mol% JohnphosAu(MeCN)SbF₆, **1a** (0.2 mmol), *Z*-**7a** or *E*-**7a** (0.2 mmol), and 50 mg 4 Å MS in 2.0 mL DCE under nitrogen atmosphere at 25 °C and the reaction solution was stirred for another 2.0 h. The reaction mixture was detected by ¹H NMR spectroscopy analyses and LC-MS, and no three-component product 4a was observed.

To a Schlenk tube charged with 5.0 mol% JohnphosAu(MeCN)SbF₆, **1a** (0.4 mmol) and *p*-nitrobenzenealdehyde (0.48 mmol) in 4.0 mL DCE, aryldiazoacetate **2a** (0.48 mmol) in DCE (4.0 mL) were introduced by syringe pump over 0.5 h at 25 °C under nitrogen atmosphere and the reaction solution was stirred for another 1.5 h. After the completion of the reaction, the reaction mixture was filtrated and the filtrate was evaporated in vacuum to give the crude product. And then the crude product was purified by flash chromatography on silica gel (EtOAc : light petroleum ether = 1:20 ~ 1:10) to give **13a** in 70% yield with 42:58 *d.r.* (determined by ¹H NMR analysis).

To a Schlenk tube charged with 5.0 mol% JohnphosAu(MeCN)SbF₆, **1a** (0.4 mmol) and *p*-nitrobenzenealdehyde (0.48 mmol) in 4.0 mL DCE, methyl phenyldiazoacetate **2a** (0.48 mmol) and allenamide **3a** (0.48 mmol) in DCE (4.0 mL) were introduced by syringe pump over 0.5 h at 25 °C under nitrogen atmosphere and the reaction solution was stirred for another 1.5 h. The reaction mixture was detected by ¹H NMR spectroscopy analyses and LC-MS, affording 25% of **13a** (*d.r.* = 44:56) and 58% of **4a**.

References

[1] Muthusamy, S.; Sivaguru, M. Org. Lett., 2014, 16, 4248-4251.

[2] Gholap, S. S.; Takimoto, M.; Hou, Z. Chem. Eur. J. 2016, 22, 8547 - 8552.

[3] Faustino, H.; Alonso, I.; Mascareñas, J. L.; López, F. Angew. Chem., Int. Ed. 2013,

52,6526-6530.

[4] Effenberger, F.; Hopf, M.; Ziegler, T.; Hudelmayer, J. Chem. Ber. 1991, 124, 1651-1659.

[5] Lu, C.-D.; Liu, H.; Chen, Z.-Y.; Hu, W.-H.; Mi, A.-Q. Org. Lett. 2005, 7, 83-86.

Single Crystal X-ray Diffraction Data of 4a

Product 4a (CDCC NO.:1878814)

Ellipsoids are drawn at the 50% probability level.

	Bond precision:	C-C = 0.0021 A	A Wavelength=1.541				
	Cell:	a=20.9188(7) alpha=90	b=11.2773(4) beta=98.639(3)	c=8.3717(: gamma=90	3)		
	Temperature:	100 K					
	Volume	Calculated 1952.54(12)	Repor 1952.	ted 54(11)			
	Space group	P 21/c	P 1 2	1/c 1			
	Hall group	-P 2ybc	-P 2y	bc			
	Moiety formula	C22 H23 N 05	C22 H	123 N 05			
	Sum formula	C22 H23 N 05	C22 H	123 N 05			
	Mr	381.41	381.4	1			
	Dx,g cm-3	1.298	1.297				
	Z Mu (mm 1)	4 0 755	4				
		0.755	0.755				
	F000'	810.59	000.0				
	h.k.lmax	24.13.10	24.13	.10			
	Nref	3472	3467	,			
	Tmin, Tmax	0.834,0.927	0.666	,1.000			
	Tmin'	0.797					
	Correction metho AbsCorr = MULTI Data completenes	od= # Reported T L -SCAN ss= 0.999	imits: Tmin=0. Theta(max)= 6	666 Tmax=1.000			
	P(rofloctions)-	0 0399 (2972)	wP2(rofloctic	(24) = 0.1097(24)	67)		
	R(TELIECCIONS) -	0.0358(2572)	WKZ (TETTECCTC	JIB/= 0.1087(34	077		
	S = 1.032	Npar= 2	254				
Alert 1	evel C		() (2011) 1010	245-244-25-04712-X			
PLAT906 ALE	RT 3 C Large K Valu	e in the Analysis of N	/ariance	2.381 Check			
FLAISII ALD	<u>KI 5 C</u> MISSING FCF	Keli between nimin « :	0.557	5 Report			
Alert 1	evel G						
PLAT398 ALE	RT 2 G Deviating C	-O-C Angle From 120) for 03	109.6 Degree			
PLAT793 ALE	RT 4 G Model has Ch	irality at C8	(Centro SPGR)	R Verify			
PLAT909 ALEP	RT 3 G Percentage o	I 1>2sig(1) Data at Tr Very Strong Reflection	neta(Max) Still	3 Note			
PLAT978 ALE	RT 2 G Number C-C B	onds with Positive Res	sidual Density.	7 Info			
0 ALERT	level A = Most like	ly a serious problem ·	- resolve or expl	ain			
0 ALERT	level B = A potenti	ally serious problem,	consider careful	ly			
5 ALERT	level C = Cneck. En level G = General i	sure it is not caused nformation/check it is	by an omission o s not something u	r oversight nexpected			
O ALERT t	type 1 CIF construc	tion/syntax error, inc	consistent or mis	sing data			
∠ ALERT t 4 ALERT t	4 ALERT type 3 Indicator that the structure model may be wrong or dericient						
1 ALERT t	type 4 Improvement,	methodology, query of	suggestion				
0 ALERT t	type 5 Informative	message, check					

